07.02.2014 Views

Flexoelectric rotation of polarization in ferroelectric thin films - Nature

Flexoelectric rotation of polarization in ferroelectric thin films - Nature

Flexoelectric rotation of polarization in ferroelectric thin films - Nature

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ARTICLES<br />

PUBLISHED ONLINE: 16 OCTOBER 2011 | DOI: 10.1038/NMAT3141<br />

<strong>Flexoelectric</strong> <strong>rotation</strong> <strong>of</strong> <strong>polarization</strong> <strong>in</strong><br />

<strong>ferroelectric</strong> th<strong>in</strong> <strong>films</strong><br />

G. Catalan 1,2 *, A. Lubk 3 , A. H. G. Vlooswijk 1 , E. Snoeck 3,4 , C. Magen 4,5 , A. Janssens 6 , G. Rispens 1 ,<br />

G. Rijnders 6 , D. H. A. Blank 6 and B. Noheda 1 *<br />

Stra<strong>in</strong> eng<strong>in</strong>eer<strong>in</strong>g enables modification <strong>of</strong> the properties <strong>of</strong> th<strong>in</strong> <strong>films</strong> us<strong>in</strong>g the stress from the substrates on which they are<br />

grown. Stra<strong>in</strong> may be relaxed, however, and this can also modify the properties thanks to the coupl<strong>in</strong>g between stra<strong>in</strong> gradient<br />

and <strong>polarization</strong> known as flexoelectricity. Here we have studied the stra<strong>in</strong> distribution <strong>in</strong>side epitaxial <strong>films</strong> <strong>of</strong> the archetypal<br />

<strong>ferroelectric</strong> PbTiO 3 , where the mismatch with the substrate is relaxed through the formation <strong>of</strong> doma<strong>in</strong>s (tw<strong>in</strong>s). Synchrotron<br />

X-ray diffraction and high-resolution scann<strong>in</strong>g transmission electron microscopy reveal an <strong>in</strong>tricate stra<strong>in</strong> distribution, with<br />

gradients <strong>in</strong> both the vertical and, unexpectedly, the horizontal direction. These gradients generate a horizontal flexoelectricity<br />

that forces the spontaneous <strong>polarization</strong> to rotate away from the normal. Polar <strong>rotation</strong>s are a characteristic <strong>of</strong> compositionally<br />

eng<strong>in</strong>eered morphotropic phase boundary <strong>ferroelectric</strong>s with high piezoelectricity; flexoelectricity provides an alternative route<br />

for generat<strong>in</strong>g such <strong>rotation</strong>s <strong>in</strong> standard <strong>ferroelectric</strong>s us<strong>in</strong>g purely physical means.<br />

In <strong>ferroelectric</strong> th<strong>in</strong> <strong>films</strong>, the coupl<strong>in</strong>g between stra<strong>in</strong> and<br />

electrical <strong>polarization</strong> (piezoelectricity) is <strong>in</strong>tr<strong>in</strong>sic and enables<br />

functional optimization by an adequate choice <strong>of</strong> substrate<br />

(stra<strong>in</strong> eng<strong>in</strong>eer<strong>in</strong>g) 1–6 . It is only recently, however, that the important<br />

role <strong>of</strong> stra<strong>in</strong> gradients has been highlighted 7–9 . Stra<strong>in</strong> gradients<br />

couple to <strong>polarization</strong> <strong>in</strong> all dielectrics through flexoelectricity 10–22 ,<br />

which is large at the nanoscale because the size <strong>of</strong> the gradients is<br />

<strong>in</strong>versely proportional to the relaxation length—and hence to the<br />

sample size. Thus, <strong>in</strong> <strong>ferroelectric</strong> <strong>films</strong> and nanodevices, the local<br />

stra<strong>in</strong> distribution is at least as important as the average stra<strong>in</strong> value:<br />

it can modify the dielectric constant 7,8 or cause impr<strong>in</strong>t 20–22 , it can<br />

be used to elicit piezoelectric-like responses <strong>in</strong> devices made out <strong>of</strong><br />

non-piezoelectric materials 12,13 , and it can enhance the piezoelectric<br />

response <strong>of</strong> <strong>ferroelectric</strong> materials above their bulk value 15 .<br />

Present technologies enable the layer-by-layer growth <strong>of</strong> atomically<br />

flat <strong>ferroelectric</strong> <strong>films</strong> that are perfectly epitaxial and that, <strong>in</strong><br />

the right conditions, may be largely free <strong>of</strong> dislocations 23 . Under<br />

these conditions, the available stra<strong>in</strong>-reliev<strong>in</strong>g mechanisms are a<br />

change <strong>of</strong> symmetry 2,24 , the formation <strong>of</strong> ferroelastic doma<strong>in</strong>s 25 , or<br />

both 26,27 . In the absence <strong>of</strong> dislocations, and outside the doma<strong>in</strong><br />

walls, we might expect the stra<strong>in</strong> state <strong>of</strong> a film to be homogeneous.<br />

However, the present work shows that large elastic stra<strong>in</strong><br />

gradients also occur <strong>in</strong> dislocation-free but ferroelastically tw<strong>in</strong>ned<br />

<strong>films</strong>. These stra<strong>in</strong> gradients are <strong>in</strong>tr<strong>in</strong>sic, as their orig<strong>in</strong> is<br />

geometric, and long range (tens <strong>of</strong> nanometres). The gradient<strong>in</strong>duced<br />

<strong>polarization</strong> (flexoelectricity) is found to be large:<br />

several µC cm −2 , comparable to <strong>ferroelectric</strong>ity. Moreover, the<br />

flexoelectricity is horizontal, and causes a <strong>rotation</strong> <strong>of</strong> the out<strong>of</strong>-plane<br />

<strong>ferroelectric</strong>ity <strong>in</strong> the c doma<strong>in</strong>s. Gradient eng<strong>in</strong>eer<strong>in</strong>g<br />

through tw<strong>in</strong>n<strong>in</strong>g thus provides an alternative route to the<br />

generation <strong>of</strong> <strong>ferroelectric</strong>s with rotated <strong>polarization</strong>, a feature<br />

thought to enhance piezoelectricity 28–30 .<br />

The samples studied here are th<strong>in</strong> <strong>films</strong> <strong>of</strong> PbTiO 3 , with thickness<br />

<strong>of</strong> about 30 nm, grown on s<strong>in</strong>gle crystal substrates <strong>of</strong> DyScO 3 .<br />

PbTiO 3 is chosen as an aristotype <strong>of</strong> Pb(Zr,Ti)O 3 , the most<br />

widely used material <strong>in</strong> piezoelectric transducers. Importantly, <strong>in</strong><br />

its high-temperature cubic phase, PbTiO 3 has an almost perfect<br />

lattice match with DyScO 3 , enabl<strong>in</strong>g the growth <strong>of</strong> fully coherent<br />

<strong>films</strong>. As they cool down from the growth temperature, the <strong>films</strong><br />

transform <strong>in</strong>to the <strong>ferroelectric</strong> phase. In epitaxial PbTiO 3 grown on<br />

DyScO 3 , different symmetries and doma<strong>in</strong> structures may appear<br />

depend<strong>in</strong>g on the thickness. Ultrath<strong>in</strong> <strong>films</strong> (5 nm) show a periodic<br />

<strong>ferroelectric</strong>, non-ferroelastic, doma<strong>in</strong> structure 24 , whereas at larger<br />

thickness (>10 nm) the misfit stra<strong>in</strong> is relaxed by divid<strong>in</strong>g the film<br />

<strong>in</strong>to tetragonal 90 ◦ doma<strong>in</strong>s (a–c tw<strong>in</strong>s) that alternate <strong>in</strong>-plane and<br />

out-<strong>of</strong>-plane <strong>polarization</strong> 27,31–35 .<br />

The <strong>ferroelectric</strong> doma<strong>in</strong> structure <strong>of</strong> the <strong>films</strong> was characterized<br />

with piezo-response force microscopy. The phase-contrast images<br />

(Fig. 1) show the alternation <strong>of</strong> darker and brighter stripes,<br />

reflect<strong>in</strong>g the vertical and horizontal <strong>polarization</strong>, respectively. The<br />

doma<strong>in</strong> structures are therefore classic a–c tw<strong>in</strong>s, arranged <strong>in</strong><br />

metadoma<strong>in</strong> clusters or ‘bundles’ 36 .<br />

To <strong>in</strong>vestigate the stra<strong>in</strong> state, the lattice parameters <strong>of</strong> the<br />

film were mapped us<strong>in</strong>g synchrotron X-ray diffraction <strong>in</strong> graz<strong>in</strong>g<strong>in</strong>cidence<br />

geometry. In this way, large diffracted <strong>in</strong>tensities not<br />

limited by the f<strong>in</strong>ite thickness <strong>of</strong> the film can be collected, and<br />

the <strong>in</strong>-plane structure <strong>of</strong> the film can be characterized. In graz<strong>in</strong>g<br />

<strong>in</strong>cidence, the maximum <strong>in</strong>tensity is obta<strong>in</strong>ed when the <strong>in</strong>cident<br />

angle <strong>of</strong> the X-ray beam with the film surface, α i , is close to the<br />

critical angle for total reflection 37 , which is α c ∼ 0.29 ◦ for PbTiO 3<br />

at the wavelength used (λ = 1.265 Å).<br />

In Fig. 2a we observe that, when the <strong>in</strong>cident angle is close to<br />

the nom<strong>in</strong>al α c , there is a diffraction maximum at about 37.5 ◦ ,<br />

correspond<strong>in</strong>g to a lattice parameter that is very close to the<br />

1 Zernike Institute for Advanced Materials, University <strong>of</strong> Gron<strong>in</strong>gen, 9747 AG Gron<strong>in</strong>gen, The Netherlands, 2 ICREA and CIN2, Campus Universitat<br />

Autonoma de Barcelona, Bellaterra 08193, Barcelona, Spa<strong>in</strong>, 3 CEMES-CNRS, 29, rue Jeanne-Marvig, 31055 Toulouse, France, 4 Transpyrenean Associated<br />

Laboratory for Electron Microscopy, CEMES—INA, CNRS—University <strong>of</strong> Zaragoza, Spa<strong>in</strong>, 5 Laboratorio de Microscopías Avanzadas (LMA), Instituto de<br />

Nanociencia de Aragón (INA)–ARAID, and Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50018 Zaragoza, Spa<strong>in</strong>, 6 MESA+<br />

Institute for Nanotechnology, University <strong>of</strong> Twente, 7500 AE Enschede, The Netherlands. *e-mail: gustau.catalan@c<strong>in</strong>2.es; b.noheda@rug.nl.<br />

NATURE MATERIALS | VOL 10 | DECEMBER 2011 | www.nature.com/naturematerials 963<br />

© 2011 Macmillan Publishers Limited. All rights reserved


ARTICLES<br />

NATURE MATERIALS DOI: 10.1038/NMAT3141<br />

substrate’s. This broad maximum corresponds to the c doma<strong>in</strong>s,<br />

which have <strong>polarization</strong> out <strong>of</strong> plane and thus a compressed<br />

<strong>in</strong>-plane lattice parameter. As α i <strong>in</strong>creases, a second peak appears<br />

at smaller angles (larger lattice parameters), correspond<strong>in</strong>g<br />

to the a doma<strong>in</strong>s, which have <strong>polarization</strong> <strong>in</strong> plane and<br />

thus horizontal elongation. As the <strong>in</strong>cident angle is further <strong>in</strong>creased,<br />

the two diffraction maxima migrate away from each other,<br />

signall<strong>in</strong>g a grow<strong>in</strong>g difference between the <strong>in</strong>-plane a and c<br />

lattice parameters.<br />

Given that <strong>in</strong>creas<strong>in</strong>g the <strong>in</strong>cidence angle <strong>in</strong>creases the penetration<br />

depth <strong>of</strong> the X-rays 37 , it is tempt<strong>in</strong>g to assign the <strong>in</strong>creased<br />

tetragonality to lattice planes that are deeper 38 . However, it makes<br />

little physical sense that the least cubic parts <strong>of</strong> the film should be<br />

those closest to the substrate. Moreover, all the change <strong>in</strong> our <strong>films</strong><br />

happens at angles above the critical <strong>in</strong>cidence one, for which the<br />

X-ray penetration depth is already larger than the entire thickness <strong>of</strong><br />

the film (as confirmed by the observation <strong>of</strong> the substrate peak). The<br />

observed evolution <strong>of</strong> the diffraction maxima with <strong>in</strong>cidence angle<br />

reflects <strong>in</strong>stead a distribution <strong>of</strong> crystallographic <strong>in</strong>cl<strong>in</strong>ation angles<br />

with<strong>in</strong> the doma<strong>in</strong>s. In bulk tetragonal tw<strong>in</strong>n<strong>in</strong>g, the Bragg planes<br />

<strong>of</strong> adjacent a and c doma<strong>in</strong>s form an angle (Fig. 2b) that is given by<br />

γ = 2arctan(c/a)−90 ◦ (1)<br />

Figure 1 | Piezo-response force microscopy image <strong>of</strong> a tw<strong>in</strong>ned<br />

<strong>ferroelectric</strong> film. The alternat<strong>in</strong>g dark and pale orange stripes correspond<br />

to narrow doma<strong>in</strong>s with <strong>polarization</strong> alternat<strong>in</strong>g between, respectively, the<br />

vertical and horizontal <strong>polarization</strong>s <strong>in</strong> a 30-nm-thick film <strong>of</strong> PbTiO 3 grown<br />

on SrRuO 3 -buffered DyScO 3 . The image area is 2 µm×2 µm.<br />

This relative angle should be 3.6 ◦ for a fully relaxed PbTiO 3 ,<br />

but <strong>in</strong> the <strong>films</strong> the tetragonality c/a is <strong>in</strong>homogeneous (as<br />

<strong>in</strong>dicated by the X-rays), result<strong>in</strong>g <strong>in</strong> a distribution <strong>of</strong> Bragg-plane<br />

<strong>in</strong>cl<strong>in</strong>ations. The regions with different local <strong>in</strong>cl<strong>in</strong>ations meet the<br />

Bragg condition at different <strong>in</strong>cidence angles (α), and thus the<br />

diffraction data reveal the correlated distribution <strong>of</strong> tetragonality<br />

a<br />

ω (°) ω (°) ω (°) ω (°) ω (°) ω (°)<br />

19<br />

18<br />

17<br />

19<br />

18<br />

17<br />

19<br />

18<br />

17<br />

19<br />

18<br />

17<br />

19<br />

18<br />

17<br />

19<br />

α<br />

i =<br />

0.2°<br />

0.29°<br />

0.35°<br />

0.5°<br />

0.6°<br />

λ = 1.26515 Å<br />

18<br />

0.7°<br />

17<br />

35 36 37 38 39<br />

2θ (°)<br />

b<br />

c<br />

00L (r.l.u.)<br />

2.1<br />

2.0<br />

1.9<br />

γ<br />

a doma<strong>in</strong><br />

α<br />

a<br />

c doma<strong>in</strong><br />

Incident<br />

beam<br />

c<br />

i<br />

002<br />

1.8<br />

¬0.15 ¬0.10 ¬0.05 0 0.05 0.10 0.15<br />

H00 (r.l.u.)<br />

α<br />

Figure 2 | X-ray diffraction data reveal<strong>in</strong>g a correlated distribution <strong>of</strong> tetragonality and tw<strong>in</strong> angles. a, Reciprocal-space maps as a function <strong>of</strong> graz<strong>in</strong>g<br />

<strong>in</strong>cidence angle; b, schematic representation <strong>of</strong> fully relaxed tetragonal doma<strong>in</strong>s, show<strong>in</strong>g the relative Bragg-plane <strong>in</strong>cl<strong>in</strong>ation. Notice that the real<br />

<strong>in</strong>cidence angle for the a doma<strong>in</strong>s, α, is different from the nom<strong>in</strong>al one (α i ) ow<strong>in</strong>g to the tetragonal <strong>in</strong>cl<strong>in</strong>ation angle, γ : that is, α = α i −γ , with γ be<strong>in</strong>g<br />

largest <strong>in</strong> the very th<strong>in</strong> a doma<strong>in</strong>s. c, Reciprocal-space map around the (002) reflection, where the <strong>in</strong>tensity outside the 00L vertical is due to the<br />

distribution <strong>of</strong> crystallographic <strong>in</strong>cl<strong>in</strong>ation with<strong>in</strong> the a doma<strong>in</strong>s (L > 2) as well as the c doma<strong>in</strong>s (L < 1.95) with respect to the substrate planes (L ≡ 2).<br />

964 NATURE MATERIALS | VOL 10 | DECEMBER 2011 | www.nature.com/naturematerials<br />

© 2011 Macmillan Publishers Limited. All rights reserved


NATURE MATERIALS DOI: 10.1038/NMAT3141<br />

ARTICLES<br />

a b c<br />

a doma<strong>in</strong><br />

c doma<strong>in</strong><br />

PbTiO 3<br />

c doma<strong>in</strong><br />

a doma<strong>in</strong><br />

0.6°<br />

0.9°<br />

0.7°<br />

0.7°<br />

0.5°<br />

0.15°<br />

0.4° 0.8°<br />

1°<br />

0.95°<br />

0.3°<br />

0.6°<br />

0.08<br />

0.09<br />

0.09<br />

0.07<br />

0.06<br />

0.055<br />

0.7<br />

0.065<br />

0.045<br />

0.035<br />

0.065<br />

¬0.015<br />

SrRuO 3<br />

20 nm DyScO 3<br />

0.0° (ref.) 20 nm 0.0 (ref.) 20 nm<br />

Figure 3 | Direct imag<strong>in</strong>g <strong>of</strong> stra<strong>in</strong> gradients. HAADF-STEM and GPA <strong>of</strong> the PbTiO 3 th<strong>in</strong> film grown on a SrRuO 3 buffer layer deposited on a DyScO 3<br />

substrate and studied <strong>in</strong> cross-section. a, HAADF image, show<strong>in</strong>g the structure. b, The map <strong>of</strong> lattice <strong>rotation</strong>s shows that the upper layers are more<br />

relaxed, and therefore more <strong>in</strong>cl<strong>in</strong>ed, than those close to the <strong>in</strong>terface. c, The out-<strong>of</strong>-plane stra<strong>in</strong> ε zz (relative to the DyScO 3 substrate, c = 3.95 Å) shows a<br />

higher tetragonality <strong>in</strong> the right-hand side <strong>of</strong> the c-doma<strong>in</strong> than <strong>in</strong> the left-hand side (obtuse). The difference arises from the local stress concentrations<br />

required to ‘flatten’ the <strong>in</strong>terface <strong>of</strong> the ferroelastic film onto the substrate, as shown <strong>in</strong> Fig. 5.<br />

and tw<strong>in</strong>n<strong>in</strong>g angle, <strong>in</strong> agreement with equation (1). This can also<br />

be observed <strong>in</strong> the out-<strong>of</strong>-plane diffraction maps around the 00L<br />

reflections (Fig. 2c).<br />

Further <strong>in</strong>sight can be ga<strong>in</strong>ed by probe-corrected high-angle<br />

annular dark-field scann<strong>in</strong>g transmission electron microscopy<br />

(HAADF-STEM) imag<strong>in</strong>g 39,40 , shown <strong>in</strong> Fig. 3. Quantitative<br />

analysis <strong>of</strong> the high-resolution HAADF-STEM images us<strong>in</strong>g<br />

geometric phase analysis (GPA; refs 41,42) and us<strong>in</strong>g the DyScO 3<br />

substrate as reference shows that there is a vertical gradient <strong>of</strong><br />

<strong>in</strong>cl<strong>in</strong>ations between the flatter bottom <strong>in</strong>terface and the more<br />

rumpled free surface, reflect<strong>in</strong>g the grow<strong>in</strong>g distance to the<br />

<strong>in</strong>terface, which is the source <strong>of</strong> stress. More unexpectedly, however,<br />

the <strong>films</strong> also show horizontal stra<strong>in</strong> gradients. The c doma<strong>in</strong>s,<br />

for example, reveal an <strong>in</strong>creased out-<strong>of</strong>-plane elongation <strong>in</strong> the<br />

acute wall–<strong>in</strong>terface corners, and a reduced tetragonality <strong>in</strong> the<br />

obtuse ones.<br />

This dist<strong>in</strong>ctive pattern can be understood by consideration <strong>of</strong><br />

the deformations that are required to attach a film with ferroelastic<br />

doma<strong>in</strong>s onto the flat surface <strong>of</strong> the substrate, as depicted <strong>in</strong> Fig. 4a.<br />

A useful analogy is to imag<strong>in</strong>e the forces needed to flatten an<br />

open book onto a photocopier. The concentration <strong>of</strong> stress at the<br />

corners <strong>of</strong> the doma<strong>in</strong>s leads to locally enhanced deformations,<br />

<strong>in</strong>clud<strong>in</strong>g bend<strong>in</strong>g <strong>of</strong> the doma<strong>in</strong> walls to preserve coherence, as<br />

observed. Yet another way to understand the stra<strong>in</strong> difference is to<br />

consider that, whereas the bottom <strong>in</strong>terface must be flat, the top<br />

<strong>in</strong>terface is freer to relax towards its natural ‘rumpled’ state with<br />

<strong>in</strong>cl<strong>in</strong>ed planes: the net result is that, for each doma<strong>in</strong>, one side is<br />

thicker than the other (see Fig. 4b), and thus there is a horizontal<br />

gradient <strong>of</strong> vertical expansion. This transverse gradient will generate<br />

a horizontal flexoelectricity, caus<strong>in</strong>g the vertical <strong>polarization</strong> to<br />

rotate towards the thicker side (Fig. 4b.)<br />

We can estimate the horizontal flexoelectricity and its effect<br />

on the spontaneous <strong>polarization</strong>. The transverse flexoelectric<br />

coefficient <strong>of</strong> lead zirconate–titanate (PZT) is f 13 ∼ 1 µC m −1<br />

(ref. 43). <strong>Flexoelectric</strong>ity is proportional to permittivity 7,10,12,17 ,<br />

which is ∼5 times smaller for pure PbTiO 3 than for PZT 44 , so the<br />

transverse flexoelectric coefficient <strong>of</strong> PbTiO 3 should be less than<br />

f 13 ≈ 200 nC m −1 . The out-<strong>of</strong>-plane stra<strong>in</strong> difference between the<br />

acute and obtuse corners <strong>of</strong> the c doma<strong>in</strong>s is ε 3 ≈ 0.03 (Fig. 3c),<br />

and the relaxation length is approximately the c-doma<strong>in</strong> width (w ≈<br />

40 nm). Therefore, the average horizontal flexoelectricity across the<br />

doma<strong>in</strong> should be around P x(flexo)<br />

∼ =f13 (ε 3 /w)≈15 µC cm −2 .<br />

This flexoelectric <strong>polarization</strong> is very large; it is <strong>in</strong> fact comparable<br />

to the spontaneous <strong>polarization</strong> <strong>of</strong> archetypal <strong>ferroelectric</strong>s,<br />

and will therefore have a strong effect on the <strong>ferroelectric</strong>ity. In<br />

b<br />

a<br />

a<br />

P ferro<br />

c<br />

Substrate<br />

P flexo<br />

Substrate<br />

Figure 4 | Sketch <strong>of</strong> stresses, stra<strong>in</strong> gradients and polar vectors <strong>in</strong> the<br />

tw<strong>in</strong>ned film. a, Schematic representation <strong>of</strong> the doma<strong>in</strong> structure <strong>in</strong> a film<br />

with a–c doma<strong>in</strong>s. The black arrows represent the stresses that must be<br />

applied to the tw<strong>in</strong>ned film to flatten it onto the substrate. b, The<br />

flexoelectric <strong>polarization</strong> (grey) <strong>in</strong>duces a <strong>rotation</strong> <strong>of</strong> the <strong>ferroelectric</strong><br />

<strong>polarization</strong> <strong>of</strong> the c doma<strong>in</strong> (blue).<br />

particular, the addition <strong>of</strong> the horizontal flexoelectricity to the<br />

vertical <strong>ferroelectric</strong>ity <strong>of</strong> the c doma<strong>in</strong>s will result <strong>in</strong> a rotated<br />

<strong>polarization</strong> (see Fig. 4b), with an angle, β, given by tan β =<br />

P flexo /P ferro . Us<strong>in</strong>g P flexo ∼ 15 µC cm −2 and P ferro = 40–60 µC cm −2 ,<br />

an average polar <strong>rotation</strong> <strong>of</strong> β ∼ 10 ◦ –15 ◦ is expected with respect to<br />

the normal direction.<br />

To test this prediction, accurate measurements <strong>of</strong> lattice<br />

distortions were carried out by <strong>in</strong>creas<strong>in</strong>g the STEM resolution<br />

and carry<strong>in</strong>g out dedicated model-based peak f<strong>in</strong>d<strong>in</strong>g to determ<strong>in</strong>e<br />

atomic column positions. Ow<strong>in</strong>g to the Z-dependent contrast,<br />

Pb and TiO columns can be easily dist<strong>in</strong>guished, whereas weakly<br />

scatter<strong>in</strong>g O columns are not visible (see Fig. 5a). On the basis<br />

<strong>of</strong> the determ<strong>in</strong>ed Pb and TiO column positions, both the stra<strong>in</strong><br />

tensor and the Pb–TiO distance vector (proportional to the<br />

electric <strong>polarization</strong> through the Born effective charge tensor 45 )<br />

are mapped unit-cell-wise (see Fig. 5b). Polarization mapp<strong>in</strong>g can<br />

also be done by other electron microscopy techniques 46 , although<br />

HAADF has the advantage that the samples need not be so th<strong>in</strong><br />

and the less aggressive sample preparation helps preserve the<br />

native doma<strong>in</strong> structure 40 .<br />

In agreement with the GPA shown <strong>in</strong> Fig. 3, we observe a<br />

large difference <strong>in</strong> out-<strong>of</strong>-plane stra<strong>in</strong>, tensile <strong>in</strong> the acute corners<br />

and compressive <strong>in</strong> the obtuse ones, lead<strong>in</strong>g to a horizontal<br />

a<br />

NATURE MATERIALS | VOL 10 | DECEMBER 2011 | www.nature.com/naturematerials 965<br />

© 2011 Macmillan Publishers Limited. All rights reserved


ARTICLES<br />

NATURE MATERIALS DOI: 10.1038/NMAT3141<br />

a<br />

I<br />

II<br />

I<br />

II<br />

Pb<br />

Ti<br />

y<br />

b<br />

x<br />

PbTiO 3<br />

DyScO 3<br />

2 nm<br />

Angle <strong>of</strong> <strong>polarization</strong> (°)<br />

90<br />

60<br />

30<br />

c<br />

a<br />

c<br />

0<br />

0 5 10 15<br />

x (nm)<br />

Figure 5 | Direct observation <strong>of</strong> <strong>polarization</strong> <strong>rotation</strong>s. a, HAADF-STEM image with zoom-<strong>in</strong>s show<strong>in</strong>g the a-doma<strong>in</strong> (I) and c-doma<strong>in</strong> (II) atomic column<br />

arrangements with the TiO column shifted <strong>of</strong>f-centre along the direction <strong>of</strong> <strong>polarization</strong>. b, Out-<strong>of</strong>-plane stra<strong>in</strong> (colour map) and electric <strong>polarization</strong><br />

(vector map). The map confirms the stra<strong>in</strong> difference between acute and obtuse corners and reveals the existence <strong>of</strong> polar <strong>rotation</strong>s <strong>in</strong> the c doma<strong>in</strong>s,<br />

which are quantified <strong>in</strong> the l<strong>in</strong>e scan; the <strong>rotation</strong> angle away from the normal is greater than 10 ◦ throughout the entire doma<strong>in</strong>, <strong>in</strong> good agreement with<br />

the calculations.<br />

gradient. Furthermore, a strong <strong>rotation</strong> <strong>of</strong> the electric <strong>polarization</strong><br />

(much greater than the Bragg-plane <strong>in</strong>cl<strong>in</strong>ation) is observed <strong>in</strong> the<br />

c doma<strong>in</strong> (see vectorial map and l<strong>in</strong>escan <strong>in</strong> Fig. 5b). Inspection <strong>of</strong><br />

Fig. 5b confirms a polar <strong>rotation</strong> <strong>of</strong> the order <strong>of</strong> 10 ◦ <strong>in</strong> the middle<br />

<strong>of</strong> the c-doma<strong>in</strong>, <strong>in</strong> agreement with our model. The <strong>rotation</strong> is<br />

even greater near its corners, where the gradient is strongest, and<br />

also near the <strong>in</strong>terface, where the vertical <strong>polarization</strong> is reduced 46 .<br />

We notice also that there is no significant polar <strong>rotation</strong> <strong>in</strong> the<br />

a doma<strong>in</strong>s, also <strong>in</strong> agreement with our model: <strong>in</strong> the a doma<strong>in</strong>s<br />

the <strong>polarization</strong> is already horizontal, so the addition <strong>of</strong> horizontal<br />

flexoelectricity can change its magnitude but not its angle.<br />

The observed <strong>rotation</strong> <strong>of</strong> the <strong>polarization</strong> vector implies that<br />

the <strong>in</strong>ternal symmetry <strong>of</strong> the unit cells is lower than tetragonal,<br />

even though the X-rays do not <strong>in</strong>dicate any monocl<strong>in</strong>ic distortion<br />

<strong>of</strong> the unit cell. This may be due to the small coherence length<br />

<strong>of</strong> the distorted unit cells, or else it might <strong>in</strong>dicate that the unit<br />

cells rema<strong>in</strong> ‘metrically tetragonal’ <strong>in</strong> spite <strong>of</strong> their lower <strong>in</strong>ternal<br />

symmetry. Decoupl<strong>in</strong>g between tetragonality and <strong>polarization</strong> is a<br />

known feature <strong>of</strong> epitaxial th<strong>in</strong> <strong>films</strong>, which rema<strong>in</strong> tetragonal even<br />

when the <strong>polarization</strong> is suppressed 46,47 .<br />

Symmetry lower<strong>in</strong>g through polar <strong>rotation</strong> is thought to be a<br />

cause for the giant piezoelectricity <strong>of</strong> PZT and other <strong>ferroelectric</strong>s<br />

compositionally eng<strong>in</strong>eered to be near a morphotropic phase<br />

boundary 28–30 . Nanodoma<strong>in</strong> formation is <strong>in</strong> fact <strong>in</strong>tr<strong>in</strong>sic near<br />

such boundaries 48 , so it is quite possible that controversies<br />

regard<strong>in</strong>g their symmetry 48–50 are related to the existence <strong>of</strong> <strong>in</strong>ternal<br />

flexoelectricity, seen also <strong>in</strong> relaxors 51 .<br />

<strong>Flexoelectric</strong>ity thus <strong>of</strong>fers a way to <strong>in</strong>duce polar <strong>rotation</strong>s<br />

<strong>in</strong> non-morphotropic <strong>ferroelectric</strong>s us<strong>in</strong>g purely physical means.<br />

The size <strong>of</strong> the gradients is <strong>in</strong>versely proportional to the doma<strong>in</strong><br />

size, which can be tuned by chang<strong>in</strong>g the film thickness or the<br />

film–substrate comb<strong>in</strong>ation 31,32 , and a focused ion beam may<br />

then be used to isolate clusters <strong>of</strong> doma<strong>in</strong>s and measure their<br />

piezoelectric response 52 . Moreover, flexoelectric coefficients are<br />

thought to be larger for lead-free <strong>ferroelectric</strong>s than for leadconta<strong>in</strong><strong>in</strong>g<br />

ones 12 , which has positive implications <strong>in</strong> the quest for<br />

large lead-free piezoelectricity.<br />

Methods<br />

The th<strong>in</strong> <strong>films</strong> have been deposited by pulsed laser deposition, us<strong>in</strong>g a Lambda<br />

Physik COMPex Pro 205 KrF (λ = 248 nm) excimer ultraviolet laser and a<br />

Twente Solid State Technology reflection high-energy electron diffraction vacuum<br />

system. The background pressure was 10 −8 mbar. The PbTiO 3 targets were 2–8%<br />

Pb-enriched s<strong>in</strong>tered ceramics. The target–substrate distance was 48 mm. The<br />

growth took place at a substrate temperature <strong>of</strong> 570 ◦ C, with a laser energy density <strong>of</strong><br />

2 J cm −2 , a laser repetition rate <strong>of</strong> 1 Hz and under an oxygen pressure <strong>of</strong> 0.13 mbar.<br />

The laser spot size on the target was 0.76 mm 2 . The substrates were predeposition<br />

treated to ensure a s<strong>in</strong>gle substrate term<strong>in</strong>ation 53 , and a SrRuO 3 layer was added<br />

as a buffer to aid growth and as an electrode to facilitate functional measurements<br />

with piezoresponse force microscopy. The SrRuO 3 layers had thicknesses rang<strong>in</strong>g<br />

from 5 to 15 nm and were epitaxial with the substrate. The <strong>films</strong> were characterized<br />

us<strong>in</strong>g atomic force microscopy (AFM), piezoresponse AFM, graz<strong>in</strong>g-<strong>in</strong>cidence<br />

X-ray diffraction and STEM. The AFM measurements were made on Agilent 5100<br />

and 5500 AFM systems. For our X-ray diffraction measurements we used both the<br />

facilities <strong>of</strong> the HASYLAB W1 beaml<strong>in</strong>e (DESY, Hamburg) and a Panalytical X’Pert<br />

MRD Cradle (four axes) laboratory diffractometer. Our laboratory diffractometer<br />

is equipped with a copper X-ray generator tube, supply<strong>in</strong>g X-rays with λ = 1.5406 Å<br />

(Cu Kα). The photon energy used at the W1 beaml<strong>in</strong>e is 9,800 eV, correspond<strong>in</strong>g<br />

to a wavelength <strong>of</strong> λ = 1.2651 Å.<br />

The samples for the STEM experiments were prepared <strong>in</strong> cross-section<br />

follow<strong>in</strong>g the standard method: they were first manually tripod-polished down to<br />

∼20 µm then f<strong>in</strong>ally th<strong>in</strong>ned down to electron transparency us<strong>in</strong>g a Gatan PIPS<br />

ion mill<strong>in</strong>g system. HAADF-STEM studies were carried out on a Titan 60–300 kV<br />

microscope (FEI) fitted with a high-brightness field-emission gun (X-FEG) and a<br />

probe Cs corrector from CEOS. The convergence angle <strong>of</strong> 25 mrad yields a probe<br />

size <strong>of</strong> less than 0.10 nm. The scann<strong>in</strong>g distortion was m<strong>in</strong>imized by acquir<strong>in</strong>g and<br />

superimpos<strong>in</strong>g two perpendicularly scanned images. Displacement and stra<strong>in</strong> fields<br />

were deduced for the STEM micrographs us<strong>in</strong>g GPA (refs 41,42).<br />

Model-based structure analysis was carried out by maximum-likelihood fitt<strong>in</strong>g<br />

<strong>of</strong> a bivariate Gaussian plus background to each atomic-column contrast. Cross-talk<br />

between atomic columns was approximately taken <strong>in</strong>to account by start<strong>in</strong>g the<br />

procedure at the strongest column contrast and subsequently fitt<strong>in</strong>g the weaker<br />

ones by tak<strong>in</strong>g <strong>in</strong>to account the tails <strong>of</strong> the previously determ<strong>in</strong>ed Gaussians. The<br />

colour map <strong>in</strong> Fig. 5b was smoothed us<strong>in</strong>g an averag<strong>in</strong>g w<strong>in</strong>dow <strong>of</strong> 1.6 nm.<br />

Received 12 April 2011; accepted 8 September 2011;<br />

published onl<strong>in</strong>e 16 October 2011<br />

References<br />

1. Rossetti, G. A., Cross, L. E. & Kushida, K. Stress <strong>in</strong>duced shift <strong>of</strong> the Curie<br />

po<strong>in</strong>t <strong>in</strong> epitaxial PbTiO 3 th<strong>in</strong> <strong>films</strong>. Appl. Phys. Lett. 59, 2524–2526 (1991).<br />

966 NATURE MATERIALS | VOL 10 | DECEMBER 2011 | www.nature.com/naturematerials<br />

© 2011 Macmillan Publishers Limited. All rights reserved


NATURE MATERIALS DOI: 10.1038/NMAT3141<br />

2. Pertsev, N. A., Zembilgotov, A. G. & Tagantsev, A. K. Effect <strong>of</strong> mechanical<br />

boundary conditions on phase diagrams <strong>of</strong> epitaxial <strong>ferroelectric</strong> th<strong>in</strong> <strong>films</strong>.<br />

Phys. Rev. Lett. 80, 1988–1991 (1998).<br />

3. Canedy, C. L. et al. Dielectric properties <strong>in</strong> heteroepitaxial Ba 0.6 Sr 0.4 TiO 3 th<strong>in</strong><br />

<strong>films</strong>: Effect <strong>of</strong> <strong>in</strong>ternal stresses and dislocation-type defects. Appl. Phys. Lett.<br />

77, 1695–1697 (2000).<br />

4. S<strong>in</strong>namon, L. J., Bowman, R. M. & Gregg, J. M. Thickness-<strong>in</strong>duced stabilization<br />

<strong>of</strong> <strong>ferroelectric</strong>ity <strong>in</strong> SrRuO 3 /Ba 0.5 Sr 0.5 TiO 3 /Au th<strong>in</strong> film capacitors.<br />

Appl. Phys. Lett. 81, 889–891 (2002).<br />

5. Choi, K. J. et al. Enhancement <strong>of</strong> <strong>ferroelectric</strong>ity <strong>in</strong> stra<strong>in</strong>ed BaTiO 3 th<strong>in</strong> <strong>films</strong>.<br />

Science 306, 1005–1009 (2004).<br />

6. Haeni, J. H. et al. Room-temperature <strong>ferroelectric</strong>ity <strong>in</strong> stra<strong>in</strong>ed SrTiO 3 . <strong>Nature</strong><br />

430, 758–761 (2004).<br />

7. Catalan, G., S<strong>in</strong>namon, L. J. & Gregg, J. M. The effect <strong>of</strong> flexoelectricity on<br />

the dielectric properties <strong>of</strong> <strong>in</strong>homogeneously stra<strong>in</strong>ed <strong>ferroelectric</strong> th<strong>in</strong> <strong>films</strong>.<br />

J. Phys. Condens. Matter 16, 2253–2264 (2004).<br />

8. Catalan, G., Noheda, B., McAneney, J., S<strong>in</strong>namon, L. J. & Gregg, J. M.<br />

Stra<strong>in</strong> gradients <strong>in</strong> epitaxial <strong>ferroelectric</strong>s. Phys. Rev. B 72, 020102 (2005).<br />

9. Majdoub, M. S., Maranganti, R. & Sharma, P. Understand<strong>in</strong>g the orig<strong>in</strong>s <strong>of</strong> the<br />

<strong>in</strong>tr<strong>in</strong>sic dead layer effect <strong>in</strong> nanocapacitors. Phys. Rev. B 79, 115412 (2009).<br />

10. Kogan, V. D. Piezoelectric effect dur<strong>in</strong>g <strong>in</strong>homogeneous deformation<br />

and acoustic scatter<strong>in</strong>g <strong>of</strong> carriers <strong>in</strong> crystals. Sov. Phys. Solid State 5,<br />

2069–2070 (1964).<br />

11. Bursian, E. V. & Zaikovskii, O. I. Changes <strong>in</strong> the curvature <strong>of</strong> a <strong>ferroelectric</strong><br />

film due to <strong>polarization</strong>. Sov. Phys. Solid State 10, 1121–1124 (1968).<br />

12. Cross, L. E. <strong>Flexoelectric</strong> effects: Charge separation <strong>in</strong> <strong>in</strong>sulat<strong>in</strong>g solids<br />

subjected to elastic stra<strong>in</strong> gradients. J. Mater. Sci. 41, 53–63 (2006).<br />

13. Zhu, W., Fu, J. Y., Li, N. & Cross, L. Piezoelectric composite based on the<br />

enhanced flexoelectric effects. Appl. Phys. Lett. 89, 192904 (2006).<br />

14. Ma, W. A study <strong>of</strong> flexoelectric coupl<strong>in</strong>g associated <strong>in</strong>ternal electric field and<br />

stress <strong>in</strong> th<strong>in</strong> film <strong>ferroelectric</strong>s. Phys. Status Solidi B 245, 761–768 (2008).<br />

15. Majdoub, M. S., Sharma, P. & Çağ<strong>in</strong>, T. Dramatic enhancement <strong>in</strong> energy<br />

harvest<strong>in</strong>g for a narrow range <strong>of</strong> dimensions <strong>in</strong> piezoelectric nanostructures.<br />

Phys. Rev. B 78, 121407 (2008).<br />

16. Tagantsev, A. K., Meunier, V. & Sharma, P. Novel electromechanical<br />

phenomena at the nanoscale: Phenomenological theory and atomistic<br />

model<strong>in</strong>g. MRS Bull. 34, 643–647 (2009).<br />

17. Zubko, P., Catalan, G., Welche, P. R. L., Buckley, A. & Scott, J. F.<br />

Stra<strong>in</strong>-gradient-<strong>in</strong>duced <strong>polarization</strong> <strong>in</strong> SrTiO 3 s<strong>in</strong>gle crystals.<br />

Phys. Rev. Lett. 99, 167601 (2007).<br />

18. Maranganti, R. & Sharma, P. Atomistic determ<strong>in</strong>ation <strong>of</strong> flexoelectric<br />

properties <strong>of</strong> crystall<strong>in</strong>e dielectrics. Phys. Rev. B 80, 054109 (2009).<br />

19. Hong, J., Catalan, G., Scott, J. F. & Artacho, E. The flexoelectricity <strong>of</strong> barium<br />

and strontium titanates from first pr<strong>in</strong>ciples. J. Phys. Condens. Matter 22,<br />

112201 (2010).<br />

20. Gruverman, A. et al. Mechanical stress effect on impr<strong>in</strong>t behavior <strong>of</strong> <strong>in</strong>tegrated<br />

<strong>ferroelectric</strong> capacitors. Appl. Phys. Lett. 83, 728–730 (2003).<br />

21. Tagantsev, A. K., Cross, L. E. & Fousek, J. Doma<strong>in</strong>s <strong>in</strong> Ferroelectric Crystals and<br />

Th<strong>in</strong> Films 637 (Spr<strong>in</strong>ger, 2010).<br />

22. Lee, D. et al. Giant flexoelectric effect <strong>in</strong> <strong>ferroelectric</strong> epitaxial th<strong>in</strong> <strong>films</strong>.<br />

Phys. Rev. Lett. 107, 057602 (2011).<br />

23. Vrejoiu, I. et al. Intr<strong>in</strong>sic <strong>ferroelectric</strong> properties <strong>of</strong> stra<strong>in</strong>ed tetragonal<br />

PbZr 0.2 Ti 0.8 O 3 obta<strong>in</strong>ed on layer-by-layer grown, defect-free s<strong>in</strong>gle-crystall<strong>in</strong>e<br />

<strong>films</strong>. Adv. Mater. 18, 1657–1661 (2006).<br />

24. Catalan, G. et al. Polar doma<strong>in</strong>s <strong>in</strong> lead titanate <strong>films</strong> under tensile stra<strong>in</strong>.<br />

Phys. Rev. Lett. 96, 127602 (2006).<br />

25. Pompe, W., Gong, X., Suo, Z. & Speck, J. S. Elastic energy release due to<br />

doma<strong>in</strong> formation <strong>in</strong> the stra<strong>in</strong>ed epitaxy <strong>of</strong> <strong>ferroelectric</strong> and ferroelastic <strong>films</strong>.<br />

J. Appl. Phys. 74, 6012–6019 (1993).<br />

26. Zeches, R. J. et al. A stra<strong>in</strong>-driven morphotropic phase boundary <strong>in</strong> BiFeO 3 .<br />

Science 326, 977–980 (2009).<br />

27. Qiu, Q. Y., Nagarajan, V. & Alpay, S. P. Film thickness versus misfit stra<strong>in</strong><br />

phase diagrams for epitaxial PbTiO 3 ultrath<strong>in</strong> <strong>ferroelectric</strong> <strong>films</strong>. Phys. Rev. B<br />

78, 064117 (2008).<br />

28. Bellaiche, L., Garcia, A. & Vanderbilt, D. F<strong>in</strong>ite-temperature properties<br />

<strong>of</strong> Pb(Zr 1−x Ti x )O 3 alloys from first pr<strong>in</strong>ciples. Phys. Rev. Lett. 84,<br />

5427–5430 (2000).<br />

29. Fu, H. & Cohen, R. E. Polarization <strong>rotation</strong> mechanism for ultrahigh<br />

electromechanical response <strong>in</strong> s<strong>in</strong>gle-crystal piezoelectrics. <strong>Nature</strong> 403,<br />

281–283 (2000).<br />

30. Guo, R. et al. Orig<strong>in</strong> <strong>of</strong> the high piezoelectric response <strong>in</strong> PbZr 1−x Ti x O 3 .<br />

Phys. Rev. Lett. 84, 5423–5426 (2000).<br />

31. Speck, J. S. & Pompe, W. Doma<strong>in</strong> configurations due to multiple misfit<br />

relaxation mechanisms <strong>in</strong> epitaxial <strong>ferroelectric</strong> th<strong>in</strong> <strong>films</strong>. I. Theory.<br />

J. Appl. Phys. 76, 466–476 (1994).<br />

ARTICLES<br />

32. Pertsev, N. A. & Zembilgotov, A. G. Energetics and geometry <strong>of</strong> 90 ◦ doma<strong>in</strong><br />

structures <strong>in</strong> epitaxial <strong>ferroelectric</strong> and ferroelastic <strong>films</strong>. J. Appl. Phys. 78,<br />

6170–6180 (1995).<br />

33. Vlooswijk, A. H. G. et al. Smallest 90 ◦ doma<strong>in</strong>s <strong>in</strong> epitaxial <strong>ferroelectric</strong> <strong>films</strong>.<br />

Appl. Phys. Lett 91, 112901 (2007).<br />

34. Kwak, B. S. et al. Stra<strong>in</strong> relaxation by doma<strong>in</strong> formation <strong>in</strong> epitaxial <strong>ferroelectric</strong><br />

th<strong>in</strong> <strong>films</strong>. Phys. Rev. Lett. 68, 3733–3736 (1992).<br />

35. Kwak, B. S. et al. Doma<strong>in</strong> formation and stra<strong>in</strong> relaxation <strong>in</strong> epitaxial<br />

<strong>ferroelectric</strong> heterostructures. Phys. Rev. B 49, 14865–14879 (1994).<br />

36. Ivry, Y., Chu, D. P. & Durkan, C. Bundles <strong>of</strong> polytw<strong>in</strong>s as meta-elastic doma<strong>in</strong>s<br />

<strong>in</strong> the th<strong>in</strong> polycrystall<strong>in</strong>e simple multi-ferroic system PZT. Nanotechnology<br />

21, 065702 (2010).<br />

37. Pietsch, U., Holy, V. & Baumbach, T. High-Resolution X-Ray Scatter<strong>in</strong>g: From<br />

Th<strong>in</strong> Films to Lateral Nanostructures (Spr<strong>in</strong>ger, 2004).<br />

38. Walker, D., Thomas, P. A. & Coll<strong>in</strong>s, S. R. A comprehensive <strong>in</strong>vestigation <strong>of</strong> the<br />

structural properties <strong>of</strong> <strong>ferroelectric</strong> PbZr 0.2 Ti 0.8 O 3 th<strong>in</strong> <strong>films</strong> grown by PLD.<br />

Phys. Status Solidi A 206, 1799–1803 (2009).<br />

39. Nellist, P. D. et al. Direct sub-angstrom imag<strong>in</strong>g <strong>of</strong> a crystal lattice. Science 305,<br />

1741 (2004).<br />

40. Nelson, C. T. et al. Spontaneous vortex nanodoma<strong>in</strong> arrays at <strong>ferroelectric</strong><br />

hetero<strong>in</strong>terfaces. Nano Lett. 11, 828–834 (2011).<br />

41. Hytch, M. J., Snoeck, E. & Kilaas, R. Quantitative measurement <strong>of</strong><br />

displacement and stra<strong>in</strong> fields from HREM micrographs. Ultramicroscopy 74,<br />

131–146 (1998).<br />

42. GPA Phase plug-<strong>in</strong> for DigitalMicrograph (Gatan) (HREM Research Inc.)<br />

available at: http://www.hremresearch.com.<br />

43. Ma, W. & Cross, L. E. Stra<strong>in</strong>-gradient-<strong>in</strong>duced electric <strong>polarization</strong> <strong>in</strong> lead<br />

zirconate titanate ceramics. Appl. Phys. Lett. 82, 3293–3295 (2003).<br />

44. Hellwege, K-H. & Hellwege, A. M. (eds) Landolt–Bornste<strong>in</strong>: Numerical Data<br />

and Functional Relationships <strong>in</strong> Science and Technology (New Series—Group<br />

III, Vol. 16a, Spr<strong>in</strong>ger, 1981).<br />

45. Cohen, R. E. Orig<strong>in</strong> <strong>of</strong> <strong>ferroelectric</strong>ity <strong>in</strong> perovskite oxides. <strong>Nature</strong> 358,<br />

136–138 (1992).<br />

46. Jia, C-L. et al. Unit-cell scalemapp<strong>in</strong>g <strong>of</strong> <strong>ferroelectric</strong>ity and tetragonality <strong>in</strong><br />

epitaxial ultrath<strong>in</strong> <strong>ferroelectric</strong> <strong>films</strong>. <strong>Nature</strong> Mater. 6, 64–69 (2007).<br />

47. Muralt, P. The emancipation <strong>of</strong> <strong>ferroelectric</strong>ity. <strong>Nature</strong> Mater. 6, 8–9 (2007).<br />

48. Rossetti, G. A. Jr, Zhang, W. & Khachaturyan, A. G. Phase coexistence near the<br />

morphotropic phase boundary <strong>in</strong> lead zirconate titanate (PbZrO 3 –PbTiO 3 )<br />

solid solutions. Appl. Phys. Lett. 88, 072912 (2006).<br />

49. Noheda, B. & Cox, D. E. Bridg<strong>in</strong>g phases at the morphotropic boundaries <strong>of</strong><br />

lead oxide solid solutions. Phase Transit. 79, 5–20 (2006).<br />

50. Davis, M. Pictur<strong>in</strong>g the elephant: Giant piezoelectric activity and the<br />

monocl<strong>in</strong>ic phases <strong>of</strong> relaxor-<strong>ferroelectric</strong> s<strong>in</strong>gle crystals. J. Electroceramics 19,<br />

23–45 (2007).<br />

51. Ahn, S. J., Kim, J-J., Kim, J-H. & Choo, W-K. Orig<strong>in</strong> <strong>of</strong> polar doma<strong>in</strong>s <strong>in</strong><br />

<strong>ferroelectric</strong> relaxors. J. Korea Phys. Soc. 42, S1009–S1011 (2003).<br />

52. Nagarajan, V. et al. Dynamics <strong>of</strong> ferroelastic doma<strong>in</strong>s <strong>in</strong> <strong>ferroelectric</strong> th<strong>in</strong> <strong>films</strong>.<br />

<strong>Nature</strong> Mater. 2, 43–47 (2003).<br />

53. Koster, G., Kropman, B. L., Rijnders, G. J. H. M., Blank, D. H. A. & Rogalla, H.<br />

Quasi-ideal strontium titanate crystal surfaces through formation <strong>of</strong> strontium<br />

hydroxide. Appl. Phys. Lett. 73, 2920–2922 (1998).<br />

Acknowledgements<br />

W. Caliebe is gratefully acknowledged for his help at the W1 beaml<strong>in</strong>e. This work is<br />

part <strong>of</strong> research programme 04PR2359 <strong>of</strong> the Foundation for Fundamental Research on<br />

Matter (FOM), which is part <strong>of</strong> the Netherlands Organisation for Scientific Research<br />

(NWO). G.C., A.H.G.V. and B.N. also acknowledge f<strong>in</strong>ancial support from the<br />

NWO-Vidi grant 700.54.426, and from the Explora grant MAT2010-10067-E (G.C.).<br />

A.L. and E.S. acknowledge f<strong>in</strong>ancial support from the European Union under the<br />

Framework 6 program under a contract for an Integrated Infrastructure Initiative.<br />

Reference 026019 ESTEEM.<br />

Author contributions<br />

G.C. and B.N. have devised, designed and organized the work; A.H.G.V. and A.J. have<br />

grown the <strong>films</strong> under the supervision <strong>of</strong> G.R. and D.H.A.B.; A.H.G.V., G.C., G.R. and<br />

B.N. have carried out the X-ray experiments and analysed the X-ray data; A.L., E.S. and<br />

C.M. have designed, carried out and organized the electron microscopy experiments and<br />

analysed the data. All the authors have contributed to the discussions.<br />

Additional <strong>in</strong>formation<br />

The authors declare no compet<strong>in</strong>g f<strong>in</strong>ancial <strong>in</strong>terests. Repr<strong>in</strong>ts and permissions<br />

<strong>in</strong>formation is available onl<strong>in</strong>e at http://www.nature.com/repr<strong>in</strong>ts. Correspondence and<br />

requests for materials should be addressed to G.C. or B.N.<br />

NATURE MATERIALS | VOL 10 | DECEMBER 2011 | www.nature.com/naturematerials 967<br />

© 2011 Macmillan Publishers Limited. All rights reserved

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!