28.02.2014 Views

Topology, symmetry, and phase transitions in lattice gauge ... - tuprints

Topology, symmetry, and phase transitions in lattice gauge ... - tuprints

Topology, symmetry, and phase transitions in lattice gauge ... - tuprints

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

130 more on c-periodic boundary conditions<br />

b.2 mixed c-periodic boundary conditions<br />

b.2.1<br />

x direction C-periodic, y, z directions periodic<br />

Suppose that we employ boundary conditions with a s<strong>in</strong>gle C-periodic direction,<br />

chosen to be the x direction. These boundary conditions may be written as<br />

Φ(x + L ˆx) = Ω † xΦ ∗ (x)Ω x , U µ (x + L ˆx) = Ω † xU ∗ µ(x)Ω x ,<br />

Φ(x + Lŷ) = Ω † yΦ(x)Ω y , U µ (x + Lŷ) = Ω † yU µ (x)Ω y ,<br />

Φ(x + Lẑ) = Ω † zΦ(x)Ω z , U µ (x + Lẑ) = Ω † zU µ (x)Ω z .<br />

Aga<strong>in</strong> assum<strong>in</strong>g constant transition funcitons, consistency of the boundary conditions<br />

now requires<br />

Ω x Ω y = z 12 Ω ∗ yΩ x ,<br />

Ω x Ω z = z 13 Ω ∗ zΩ x ,<br />

Ω y Ω z = z 23 Ω z Ω y , (B.6)<br />

where z ij = e <strong>in</strong> ij<br />

, n ij = (2π/N) ɛ ijk m k with m k ∈ Z N , are center elements as before.<br />

Note that charge conjugation only ever happens on one side of the equation.<br />

The <strong>gauge</strong> transformations to diagonalise the Higgs field have the follow<strong>in</strong>g<br />

genu<strong>in</strong>e boundary conditions,<br />

R(x + L ˆx) = Ω † xR ∗ (x), (B.7)<br />

R(x + Lŷ) = Ω † yR(x),<br />

R(x + Lẑ) = Ω † z R(x),<br />

<strong>and</strong> we def<strong>in</strong>e the follow<strong>in</strong>g doubly translated R’s at the far edges <strong>and</strong> corner by<br />

lexicographic order,<br />

for r = 0, . . . L − 1, <strong>and</strong><br />

R(L, L, r) ≡ Ω † yΩ † xR ∗ (0, 0, r), (B.8)<br />

R(L, r, L) ≡ Ω † zΩ † xR ∗ (0, r, 0),<br />

R(r, L, L) ≡ Ω † zΩ † yR(r, 0, 0),<br />

R(L, L, L) ≡ Ω † zΩ † yΩ † xR ∗ (0, 0, 0).<br />

(B.9)<br />

It is straightforward to derive the correspond<strong>in</strong>g boundary conditions for the Abelian<br />

projected fields (4.31),<br />

with the follow<strong>in</strong>g exceptions,<br />

α a i (x + L ˆx) = −αa i (x),<br />

α a i (x + Lŷ) = αa i (x),<br />

αi a(x + Lẑ) = αa i (x), (B.10)<br />

α a y(L, L − 1, r) = −α a y(0, L − 1, r) − 2π N m 3,<br />

α a z(L, r, L − 1) = −α a z(0, r, L − 1) + 2π N m 2,<br />

α a z(r, L, L − 1) = α a z(r, 0, L − 1) − 2π N m 1, (B.11)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!