28.02.2014 Views

Topology, symmetry, and phase transitions in lattice gauge ... - tuprints

Topology, symmetry, and phase transitions in lattice gauge ... - tuprints

Topology, symmetry, and phase transitions in lattice gauge ... - tuprints

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

82 ’t hooft monopoles <strong>in</strong> <strong>lattice</strong> guts<br />

4.6.1 Magnetic flux<br />

S<strong>in</strong>ce the decomposition of the <strong>gauge</strong> fixed l<strong>in</strong>ks (4.30) commutes with charge conjugation,<br />

C-periodic boundary conditions imply anti-periodicity of the α a µ(x) <strong>in</strong><br />

(4.31). The abelian projected fields <strong>in</strong>herit anti-periodic boundary conditions<br />

α a µ(x + Lĵ) = −α a µ(x), (4.86)<br />

except for the special cases, <strong>in</strong> three dimensions correspond<strong>in</strong>g to the l<strong>in</strong>ks <strong>in</strong><br />

Eqs. (4.82), where<br />

<strong>and</strong> <strong>in</strong> Eqs. (4.83), where<br />

The fluxes <strong>in</strong> three dimensions,<br />

α a y(L, L − 1, z) = −α a y(0, L − 1, z) − 2π N m 3, (4.87)<br />

α a z(L, y, L − 1) = −α a z(0, y, L − 1) + 2π N m 2,<br />

α a z(x, L, L − 1) = −α a z(x, 0, L − 1) − 2π N m 1,<br />

α a y(L, L − 1, L) = α a y(0, L − 1, 0) + 2π N m 3, (4.88)<br />

α a z(L, L, L − 1) = α a z(0, 0, L − 1) − 2π N (m 1 + m 2 ).<br />

αij a (⃗x) = αa i (⃗x) + αa j (⃗x + î) − αa i (⃗x + ĵ) − αa j (⃗x) (4.89)<br />

are essentially anti-periodic, because the twist angles (2π/N)m i cancel when we<br />

compare fluxes on opposite sides of the <strong>lattice</strong>. There is a s<strong>in</strong>gle exception,<br />

α 23 (L, L − 1, L − 1) = (4.90)<br />

−α 23 (0, L − 1, L − 1) − 2π N 2(m 1 + m 2 + m 3 ).<br />

Because of the constra<strong>in</strong>t on the possible twists <strong>in</strong> Eq. (4.52), <strong>and</strong> because flux<br />

is only def<strong>in</strong>ed modulo 2π, the additional contribution has no effect, <strong>and</strong> this is<br />

equivalent to anti-periodic boundary conditions also. We therefore have fully antiperiodic<br />

abelian field strengths. This means that when we cross the boundary we<br />

enter a charge conjugated copy of the same <strong>lattice</strong> from the opposite side.<br />

To determ<strong>in</strong>e the magnetic charge we repeat the trick of [100]. The curve shown<br />

<strong>in</strong> Fig. 4.4 divides the boundary <strong>in</strong>to two halves. We denote the magnetic flux<br />

through them by Φ + <strong>and</strong> Φ − choos<strong>in</strong>g the positive direction to be po<strong>in</strong>t<strong>in</strong>g outwards.<br />

The two halves are related by the boundary conditions, <strong>and</strong> <strong>in</strong> particular,<br />

antiperiodicity (4.89) of the field strength implies that they are equal Φ − = Φ + .<br />

The magnetic charge <strong>in</strong>side the <strong>lattice</strong> is given by the total flux, which is the sum<br />

of the two contributions,<br />

Q = Φ + + Φ − = 2Φ + . (4.91)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!