28.02.2014 Views

Topology, symmetry, and phase transitions in lattice gauge ... - tuprints

Topology, symmetry, and phase transitions in lattice gauge ... - tuprints

Topology, symmetry, and phase transitions in lattice gauge ... - tuprints

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

3.6 exploit<strong>in</strong>g self-duality 47<br />

with reduced χ 2 /dof.’s of 1.5 <strong>and</strong> 2.5. They are consistent with<strong>in</strong> the rather generous<br />

fitt<strong>in</strong>g errors. Our λ(N t ) po<strong>in</strong>ts actually agree with<strong>in</strong> ±0.01 for N t ≥ 7. 7<br />

After rescal<strong>in</strong>g the FSS variable x by λ(N t ), our data for vortex ensembles on<br />

various N t × Ns<br />

2 <strong>lattice</strong>s collapses beautifully onto the universal Is<strong>in</strong>g curve <strong>in</strong> a<br />

large w<strong>in</strong>dow around x = 0. Compare the data <strong>in</strong> Fig. 3.17 before <strong>and</strong> after renormalization<br />

of the FSS variable x = λT c Lt. The electric flux partition function ratios<br />

obta<strong>in</strong>ed from vortex ensembles by a discrete Fourier transform scale equally well<br />

(not shown).<br />

With our determ<strong>in</strong>ation of the non-universal constant λ ∞ , the scal<strong>in</strong>g of the cont<strong>in</strong>uum<br />

str<strong>in</strong>g tension σ <strong>and</strong> dual str<strong>in</strong>g tension ˜σ at criticality is now completely<br />

specified <strong>in</strong> units of T c . Repeat<strong>in</strong>g Eq. (3.74) for convenience,<br />

σ(t) = λ ∞ T 2 c 2 ln(1 + √ 2) |t| + · · · , t → 0 − , <strong>and</strong><br />

˜σ(t) = λ ∞ T c 2 ln(1 + √ 2) t + · · · , t → 0 + , λ ∞ = 1.354(35). (3.81)<br />

One may convert the length scale T c to units of the cont<strong>in</strong>uum coupl<strong>in</strong>g g 3 or, if<br />

preferred, the zero temperature str<strong>in</strong>g tension us<strong>in</strong>g our earlier determ<strong>in</strong>ations,<br />

√<br />

T c /g3 2 = 0.3732(6), T c / σ(T = 0) = 1.1150(24) . (3.82)<br />

3.6.1.2 Diagonal str<strong>in</strong>g formation<br />

Our determ<strong>in</strong>ation of the str<strong>in</strong>g tensions Eq. (3.74) is also valid for pairs of orthogonal<br />

fluxes under the assumption that they m<strong>in</strong>imize the total length by form<strong>in</strong>g a<br />

diagonal str<strong>in</strong>g. A str<strong>in</strong>g tension implies that the free energy for a pair of perpendicular<br />

fluxes on a symmetric volume should be √ 2 that of a s<strong>in</strong>gle flux.<br />

This can also be coaxed out of the 2d Is<strong>in</strong>g model. The free energy per N for a diagonal<br />

<strong>in</strong>terface (anti-periodic boundary conditions <strong>in</strong> both directions) is provided<br />

by Baxter <strong>in</strong> Ref. [79],<br />

F (1,1)<br />

IN = σ(1,1) I<br />

= 2 ln s<strong>in</strong>h(2K), N → ∞. (3.83)<br />

Multiply<strong>in</strong>g by K = T/J gives the tension per coupl<strong>in</strong>g J, which we plot <strong>in</strong> Fig.<br />

3.18 together with the the result for a straight <strong>in</strong>terface σ (1,0)<br />

I<br />

.<br />

On a rectangular <strong>lattice</strong>, discretization breaks rotational <strong>in</strong>variance such that<br />

straight <strong>and</strong> diagonal fluxes are not on an equal foot<strong>in</strong>g. For the Is<strong>in</strong>g model at<br />

zero temperature, the system is <strong>in</strong> a state of maximum order. In that case a diagonal<br />

sp<strong>in</strong> <strong>in</strong>terface is forced to take a step-like path through the <strong>lattice</strong> <strong>and</strong> is twice<br />

the length of a straight <strong>in</strong>terface. Isotropy only emerges when thermal fluctuations<br />

become large <strong>and</strong> the correlation length dwarfs the f<strong>in</strong>ite <strong>lattice</strong> spac<strong>in</strong>g. At criticality,<br />

the underly<strong>in</strong>g <strong>lattice</strong> geometry becomes irrelevant <strong>and</strong> a √ 2 factor between<br />

straight <strong>and</strong> diagonal <strong>in</strong>terfaces emerges,<br />

σ (1,1)<br />

I<br />

= 2 √ 2 ln(1 + √ 2)|t| = √ 2 σ (1,0)<br />

I<br />

, K = K c . (3.84)<br />

7 The data is better described by a power law fit with extrapolated values λ ∞ = 1.337(5) <strong>and</strong> 1.338(5)<br />

for the horizontal <strong>and</strong> vertical N s offset corrections, with reduced χ 2 /dof. of 1 <strong>and</strong> 1.9 respectively.<br />

Without a justification for the fitt<strong>in</strong>g function we prefer to quote the less constra<strong>in</strong>ed results that<br />

better accommodate any rema<strong>in</strong><strong>in</strong>g systematic uncerta<strong>in</strong>ties.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!