28.02.2014 Views

Topology, symmetry, and phase transitions in lattice gauge ... - tuprints

Topology, symmetry, and phase transitions in lattice gauge ... - tuprints

Topology, symmetry, and phase transitions in lattice gauge ... - tuprints

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

48 universal aspects of conf<strong>in</strong>ement <strong>in</strong> 2 + 1 dimensions<br />

4<br />

3<br />

2<br />

1<br />

0.5 1.0 1.5 2.0<br />

Figure 3.18: The exact <strong>in</strong>terface tensions per coupl<strong>in</strong>g, Kσ I over temperature K = T/J,<br />

for straight (1, 0) <strong>and</strong> diagonal (1, 1) <strong>in</strong>terfaces. They differ by factor √ 2 at<br />

criticality. This implies str<strong>in</strong>g formation at criticality for all models <strong>in</strong> the 2d<br />

Is<strong>in</strong>g universality class.<br />

It is here that the <strong>in</strong>terface tension amplitude σ 0 = 2 ln(1 + √ 2) is relevant to all<br />

models <strong>in</strong> the 2d Is<strong>in</strong>g universality class, irrespective of the microscopic physics.<br />

Str<strong>in</strong>g formation <strong>in</strong> 2 + 1 d SU(2) <strong>gauge</strong> theory for electric fluxes <strong>in</strong> the scal<strong>in</strong>g<br />

w<strong>in</strong>dow below T c , <strong>and</strong> for spacelike center vortices above T c , then follows from<br />

universality <strong>and</strong> this square root signature for diagonal <strong>in</strong>terfaces at criticality <strong>in</strong><br />

the 2d Is<strong>in</strong>g model.<br />

In the cont<strong>in</strong>uum limit of the <strong>gauge</strong> theory, we also expect isotropy <strong>and</strong> hence<br />

square root scal<strong>in</strong>g for center <strong>and</strong> electric fluxes away from criticality. This is verified<br />

<strong>in</strong> Appendix A.<br />

3.6.1.3 A note for 3 + 1 d<br />

We have used self-duality to fix the relationship between the electric str<strong>in</strong>g <strong>and</strong><br />

dual center vortex tension <strong>in</strong> 2 + 1 d. More generally, this is fixed by the universal<br />

amplitude ratio that relates the relevant scales on each side of criticality. For<br />

Is<strong>in</strong>g models, this is the <strong>in</strong>terface tension σ I <strong>in</strong> the ordered <strong>phase</strong> <strong>and</strong> the exponential<br />

correlation length, i.e., <strong>in</strong>verse mass gap ξ + gap, <strong>in</strong> the disordered <strong>phase</strong>. The<br />

hyperscal<strong>in</strong>g relation µ = (d − 1)ν gives the universal amplitude ratio [52]<br />

σ I (ξ gap) + d−1 = R + σ gap , where (3.85)<br />

R + σ gap = {<br />

1 , for q = 2, 3, 4 , <strong>in</strong> d = 2 ,<br />

0.40(1) , for q = 2 , <strong>in</strong> d = 3 .<br />

For the 2, 3 <strong>and</strong> 4-state Potts models with second order <strong>phase</strong> <strong>transitions</strong>, selfduality<br />

gives unity for the amplitude ratio. The value for the 3d Is<strong>in</strong>g model is<br />

determ<strong>in</strong>ed numerically. It can be applied to SU(2) <strong>gauge</strong> theory <strong>in</strong> 3 + 1 d, where<br />

the mass gap <strong>in</strong> the disordered <strong>phase</strong> comes from the electric str<strong>in</strong>g tension σ/T =

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!