28.02.2014 Views

A framework for joint management of regional water-energy ... - Orbit

A framework for joint management of regional water-energy ... - Orbit

A framework for joint management of regional water-energy ... - Orbit

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Equivalent reservoir level [%]<br />

a<br />

Very dry<br />

80<br />

60<br />

70<br />

60<br />

60<br />

65<br />

40<br />

150<br />

65<br />

70 1300 900 150 70<br />

20<br />

80<br />

60 60<br />

40<br />

20<br />

65<br />

80 50<br />

60<br />

40<br />

20<br />

80<br />

40<br />

60<br />

50<br />

40<br />

20<br />

80<br />

40<br />

60<br />

50<br />

40<br />

20<br />

70<br />

150<br />

65<br />

Dry<br />

Average<br />

60<br />

65<br />

900 70 70<br />

60 60<br />

70<br />

150 70<br />

65<br />

900<br />

0<br />

60<br />

70<br />

65<br />

40 50<br />

60 65<br />

Wet<br />

150<br />

Very wet<br />

70 70<br />

J F M A M J J A S O N D<br />

70<br />

65<br />

65<br />

60<br />

60<br />

50<br />

40<br />

50<br />

40<br />

50<br />

b<br />

50<br />

50 50<br />

58<br />

40 40<br />

40<br />

40<br />

70<br />

145<br />

70<br />

145<br />

50<br />

Very dry<br />

58<br />

Dry<br />

58<br />

1300 900 145 70<br />

900<br />

50 50<br />

58<br />

58<br />

0<br />

40<br />

50<br />

58<br />

50<br />

58<br />

Average<br />

Wet<br />

70 145<br />

900<br />

Very wet<br />

70145<br />

J F M A M J J A S O N D<br />

70<br />

58<br />

70<br />

58<br />

58<br />

50<br />

50<br />

40<br />

50<br />

40<br />

c<br />

51.6 51.6<br />

60<br />

51.6<br />

40<br />

150<br />

60<br />

Very dry<br />

Dry<br />

1300 900 60 150<br />

150 900<br />

60<br />

51.6<br />

51.6 51.6<br />

60<br />

900<br />

150 60<br />

40<br />

0<br />

51.6<br />

51.6 40<br />

Average<br />

Wet<br />

60 150<br />

Very wet<br />

40<br />

51.6<br />

40 40<br />

51.6<br />

J F M A M J J A S O N D<br />

60<br />

Figure 16. Water values [€/MWh] from optimization a) considering the power market, b)<br />

assuming a monthly-varying hydropower price, and c) assuming a constant price.<br />

occurred during the irrigation season, when the total benefits (constant hydropower<br />

plus irrigation) were highest (Figure 17c).<br />

Representing hydropower benefits through a power market provided more<br />

realistic results. The reservoir was not completely emptied during the autumn<br />

—as it occurs in the other two approaches— because <strong>of</strong> high <strong>water</strong> values at<br />

low reservoir levels (Figure 18c). Furthermore, reservoir operation changed<br />

depending on inflow conditions, resulting in low storage during dry years and<br />

high storage during wet years.<br />

These results indicate that using constant power prices (e.g. Cai et al., 2003)<br />

does not reflect the inflow and power demand seasonality, which affects the<br />

availability (and there<strong>for</strong>e the value) <strong>of</strong> hydropower. Monthly-varying power<br />

prices (e.g. Tilmant and Kelman, 2007) capture seasonal effects, but can<br />

cause unrealistic operation rules that can only be avoided through additional<br />

constraints. Using a simple power market to represent hydropower benefits<br />

provides reservoir operation policies that are more realistic, and that adapt<br />

better to changing inflow conditions.<br />

38

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!