10.04.2014 Views

Symplectic and Regularization Methods

Symplectic and Regularization Methods

Symplectic and Regularization Methods

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

where Ì <strong>and</strong> Î are two operators which do not commute. Further, we suppose that the set of the<br />

real numbers ´ µ, ½Òsatiesfies the equality<br />

ÜÔ ´ · µ℄ <br />

Ò<br />

½<br />

ÜÔ´ µ ÜÔ´ µ·Ç´ Ò·½ µ (6)<br />

where Ò is the integrator’s order Trotter (1959). Let now a mapping from Þ Þ´¼µ to Þ ¼ Þ´ µ be given by<br />

Þ ¼ <br />

Ò<br />

<br />

½<br />

ÜÔ´ µ ÜÔ´ µ<br />

<br />

Þ (7)<br />

This application is symplectic because it is a product of elementary symplectic mappings. We can write the explicit<br />

equation (7) in the following form<br />

Õ Õ ½ · <br />

Ì<br />

Ô<br />

<br />

ÔÔ ½<br />

<br />

Î<br />

Ô Ô ½ · ½Ò (8)<br />

Õ ÕÕ <br />

where Þ ´Õ ¼ Ô ¼ µ <strong>and</strong> Þ ¼ ´Õ Ò Ô Ò µ. This system of equations is an Ò-th order symplectic integration scheme.<br />

The numerical coefficient , , ½Òare not uniquely determined from the requirement that the local truncation<br />

error is of order Ò . If one requires the time reversibility of the numerical solution, one can determine it uniquely.<br />

We present now two examples, the 1st (Ò ½) <strong>and</strong> the 4th (Ò ) order integrators. The 1st order integrator<br />

schema is given by<br />

Õ ½ Õ ¼ · ½<br />

Ì<br />

Ô<br />

Ô ½ Ô ¼ · ½<br />

Î<br />

Õ<br />

where ½ ½ ½.<br />

<br />

<br />

ÔÔ ¼<br />

(9)<br />

ÕÕ ½<br />

The 4th order integrator schema is rather long so that we present only the values of the coefficients ´ µ, ½ .<br />

They are<br />

½ <br />

½<br />

¾´¾ ¾ ½ ¿ µ<br />

¾ ¿ ½ ¾ ½ ¿<br />

¾´¾ ¾ ½ ¿ µ<br />

(10)<br />

½ ¿ ½<br />

¾ ¾ ½ ¿<br />

<br />

¾ ½ ¿<br />

¾ <br />

¾ ¾ ½ ¿<br />

<br />

¼<br />

We mention that Yoshida (1990) showed that the 4th order symplectic integrator is composed by 2nd order integrators<br />

of the form<br />

Ë ´Ì µË ¾´Ü ½ µË ¾´Ü ¼ µË ¾´Ü ½ µ (11)<br />

where<br />

<br />

<br />

<br />

Ë ¾´Ì µÜÔ ÜÔ ´µ ÜÔ <br />

¾ ¾<br />

(12)<br />

The solution Ü ¼ <strong>and</strong> Ü ½ are determined from the algebraic equation<br />

Ü ¼ ·¾Ü ½ ½ Ü ¿ ¼ ·¾Ü¿ ½ ¼ (13)<br />

The hight order integrators ( ) have been generalized to arbitrary orders by Suzuki (1992).<br />

68

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!