22.04.2014 Views

Digital Array Radar Technology for MPAR

Digital Array Radar Technology for MPAR

Digital Array Radar Technology for MPAR

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Digital</strong> <strong>Array</strong> <strong>Radar</strong><br />

<strong>Technology</strong> <strong>for</strong> <strong>MPAR</strong><br />

Dr. William Chappell<br />

May 11, 2011


Outline<br />

• Introduction to <strong>Digital</strong> <strong>Array</strong> <strong>Technology</strong><br />

– Moore’s Law, Cost, and Per<strong>for</strong>mance<br />

– Standardization and Competition<br />

– Low-Cost RF Frontend Concept<br />

• Army DAR Project<br />

– <strong>Digital</strong> Beam<strong>for</strong>ming and Adaptability<br />

– GaN Antenna Panel Integration<br />

– <strong>Digital</strong> Backend Enhancements<br />

• Dual Polarization Measurements<br />

– Calibration Requirements/ Capabilities<br />

5/2/2011<br />

2


Introduction: <strong>Digital</strong> <strong>Array</strong> <strong>Radar</strong><br />

Past: Passive <strong>Array</strong><br />

Analog<br />

Beam<strong>for</strong>mer<br />

HP<br />

Duplexer<br />

LNA<br />

Tube<br />

Amp<br />

Receiver<br />

and A/D<br />

Wave<strong>for</strong>m<br />

Generator<br />

Processor &<br />

Controller<br />

-Phase shifter/attenuator per element<br />

-Enables fast beam switching<br />

-Losses on both Tx. & Rx.<br />

-Fixed, metal beam<strong>for</strong>mer<br />

-Single points of failure<br />

5/2/2011<br />

Images: W. Weedon, Applied <strong>Radar</strong>, Inc. J. Herd, MIT LL, and S. Kemkemian et. al, Thales, at Phased <strong>Array</strong> Conf., 2010. www.militaryaerospace.com radar.jpl.nasa.gov<br />

3


Introduction: <strong>Digital</strong> <strong>Array</strong> <strong>Radar</strong><br />

Past: Passive <strong>Array</strong><br />

Present: Active <strong>Array</strong> (Digitized Subarray)<br />

Analog<br />

Beam<strong>for</strong>mer<br />

HP<br />

Duplexer<br />

LNA<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

Analog<br />

BF Analog<br />

BF Analog<br />

BF<br />

-Phase shifter/attenuator per element<br />

-Enables fast beam switching<br />

-Losses on both Tx. & Rx.<br />

-Fixed, metal beam<strong>for</strong>mer<br />

-Single points of failure<br />

5/2/2011<br />

Tube<br />

Amp<br />

Wave<strong>for</strong>m<br />

Generator<br />

Receiver<br />

and A/D<br />

Processor &<br />

Controller<br />

Wave<strong>for</strong>m<br />

Generator(s)<br />

Processor &<br />

Controller<br />

Receivers<br />

and A/D<br />

-LNA, HPA, phase shifter, attenuator,<br />

duplexer, T/R switches per element<br />

-All RF parts handle less power<br />

-Lower RF losses<br />

-More wave<strong>for</strong>m agility<br />

-”Graceful degradation”<br />

-Multiple beams possible w/adaptivity<br />

-Mixing/digitization at subarrays<br />

Images: W. Weedon, Applied <strong>Radar</strong>, Inc. J. Herd, MIT LL, and S. Kemkemian et. al, Thales, at Phased <strong>Array</strong> Conf., 2010. www.militaryaerospace.com radar.jpl.nasa.gov<br />

4


Introduction: <strong>Digital</strong> <strong>Array</strong> <strong>Radar</strong><br />

Past: Passive <strong>Array</strong><br />

Present: Active <strong>Array</strong> (Digitized Subarray)<br />

Analog<br />

Beam<strong>for</strong>mer<br />

HP<br />

Duplexer<br />

LNA<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

Analog<br />

BF Analog<br />

BF Analog<br />

BF<br />

-Phase shifter/attenuator per element<br />

-Enables fast beam switching<br />

-Losses on both Tx. & Rx.<br />

-Fixed, metal beam<strong>for</strong>mer<br />

-Single points of failure<br />

5/2/2011<br />

Tube<br />

Amp<br />

Wave<strong>for</strong>m<br />

Generator<br />

Receiver<br />

and A/D<br />

Processor &<br />

Controller<br />

Wave<strong>for</strong>m<br />

Generator(s)<br />

Processor &<br />

Controller<br />

Receivers<br />

and A/D<br />

-LNA, HPA, phase shifter, attenuator,<br />

duplexer, T/R switches per element<br />

-All RF parts handle less power<br />

-Lower RF losses<br />

-More wave<strong>for</strong>m agility<br />

-”Graceful degradation”<br />

-Multiple beams possible w/adaptivity<br />

-Mixing/digitization at subarrays<br />

Images: W. Weedon, Applied <strong>Radar</strong>, Inc. J. Herd, MIT LL, and S. Kemkemian et. al, Thales, at Phased <strong>Array</strong> Conf., 2010. www.militaryaerospace.com radar.jpl.nasa.gov<br />

5


Introduction: <strong>Digital</strong> <strong>Array</strong> <strong>Radar</strong><br />

Past: Passive <strong>Array</strong><br />

Present: Active <strong>Array</strong> (Digitized Subarray)<br />

Analog<br />

Beam<strong>for</strong>mer<br />

HP<br />

Duplexer<br />

LNA<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

Analog<br />

BF Analog<br />

BF Analog<br />

BF<br />

-Phase shifter/attenuator per element<br />

-Enables fast beam switching<br />

-Losses on both Tx. & Rx.<br />

-Fixed, metal beam<strong>for</strong>mer<br />

-Single points of failure<br />

5/2/2011<br />

Tube<br />

Amp<br />

Wave<strong>for</strong>m<br />

Generator<br />

Receiver<br />

and A/D<br />

Processor &<br />

Controller<br />

Wave<strong>for</strong>m<br />

Generator(s)<br />

Processor &<br />

Controller<br />

Receivers<br />

and A/D<br />

-LNA, HPA, phase shifter, attenuator,<br />

duplexer, T/R switches per element<br />

-All RF parts handle less power<br />

-Lower RF losses<br />

-More wave<strong>for</strong>m agility<br />

-”Graceful degradation”<br />

-Multiple beams possible w/adaptivity<br />

-Mixing/digitization at subarrays<br />

Images: W. Weedon, Applied <strong>Radar</strong>, Inc. J. Herd, MIT LL, and S. Kemkemian et. al, Thales, at Phased <strong>Array</strong> Conf., 2010. www.militaryaerospace.com radar.jpl.nasa.gov<br />

6


Introduction: <strong>Digital</strong> <strong>Array</strong> <strong>Radar</strong><br />

Past: Passive <strong>Array</strong><br />

Present: Active <strong>Array</strong> (Digitized Subarray)<br />

Analog<br />

Beam<strong>for</strong>mer<br />

HP<br />

Duplexer<br />

LNA<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

Analog<br />

BF Analog<br />

BF Analog<br />

BF<br />

-Phase shifter/attenuator per element<br />

-Enables fast beam switching<br />

-Losses on both Tx. & Rx.<br />

-Fixed, metal beam<strong>for</strong>mer<br />

-Single points of failure<br />

5/2/2011<br />

Tube<br />

Amp<br />

Wave<strong>for</strong>m<br />

Generator<br />

Receiver<br />

and A/D<br />

Processor &<br />

Controller<br />

Wave<strong>for</strong>m<br />

Generator(s)<br />

Processor &<br />

Controller<br />

Receivers<br />

and A/D<br />

-LNA, HPA, phase shifter, attenuator,<br />

duplexer, T/R switches per element<br />

-All RF parts handle less power<br />

-Lower RF losses<br />

-More wave<strong>for</strong>m agility<br />

-”Graceful degradation”<br />

-Multiple beams possible w/adaptivity<br />

-Mixing/digitization at subarrays<br />

Images: W. Weedon, Applied <strong>Radar</strong>, Inc. J. Herd, MIT LL, and S. Kemkemian et. al, Thales, at Phased <strong>Array</strong> Conf., 2010. www.militaryaerospace.com radar.jpl.nasa.gov<br />

7


Introduction: <strong>Digital</strong> <strong>Array</strong> <strong>Radar</strong><br />

Past: Passive <strong>Array</strong><br />

Present: Active <strong>Array</strong> (Digitized Subarray)<br />

Analog<br />

Beam<strong>for</strong>mer<br />

HP<br />

Duplexer<br />

LNA<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

Analog<br />

BF Analog<br />

BF Analog<br />

BF<br />

-Phase shifter/attenuator per element<br />

-Enables fast beam switching<br />

-Losses on both Tx. & Rx.<br />

-Fixed, metal beam<strong>for</strong>mer<br />

-Single points of failure<br />

5/2/2011<br />

Tube<br />

Amp<br />

Wave<strong>for</strong>m<br />

Generator<br />

Receiver<br />

and A/D<br />

Processor &<br />

Controller<br />

Wave<strong>for</strong>m<br />

Generator(s)<br />

Processor &<br />

Controller<br />

Receivers<br />

and A/D<br />

-LNA, HPA, phase shifter, attenuator,<br />

duplexer, T/R switches per element<br />

-All RF parts handle less power<br />

-Lower RF losses<br />

-More wave<strong>for</strong>m agility<br />

-”Graceful degradation”<br />

-Multiple beams possible w/adaptivity<br />

-Mixing/digitization at subarrays<br />

Images: W. Weedon, Applied <strong>Radar</strong>, Inc. J. Herd, MIT LL, and S. Kemkemian et. al, Thales, at Phased <strong>Array</strong> Conf., 2010. www.militaryaerospace.com radar.jpl.nasa.gov<br />

8


Introduction: <strong>Digital</strong> <strong>Array</strong> <strong>Radar</strong><br />

Past: Passive <strong>Array</strong><br />

Present: Active <strong>Array</strong> (Digitized Subarray)<br />

Future/Now: <strong>Digital</strong> <strong>Array</strong><br />

-Phase shifter/attenuator per element<br />

-Enables fast beam switching<br />

-Losses on both Tx. & Rx.<br />

-Fixed, metal beam<strong>for</strong>mer<br />

-Single points of failure<br />

5/2/2011<br />

HP<br />

Duplexer<br />

Tube<br />

Amp<br />

Wave<strong>for</strong>m<br />

Generator<br />

Analog<br />

Beam<strong>for</strong>mer<br />

LNA<br />

Receiver<br />

and A/D<br />

Processor &<br />

Controller<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

Analog<br />

BF Analog<br />

BF Analog<br />

BF<br />

Wave<strong>for</strong>m<br />

Generator(s)<br />

Processor &<br />

Controller<br />

Receivers<br />

and A/D<br />

-LNA, HPA, phase shifter, attenuator,<br />

duplexer, T/R switches per element<br />

-All RF parts handle less power<br />

-Lower RF losses<br />

-More wave<strong>for</strong>m agility<br />

-”Graceful degradation”<br />

-Multiple beams possible w/adaptivity<br />

-Mixing/digitization at subarrays<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

Xcvr.<br />

Xcvr.<br />

Xcvr.<br />

Xcvr.<br />

Xcvr.<br />

Xcvr.<br />

Xcvr.<br />

Xcvr.<br />

Xcvr.<br />

A/D+DDS<br />

A/D+DDS<br />

A/D+DDS<br />

A/D+DDS<br />

A/D+DDS<br />

A/D+DDS<br />

A/D+DDS<br />

A/D+DDS<br />

A/D+DDS<br />

<strong>Digital</strong><br />

Backend<br />

Proc. & Controller<br />

-Transceiver, digitizer, and DDS <strong>for</strong><br />

each element<br />

-Multiple beams and adaptive<br />

beam<strong>for</strong>ming limited by I/O and<br />

processing only, not RF hardware<br />

-Ultimate in wave<strong>for</strong>m agility<br />

-High dynamic range potential<br />

-Multiple concurrent functions<br />

Images: W. Weedon, Applied <strong>Radar</strong>, Inc. J. Herd, MIT LL, and S. Kemkemian et. al, Thales, at Phased <strong>Array</strong> Conf., 2010. www.militaryaerospace.com radar.jpl.nasa.gov<br />

9


Introduction: <strong>Digital</strong> <strong>Array</strong> <strong>Radar</strong><br />

Past: Passive <strong>Array</strong><br />

Present: Active <strong>Array</strong> (Digitized Subarray)<br />

Future/Now: <strong>Digital</strong> <strong>Array</strong><br />

-Phase shifter/attenuator per element<br />

-Enables fast beam switching<br />

-Losses on both Tx. & Rx.<br />

-Fixed, metal beam<strong>for</strong>mer<br />

-Single points of failure<br />

5/2/2011<br />

HP<br />

Duplexer<br />

Tube<br />

Amp<br />

Wave<strong>for</strong>m<br />

Generator<br />

Analog<br />

Beam<strong>for</strong>mer<br />

LNA<br />

Receiver<br />

and A/D<br />

Processor &<br />

Controller<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

Analog<br />

BF Analog<br />

BF Analog<br />

BF<br />

Wave<strong>for</strong>m<br />

Generator(s)<br />

Processor &<br />

Controller<br />

Receivers<br />

and A/D<br />

-LNA, HPA, phase shifter, attenuator,<br />

duplexer, T/R switches per element<br />

-All RF parts handle less power<br />

-Lower RF losses<br />

-More wave<strong>for</strong>m agility<br />

-”Graceful degradation”<br />

-Multiple beams possible w/adaptivity<br />

-Mixing/digitization at subarrays<br />

Advanced<br />

Integration<br />

Difficult to<br />

functionally<br />

“separate”<br />

the sections<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

Xcvr.<br />

Xcvr.<br />

Xcvr.<br />

Xcvr.<br />

Xcvr.<br />

Xcvr.<br />

Xcvr.<br />

Xcvr.<br />

Xcvr.<br />

A/D+DDS<br />

A/D+DDS<br />

A/D+DDS<br />

A/D+DDS<br />

A/D+DDS<br />

A/D+DDS<br />

A/D+DDS<br />

A/D+DDS<br />

A/D+DDS<br />

<strong>Digital</strong><br />

Backend<br />

Proc. & Controller<br />

-Transceiver, digitizer, and DDS <strong>for</strong><br />

each element<br />

-Multiple beams and adaptive<br />

beam<strong>for</strong>ming limited by I/O and<br />

processing only, not RF hardware<br />

-Ultimate in wave<strong>for</strong>m agility<br />

-High dynamic range potential<br />

-Multiple concurrent functions<br />

Images: W. Weedon, Applied <strong>Radar</strong>, Inc. J. Herd, MIT LL, and S. Kemkemian et. al, Thales, at Phased <strong>Array</strong> Conf., 2010. www.militaryaerospace.com radar.jpl.nasa.gov<br />

10


Introduction: <strong>Digital</strong> <strong>Array</strong> <strong>Radar</strong><br />

Past: Passive <strong>Array</strong><br />

Present: Active <strong>Array</strong> (Digitized Subarray)<br />

Future/Now: <strong>Digital</strong> <strong>Array</strong><br />

-Phase shifter/attenuator per element<br />

-Enables fast beam switching<br />

-Losses on both Tx. & Rx.<br />

-Fixed, metal beam<strong>for</strong>mer<br />

-Single points of failure<br />

5/2/2011<br />

HP<br />

Duplexer<br />

Tube<br />

Amp<br />

Wave<strong>for</strong>m<br />

Generator<br />

Analog<br />

Beam<strong>for</strong>mer<br />

LNA<br />

Receiver<br />

and A/D<br />

Processor &<br />

Controller<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

Analog<br />

BF Analog<br />

BF Analog<br />

BF<br />

Wave<strong>for</strong>m<br />

Generator(s)<br />

Processor &<br />

Controller<br />

Receivers<br />

and A/D<br />

-LNA, HPA, phase shifter, attenuator,<br />

duplexer, T/R switches per element<br />

-All RF parts handle less power<br />

-Lower RF losses<br />

-More wave<strong>for</strong>m agility<br />

-”Graceful degradation”<br />

-Multiple beams possible w/adaptivity<br />

-Mixing/digitization at subarrays<br />

Advanced<br />

Integration<br />

Difficult to<br />

functionally<br />

“separate”<br />

the sections<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

Xcvr.<br />

Xcvr.<br />

Xcvr.<br />

Xcvr.<br />

Xcvr.<br />

Xcvr.<br />

Xcvr.<br />

Xcvr.<br />

Xcvr.<br />

A/D+DDS<br />

A/D+DDS<br />

A/D+DDS<br />

A/D+DDS<br />

A/D+DDS<br />

A/D+DDS<br />

A/D+DDS<br />

A/D+DDS<br />

A/D+DDS<br />

<strong>Digital</strong><br />

Backend<br />

Proc. & Controller<br />

-Transceiver, digitizer, and DDS <strong>for</strong><br />

each element<br />

-Multiple beams and adaptive<br />

beam<strong>for</strong>ming limited by I/O and<br />

processing only, not RF hardware<br />

-Ultimate in wave<strong>for</strong>m agility<br />

-High dynamic range potential<br />

-Multiple concurrent functions<br />

Images: W. Weedon, Applied <strong>Radar</strong>, Inc. J. Herd, MIT LL, and S. Kemkemian et. al, Thales, at Phased <strong>Array</strong> Conf., 2010. www.militaryaerospace.com radar.jpl.nasa.gov<br />

11


Future <strong>Digital</strong> <strong>Array</strong>s<br />

• Lower cost<br />

– panelization of RF + digital<br />

– modular/open architecture<br />

– highly-integrated RF with directconversion/low<br />

IF<br />

– surface mount technology and<br />

plastic packaging<br />

• Advanced functionality<br />

– digital at each element<br />

– distributed transceivers<br />

– self-monitoring of errors<br />

– multiple functions<br />

– dual polarization (<strong>MPAR</strong>)<br />

– More I/O and processing BW<br />

5/2/2011<br />

12


Future <strong>Digital</strong> <strong>Array</strong>s<br />

• Lower cost<br />

– panelization of RF + digital<br />

– modular/open architecture<br />

– highly-integrated RF with directconversion/low<br />

IF<br />

– surface mount technology and<br />

plastic packaging<br />

• Advanced functionality<br />

– digital at each element<br />

– distributed transceivers<br />

– self-monitoring of errors<br />

– multiple functions<br />

– dual polarization (<strong>MPAR</strong>)<br />

– More I/O and processing BW<br />

Moore’s Law<br />

5/2/2011<br />

13


Future <strong>Digital</strong> <strong>Array</strong>s<br />

• Lower cost<br />

– panelization of RF + digital<br />

– modular/open architecture<br />

– highly-integrated RF with directconversion/low<br />

IF<br />

– surface mount technology and<br />

plastic packaging<br />

• Advanced functionality<br />

– digital at each element<br />

– distributed transceivers<br />

– self-monitoring of errors<br />

– multiple functions<br />

– dual polarization (<strong>MPAR</strong>)<br />

– More I/O and processing BW<br />

Moore’s Law<br />

Future challenge: Leverage increasing role of digitization to<br />

overcome limitations of lower-cost RF and transceiver functions<br />

5/2/2011<br />

14


<strong>MPAR</strong> Needs<br />

• Programmability<br />

• Low Cost<br />

• Standardization<br />

• Competition<br />

• Dual Pol<br />

5/2/2011


Programmability<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

T/R<br />

Analog<br />

BF Analog<br />

BF Analog<br />

BF<br />

Wave<strong>for</strong>m<br />

Generator(s)<br />

Processor &<br />

Controller<br />

Receivers<br />

and A/D<br />

Xcvr.<br />

Xcvr.<br />

Xcvr.<br />

Xcvr.<br />

Xcvr.<br />

Xcvr.<br />

Xcvr.<br />

Xcvr.<br />

Xcvr.<br />

A/D+DDS<br />

A/D+DDS<br />

A/D+DDS<br />

A/D+DDS<br />

A/D+DDS<br />

A/D+DDS<br />

A/D+DDS<br />

A/D+DDS<br />

A/D+DDS<br />

<strong>Digital</strong><br />

Backend<br />

Proc. & Controller<br />

Software programmability – New beam<strong>for</strong>ming and scan strategies. Dynamic<br />

beam<strong>for</strong>ming capabilities.<br />

Hardware programmability - monthly/yearly adaptability<br />

5/2/2011<br />

16


Cost<br />

• FPGAs subject to the same<br />

implications of Moore’s Law as<br />

other digital circuits<br />

• Per<strong>for</strong>mance and functionality<br />

improvements derived from<br />

increased transistor count<br />

• Current FPGAs achieve needed<br />

functionality with costs reducing<br />

over time<br />

– <strong>Technology</strong> demonstrator at ~$15 per<br />

chip and falling<br />

• Processing technologies provide<br />

ASIC like per<strong>for</strong>mance at a<br />

reduced cost while allowing <strong>for</strong><br />

FPGA prototyping ease<br />

– Xilinx EasyPath<br />

– Altera HardCopy<br />

Xilinx 1 Million System Gate FPGA Cost<br />

5/2/2011<br />

http://www.greentechmedia.com/articles/read/varian-looks-to-en<strong>for</strong>ce-moores-law-in-solar/<br />

http://www.xilinx.com/partners/90nm/<br />

17


Low Cost RF<br />

What has changed in the RF world since I started my career:<br />

1.) RF became a commodity<br />

2.) Full wave electromagnetic analysis became commonplace<br />

3.) Silicon dominates the RF landscape<br />

4.) III-V is starting to be dominated by wideband gap semiconductors<br />

There is the potential <strong>for</strong> RF to be very cheap. For the first time, the RF circuit<br />

is not the domain of the specialist.<br />

5/2/2011<br />

18


What Was State of the Art?<br />

Insert the picture of firsts at ISSCC<br />

Silicon dominates the RF landscape even up to mmWave


Where is the RF in a commercial system?<br />

ifixit.com<br />

The wireless is in the cable<br />

holding down the battery<br />

20


ifixit.com<br />

21


Nearing Commodity Status<br />

Broadcom 4329<br />

65 nm CMOS with built in PA’s. Built in digital wireless stack, CPU, ROM<br />

22


The Challenge <strong>for</strong> a Low Cost <strong>Radar</strong><br />

• The Challenge is too utilize the capability<br />

CMOS and SiGE IC’s which are available.<br />

– Worse per<strong>for</strong>mance but better value<br />

• Can we eliminate the components that make a<br />

radar unique from commercial wireless<br />

systems?<br />

– Phase Shifters, Beam Formers, Circulators/<br />

Isolators, Highly Matched T/R Modules<br />

23


Low-Cost <strong>Array</strong> Concept<br />

Traditional Hybrid <strong>Radar</strong> Module<br />

~<br />

<strong>Digital</strong><br />

Backend<br />

Advanced Integration<br />

A/D<br />

D/A<br />

~<br />

SiGe<br />

GaN<br />

~<br />

Traditional<br />

electronics<br />

Image from Eurofighter’s radar http://www.airpower.at/news06/0922_captor-e/index.html<br />

Massively integrated SiGe<br />

chip transceivers<br />

High power GaN<br />

MMIC<br />

Want low cost integration without sacrificing per<strong>for</strong>mance.<br />

Key technologies are GaN, SiGe, and digital backend integrated<br />

using traditional electronics manufacturing techniques<br />

Planar “laptop-like” integration of modules<br />

and antenna<br />

5/2/2011 19-May-11


Compound Semiconductor Materials on Silicon (COSMOS)<br />

Program Objective: Heterogeneous integration all the way to the transistor scale<br />

• Enable materials selection within circuits – without loss of transistor per<strong>for</strong>mance<br />

• Exploit existing SOA CMOS infrastructure & integration levels – without process modification<br />

DoD Benefits<br />

• Achieve higher functional density: dense integration of analog, mixed-signal, & digital electronics<br />

• Enable circuits with lower dissipated power & far higher I/O throughput<br />

Flip-chip<br />

What else may impact cost?<br />

Today<br />

COSMOS Vision<br />

Reflow solder bumps<br />

Chip size<br />

~1 mm<br />

200 μm pitch<br />

Heterogeneous integration exists only on a very<br />

coarse scale – and not in the signal path<br />

Compound<br />

Semiconductor (CS)<br />

“Chiplets”<br />

Si CMOS<br />

Allow the circuit designer to select the optimal<br />

transistor technology everywhere in the circuit


Xcvr. Header<br />

Xcvr. Header<br />

Xcvr. Header<br />

Xcvr. Header<br />

Xcvr. Header<br />

Header Header<br />

Header Header<br />

Header Header<br />

Header Header<br />

Context <strong>for</strong> Work: Army DAR Project<br />

Vision <strong>for</strong> S-band digital subarray<br />

Initial subarray demonstrator<br />

Control<br />

Quadrant<br />

Transceiver<br />

RF<br />

RS-232<br />

Spartan<br />

3AN<br />

FPGA<br />

32 Mb<br />

SRAM<br />

PC<br />

JTAG<br />

Clock<br />

Dist.<br />

Spartan 2x DAC<br />

Spartan 3A<br />

2x DAC<br />

FPGA<br />

Spartan 3A 2x DAC 2x DAC<br />

FPGA Spartan 3A<br />

2x DAC 2x DAC<br />

FPGA 3A 4x ADC<br />

2x DAC<br />

2x DAC<br />

32 Mb<br />

4x ADC<br />

FPGA<br />

2x DAC<br />

SRAM 32 Mb<br />

4x ADC 2x DAC<br />

SRAM 32 Mb 4x ADC<br />

SRAM 32 Mb<br />

4x ADC<br />

SRAM<br />

2x2<br />

MIMO 2x2<br />

Xcvr. MIMO 2x2<br />

Xcvr. MIMO 2x2<br />

Xcvr. MIMO<br />

Xcvr.<br />

2x2<br />

MIMO 2x2<br />

Xcvr. MIMO 2x2<br />

Xcvr. MIMO 2x2<br />

Xcvr. MIMO<br />

Xcvr.<br />

Sw. GaN<br />

Sw.<br />

Sw.<br />

Sw. GaN Sw.<br />

Sw.<br />

Sw.<br />

Sw. GaN Sw.<br />

Sw.<br />

Sw.<br />

Sw. GaN Sw.<br />

Sw.<br />

Sw.<br />

Sw.<br />

GaN<br />

GaN<br />

GaN<br />

GaN<br />

GaN<br />

GaN<br />

GaN<br />

GaN<br />

GaN<br />

GaN<br />

GaN<br />

GaN<br />

5/2/2011<br />

Five graduate students, two undergraduates, and two faculty<br />

26


Competition<br />

• By decoupling from the central beam<strong>for</strong>mer, the<br />

array subunits could be defined as specs which are<br />

competed.<br />

– Competed at any subunit level (2, 4, 16, 64,… element<br />

panels)<br />

• Connecting together disparate data sources at the<br />

digital data level is a standard process<br />

• Standards dictating the digital data transfer would<br />

allow <strong>for</strong> multiple sources<br />

– Build me the “radiating” laptop with rapid I/O output.<br />

5/2/2011<br />

27


Standardization<br />

Brand Q v1.0<br />

“Radiating Laptop”<br />

Brand X v2.0<br />

“Radiating Laptop”<br />

Standardized Interface<br />

Brand D v1.0<br />

“Radiating Laptop”<br />

Brand Y v2.0<br />

Communication<br />

Network<br />

Brand Y v1.0<br />

Communication<br />

Network<br />

Brand P v5.0<br />

“Radiating Laptop”<br />

Standardized Interface<br />

Brand Z v3.0<br />

“Radiating Laptop”<br />

Brand F v2.0<br />

“Radiating Laptop”<br />

Future Implementations<br />

Fielded Unit<br />

Phased Out<br />

• This could be a parallel to a network implementation of laptop’s/ desktop’s<br />

– Make/ Model / Version of laptop irrelevant as network still functions<br />

• If you build the “radiating laptop” with standards between units, then there is<br />

the possibility of the network parallel being a reality.<br />

5/2/2011<br />

28


Initial DAR Demonstrator<br />

16-Element Backend Stats:<br />

Frequency: 3.1-3.5 GHz<br />

Inst. BW:<br />

Antenna Board:<br />

Antenna Type:<br />

Backend PCBs:<br />

A/D resolution:<br />

Sample rate:<br />

Control Intfc.:<br />

Data Intfc:<br />

Real-time beams:<br />

Element-level RAM:<br />

14 MHz direct conversion<br />

Rogers 4350b & Rohacell<br />

Stacked patch (apt. fed)<br />

FR-4<br />

12 Bits<br />

24 Msps (I/Q)<br />

MATLAB (RS-232)<br />

Gigabit Ethernet<br />

1 (sum/difference)<br />

32 Mb<br />

GaN Panel Stats:<br />

GaN HPA power: 25 W @ 28V per element<br />

GaN HPA PAE: >60%<br />

5/2/2011<br />

29


Initial DAR Demonstrator<br />

Integrated<br />

Ant./RF Panel<br />

5/2/2011<br />

30


Initial DAR Demonstrator<br />

Two Channel<br />

SiGe Transceivers<br />

Integrated<br />

Ant./RF Panel<br />

5/2/2011<br />

31


Initial DAR Demonstrator<br />

Data Conversion/<br />

Processing<br />

Two Channel<br />

SiGe Transceivers<br />

Integrated<br />

Ant./RF Panel<br />

5/2/2011<br />

32


Initial DAR Demonstrator<br />

<strong>Digital</strong> Backend/<br />

PC Interface<br />

Data Conversion/<br />

Processing<br />

Two Channel<br />

SiGe Transceivers<br />

Integrated<br />

Ant./RF Panel<br />

5/2/2011<br />

33


Initial DAR Demonstrator<br />

<strong>Digital</strong> Backend/<br />

PC Interface<br />

Data Conversion/<br />

Processing<br />

Two Channel<br />

SiGe Transceivers<br />

Integrated<br />

Ant./RF Panel<br />

16-Element Backend Stats:<br />

Frequency: 3.1-3.5 GHz<br />

Inst. BW:<br />

Antenna Board:<br />

Antenna Type:<br />

Backend PCBs:<br />

A/D resolution:<br />

Sample rate:<br />

Control Intfc.:<br />

Data Intfc:<br />

Real-time beams:<br />

Element-level RAM:<br />

14 MHz direct conversion<br />

Rogers 4350b & Rohacell<br />

Stacked patch (apt. fed)<br />

FR-4<br />

12 Bits<br />

24 Msps (I/Q)<br />

MATLAB (RS-232)<br />

Gigabit Ethernet<br />

1 (sum/difference)<br />

32 Mb<br />

GaN Panel Stats:<br />

GaN HPA power: 25 W @ 28V per element<br />

GaN HPA PAE: >60%<br />

5/2/2011<br />

34


DAR <strong>Digital</strong> Beam<strong>for</strong>ming<br />

• Verified digital beam<strong>for</strong>ming on Tx. & Rx.<br />

• Measured patterns at Lockheed Martin<br />

5/2/2011<br />

16 elements demonstrated with transmit and receive.<br />

Independent digitization of each transmit and receive channel<br />

35


Army DAR Project <strong>Digital</strong> Backend<br />

• Important features<br />

– <strong>Digital</strong> at every element<br />

– Standard PCB processing<br />

– hierarchical digital<br />

beam<strong>for</strong>mer<br />

– distributed directconversion<br />

transceivers<br />

5/2/2011<br />

36


Army DAR Project <strong>Digital</strong> Backend<br />

• Important features<br />

– <strong>Digital</strong> at every element<br />

– Standard PCB processing<br />

– hierarchical digital<br />

beam<strong>for</strong>mer<br />

– distributed directconversion<br />

transceivers<br />

• Simple example: Bistatic<br />

tracking<br />

5/2/2011<br />

Coupling & clutter<br />

suppression with<br />

element-level data<br />

37


Adaptability<br />

1101101010010…<br />

0110010001011…<br />

• Principle of operation:<br />

– Use receivers as built-in vector signal analyzers<br />

– Monitor transmit-receive coupling pair signals<br />

• Applications:<br />

– <strong>Array</strong> self-calibration and calibration monitoring<br />

– Built-in/automatic I/Q imbalance correction<br />

• Example:<br />

– Denote initial (complex) coupling to n th receiver from the m th transmitter as C mn<br />

– After array has been fielded, make the same recordings (C’ mn ), <strong>for</strong>ming the<br />

matrix K:<br />

C '<br />

mn<br />

T<br />

m<br />

R<br />

n<br />

C<br />

mn<br />

K<br />

mn<br />

C<br />

C<br />

'<br />

mn<br />

mn<br />

T<br />

m<br />

R<br />

n<br />

T m = error from digital signal to V m on Tx.<br />

R n = error from V n to digital signal on Rx.<br />

– Use this matrix to estimate errors in the array (see example )<br />

5/2/2011<br />

38


5/2/2011<br />

Adaptability<br />

39<br />

8<br />

4<br />

7<br />

4<br />

6<br />

4<br />

5<br />

4<br />

4<br />

4<br />

3<br />

4<br />

2<br />

4<br />

1<br />

4<br />

8<br />

3<br />

7<br />

3<br />

6<br />

3<br />

5<br />

3<br />

4<br />

3<br />

3<br />

3<br />

2<br />

3<br />

1<br />

3<br />

8<br />

2<br />

7<br />

2<br />

6<br />

2<br />

5<br />

2<br />

4<br />

2<br />

3<br />

2<br />

2<br />

2<br />

1<br />

2<br />

8<br />

1<br />

7<br />

1<br />

6<br />

1<br />

5<br />

1<br />

4<br />

1<br />

3<br />

1<br />

2<br />

1<br />

1<br />

1<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

T R<br />

R<br />

T<br />

T R<br />

R<br />

T<br />

T R<br />

T R<br />

R<br />

T<br />

K


5/2/2011<br />

Adaptability<br />

40<br />

Initial<br />

T = 36C<br />

8<br />

4<br />

7<br />

4<br />

6<br />

4<br />

5<br />

4<br />

4<br />

4<br />

3<br />

4<br />

2<br />

4<br />

1<br />

4<br />

8<br />

3<br />

7<br />

3<br />

6<br />

3<br />

5<br />

3<br />

4<br />

3<br />

3<br />

3<br />

2<br />

3<br />

1<br />

3<br />

8<br />

2<br />

7<br />

2<br />

6<br />

2<br />

5<br />

2<br />

4<br />

2<br />

3<br />

2<br />

2<br />

2<br />

1<br />

2<br />

8<br />

1<br />

7<br />

1<br />

6<br />

1<br />

5<br />

1<br />

4<br />

1<br />

3<br />

1<br />

2<br />

1<br />

1<br />

1<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

T R<br />

R<br />

T<br />

T R<br />

R<br />

T<br />

T R<br />

T R<br />

R<br />

T<br />

K


5/2/2011<br />

Adaptability<br />

41<br />

Initial<br />

T = 36C<br />

T = 39C<br />

8<br />

4<br />

7<br />

4<br />

6<br />

4<br />

5<br />

4<br />

4<br />

4<br />

3<br />

4<br />

2<br />

4<br />

1<br />

4<br />

8<br />

3<br />

7<br />

3<br />

6<br />

3<br />

5<br />

3<br />

4<br />

3<br />

3<br />

3<br />

2<br />

3<br />

1<br />

3<br />

8<br />

2<br />

7<br />

2<br />

6<br />

2<br />

5<br />

2<br />

4<br />

2<br />

3<br />

2<br />

2<br />

2<br />

1<br />

2<br />

8<br />

1<br />

7<br />

1<br />

6<br />

1<br />

5<br />

1<br />

4<br />

1<br />

3<br />

1<br />

2<br />

1<br />

1<br />

1<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

T R<br />

R<br />

T<br />

T R<br />

R<br />

T<br />

T R<br />

T R<br />

R<br />

T<br />

K


5/2/2011<br />

Adaptability<br />

42<br />

Initial<br />

T = 36C T = 39C T = 45C<br />

8<br />

4<br />

7<br />

4<br />

6<br />

4<br />

5<br />

4<br />

4<br />

4<br />

3<br />

4<br />

2<br />

4<br />

1<br />

4<br />

8<br />

3<br />

7<br />

3<br />

6<br />

3<br />

5<br />

3<br />

4<br />

3<br />

3<br />

3<br />

2<br />

3<br />

1<br />

3<br />

8<br />

2<br />

7<br />

2<br />

6<br />

2<br />

5<br />

2<br />

4<br />

2<br />

3<br />

2<br />

2<br />

2<br />

1<br />

2<br />

8<br />

1<br />

7<br />

1<br />

6<br />

1<br />

5<br />

1<br />

4<br />

1<br />

3<br />

1<br />

2<br />

1<br />

1<br />

1<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

R<br />

T<br />

T R<br />

R<br />

T<br />

T R<br />

R<br />

T<br />

T R<br />

T R<br />

R<br />

T<br />

K


Adaptability<br />

K<br />

T R<br />

T<br />

T<br />

1<br />

2<br />

3<br />

4<br />

R<br />

1<br />

1<br />

T R<br />

R<br />

1<br />

1<br />

T R<br />

T<br />

T<br />

1<br />

2<br />

3<br />

4<br />

R<br />

2<br />

T R<br />

R<br />

2<br />

2<br />

2<br />

T R<br />

T<br />

T<br />

1<br />

2<br />

3<br />

4<br />

R<br />

3<br />

T R<br />

R<br />

3<br />

3<br />

3<br />

T R<br />

T<br />

T<br />

1<br />

2<br />

3<br />

4<br />

R<br />

4<br />

T R<br />

R<br />

4<br />

4<br />

4<br />

T R<br />

T<br />

T<br />

1<br />

2<br />

3<br />

4<br />

R<br />

R<br />

5<br />

T R<br />

5<br />

5<br />

5<br />

T R<br />

T<br />

T<br />

1<br />

2<br />

3<br />

4<br />

R<br />

R<br />

6<br />

T R<br />

6<br />

6<br />

6<br />

T R<br />

T<br />

T<br />

1<br />

2<br />

3<br />

4<br />

R<br />

R<br />

7<br />

T R<br />

7<br />

7<br />

7<br />

T R<br />

T<br />

T<br />

1<br />

2<br />

3<br />

4<br />

R<br />

R<br />

8<br />

8<br />

T R<br />

8<br />

8<br />

Initial<br />

Final<br />

5/2/2011<br />

T = 36C T = 39C T = 45C T = 50C<br />

43


Adaptability<br />

K<br />

T R<br />

T<br />

T<br />

1<br />

2<br />

3<br />

4<br />

R<br />

1<br />

1<br />

T R<br />

R<br />

1<br />

1<br />

T R<br />

T<br />

T<br />

1<br />

2<br />

3<br />

4<br />

R<br />

2<br />

T R<br />

R<br />

2<br />

2<br />

2<br />

T R<br />

T<br />

T<br />

1<br />

2<br />

3<br />

4<br />

R<br />

3<br />

T R<br />

R<br />

3<br />

3<br />

3<br />

T R<br />

T<br />

T<br />

1<br />

2<br />

3<br />

4<br />

R<br />

4<br />

T R<br />

R<br />

4<br />

4<br />

4<br />

T R<br />

T<br />

T<br />

1<br />

2<br />

3<br />

4<br />

R<br />

R<br />

5<br />

T R<br />

5<br />

5<br />

5<br />

T R<br />

T<br />

T<br />

1<br />

2<br />

3<br />

4<br />

R<br />

R<br />

6<br />

T R<br />

6<br />

6<br />

6<br />

T R<br />

T<br />

T<br />

1<br />

2<br />

3<br />

4<br />

R<br />

R<br />

7<br />

T R<br />

7<br />

7<br />

7<br />

T R<br />

T<br />

T<br />

1<br />

2<br />

3<br />

4<br />

R<br />

R<br />

8<br />

8<br />

T R<br />

8<br />

8<br />

Initial<br />

Final<br />

<strong>Radar</strong> can self-correct <strong>for</strong><br />

environmental stresses<br />

Tx: +/- 5 deg. & 0.13 dB<br />

Rx: +/- 2.0 deg. & 0.2 dB<br />

5/2/2011<br />

T = 36C T = 39C T = 45C T = 50C<br />

44


Xcvr. Header<br />

Xcvr. Header<br />

Xcvr. Header<br />

Xcvr. Header<br />

Xcvr. Header<br />

Header Header<br />

Header Header<br />

Header Header<br />

Header Header<br />

Adaptability<br />

Contro<br />

l<br />

RS-232<br />

Spartan<br />

3AN<br />

FPGA<br />

32 Mb<br />

SRAM<br />

PC<br />

JTAG<br />

Clock<br />

Dist.<br />

Quadrant<br />

Spartan 2x DAC<br />

Spartan 3A<br />

2x DAC<br />

Spartan 2x DAC<br />

FPGA 3A<br />

2x DAC<br />

2x DAC<br />

FPGA<br />

Spartan 3A<br />

2x DAC<br />

4x ADC<br />

2x DAC<br />

FPGA 3A<br />

2x DAC<br />

32 Mb<br />

4x ADC 2x DAC<br />

FPGA<br />

SRAM 32 Mb<br />

4x ADC 2x DAC<br />

SRAM 32 Mb 4x ADC<br />

4x ADC<br />

SRAM 32 Mb<br />

SRAM<br />

Transceiver<br />

2x2<br />

MIMO 2x2<br />

Xcvr. MIMO 2x2<br />

Xcvr. MIMO 2x2<br />

Xcvr. MIMO<br />

Xcvr.<br />

2x2<br />

MIMO 2x2<br />

Xcvr. MIMO 2x2<br />

Xcvr. MIMO 2x2<br />

Xcvr. MIMO<br />

Xcvr.<br />

RF<br />

Sw. GaN<br />

Sw.<br />

Sw.<br />

Sw. GaN Sw.<br />

Sw.<br />

Sw.<br />

Sw. GaN Sw.<br />

Sw.<br />

Sw.<br />

Sw. GaN Sw.<br />

Sw.<br />

Sw.<br />

Sw.<br />

GaN<br />

GaN<br />

GaN<br />

GaN<br />

GaN<br />

GaN<br />

GaN<br />

GaN<br />

GaN<br />

GaN<br />

GaN<br />

GaN<br />

Final<br />

Matrix Rotation to compensate <strong>for</strong><br />

phase and amplitude<br />

Beam<strong>for</strong>ming<br />

(Sum and Difference)<br />

5/2/2011<br />

T = 50C


I/Q Imbalance Self-Correction<br />

• Automated I/Q compensation<br />

0<br />

-20<br />

Rx. Calibration <strong>for</strong> channel 1, board 1<br />

Be<strong>for</strong>e Cal.<br />

After Cal.<br />

0<br />

-20<br />

Rx. Calibration <strong>for</strong> channel 2, board 1<br />

Be<strong>for</strong>e Cal.<br />

After Cal.<br />

-40<br />

-40<br />

-60<br />

-60<br />

-80<br />

-80<br />

-100<br />

-100<br />

-120<br />

-10 -5 0 5 10<br />

freq, MHz<br />

-120<br />

-10 -5 0 5 10<br />

freq, MHz<br />

0<br />

0<br />

• Demonstrates ~10log(N) improvement at beam<br />

Be<strong>for</strong>e Cal.<br />

Be<strong>for</strong>e Cal.<br />

After Cal.<br />

-20<br />

After Cal.<br />

peak<br />

-20<br />

-40<br />

• Enables use of low-cost components<br />

-60<br />

5/2/2011<br />

Rx. Calibration <strong>for</strong> channel 3, board 1<br />

-40<br />

-60<br />

Rx. Calibration <strong>for</strong> channel 4, board 1<br />

46


Xcvr. Header<br />

Xcvr. Header<br />

Xcvr. Header<br />

Xcvr. Header<br />

Xcvr. Header<br />

Header Header<br />

Header Header<br />

Header Header<br />

Header Header<br />

Adaptability<br />

Contro<br />

l<br />

RS-232<br />

Spartan<br />

3AN<br />

FPGA<br />

32 Mb<br />

SRAM<br />

PC<br />

JTAG<br />

Clock<br />

Dist.<br />

Quadrant<br />

Spartan 2x DAC<br />

Spartan 3A<br />

2x DAC<br />

Spartan 2x DAC<br />

FPGA 3A<br />

2x DAC<br />

2x DAC<br />

FPGA<br />

Spartan 3A<br />

2x DAC<br />

4x ADC<br />

2x DAC<br />

FPGA 3A<br />

2x DAC<br />

32 Mb<br />

4x ADC 2x DAC<br />

FPGA<br />

SRAM 32 Mb<br />

4x ADC 2x DAC<br />

SRAM 32 Mb 4x ADC<br />

4x ADC<br />

SRAM 32 Mb<br />

SRAM<br />

Transceiver<br />

2x2<br />

MIMO 2x2<br />

Xcvr. MIMO 2x2<br />

Xcvr. MIMO 2x2<br />

Xcvr. MIMO<br />

Xcvr.<br />

2x2<br />

MIMO 2x2<br />

Xcvr. MIMO 2x2<br />

Xcvr. MIMO 2x2<br />

Xcvr. MIMO<br />

Xcvr.<br />

RF<br />

Sw. GaN<br />

Sw.<br />

Sw.<br />

Sw. GaN Sw.<br />

Sw.<br />

Sw.<br />

Sw. GaN Sw.<br />

Sw.<br />

Sw.<br />

Sw. GaN Sw.<br />

Sw.<br />

Sw.<br />

Sw.<br />

GaN<br />

GaN<br />

GaN<br />

GaN<br />

GaN<br />

GaN<br />

GaN<br />

GaN<br />

GaN<br />

GaN<br />

GaN<br />

GaN<br />

5/2/2011<br />

Matrix Rotation to compensate<br />

<strong>for</strong> phase and amplitude<br />

DC subtraction<br />

I/Q imbalance<br />

Beam<strong>for</strong>ming<br />

(Sum and Difference)<br />

I'<br />

n<br />

Q'<br />

n<br />

A<br />

I<br />

n<br />

Q n<br />

I<br />

Q<br />

DC<br />

DC<br />

B<br />

I<br />

n<br />

Q n<br />

1<br />

1<br />

I<br />

Q<br />

DC<br />

DC<br />

0<br />

-20<br />

-40<br />

-60<br />

-80<br />

-100<br />

-120<br />

Rx. Calibration <strong>for</strong> channel 1, board 1<br />

Be<strong>for</strong>e Cal.<br />

After Cal.<br />

-10 -5 0 5 10<br />

freq, MHz


Transceiver Block Diagrams<br />

Current implementation<br />

Massive integration has<br />

taken place and promises<br />

to further consume<br />

components<br />

Currently available<br />

5/2/2011<br />

http://www.analog.com/static/imported-files/data_sheets/AD9357.pdf<br />

48


GaN HPA Integration on RF Antenna Panel<br />

Package is flip-chip bonded<br />

to multilayer panel<br />

Heat sink is attached here<br />

after reflowing package<br />

Antenna<br />

ground plane<br />

Rogers 4350 Package:<br />

-QFN-like design<br />

- < 0.2 dB loss<br />

- R th < 4ºC/W to heat sink<br />

Measured Packaged Per<strong>for</strong>mance (25<br />

W)<br />

Heat<br />

Signal<br />

High per<strong>for</strong>mance maintained in plastic<br />

package with limited cooling<br />

5/2/2011<br />

49


GaN HPA Integration on RF Antenna Panel<br />

Circulator<br />

Antenna<br />

feed<br />

LNA biasing<br />

GaN package<br />

RF switch<br />

HPA biasing<br />

SMA<br />

Package designed <strong>for</strong> GaN HPA/LNA<br />

combination MMIC integrated into Rogers 4350b<br />

PCB panel<br />

• 51W radiated, 42% efficient overall, 72°C on fancooled<br />

copper slug. 58.8W output into circulator<br />

@ 49% efficiency with 40V drain<br />

• 28W radiated, 40% efficient overall, 52.5°C on<br />

fan- cooled copper slug. 32.3W output into<br />

circulator @ 46% efficiency with 28V drain<br />

5/2/2011<br />

50


DAR Polarimetric Testbed<br />

V<br />

H<br />

• Aperture-coupled, stacked-patch antenna used <strong>for</strong> case study and tests<br />

– Designed <strong>for</strong> broadside cross-pol & port-to-port isolation (> -35 dB)<br />

– Lightweight, panelized, and has wide bandwidth (~3-3.6 GHz)<br />

– Rogers 4350b feed with Rogers 5880LZ top patch substrate<br />

– Similar to other proposed elements <strong>for</strong> <strong>MPAR</strong> (MIT LL/MaCom)<br />

5/2/2011<br />

51


DAR Polarimetric Testbed<br />

V<br />

H<br />

• Aperture-coupled, stacked-patch antenna used <strong>for</strong> case study and tests<br />

– Designed <strong>for</strong> broadside cross-pol & port-to-port isolation (> -35 dB)<br />

– Lightweight, panelized, and has wide bandwidth (~3-3.6 GHz)<br />

– Rogers 4350b feed with Rogers 5880LZ top patch substrate<br />

– Similar to other proposed elements <strong>for</strong> <strong>MPAR</strong> (MIT LL/MaCom)<br />

• Investigations:<br />

– Bi-static scattering analysis and pattern measurement<br />

– Large array simulations<br />

5/2/2011<br />

52


Scattering Demonstration<br />

45°<br />

Tx<br />

Rx<br />

Calibration procedure per<strong>for</strong>med <strong>for</strong> bistatic<br />

setup shown on the left<br />

Flat copper sheet used <strong>for</strong> transmit<br />

reflection calibration S = I<br />

C T and C R matrices determined at:<br />

(AZ,EL) = (35,17) deg.<br />

(AZ,EL) = (-32,22) deg.<br />

Both have noticeable polarization issues<br />

Overall Procedure<br />

1) Per<strong>for</strong>m calibration & compensation of Tx. & Rx.<br />

subarrays at angles of interest<br />

2) Remove compensation and place new target at<br />

one of those locations<br />

3) Send out sequential H and V, 14 MHz wide LFM<br />

chirp wave<strong>for</strong>ms, subtract off (known) mutual<br />

coupling, and demodulate returns<br />

4) Apply digital compensation and repeat (2-3) <strong>for</strong><br />

other targets/angles<br />

5/2/2011<br />

45°<br />

53


Scattering Demo Initial Results<br />

1.18<br />

0<br />

0.20<br />

29<br />

0.99<br />

0<br />

.21<br />

221<br />

C T<br />

0.14<br />

179<br />

0.97<br />

16<br />

C R<br />

.16<br />

15<br />

1.0<br />

18<br />

S<br />

S s<br />

1<br />

0<br />

0<br />

1<br />

5/2/2011<br />

54


Scattering Demo Initial Results<br />

C T<br />

1.18<br />

0.14<br />

0<br />

179<br />

0.20<br />

0.97<br />

29<br />

16<br />

C R<br />

0.99<br />

.16<br />

0<br />

15<br />

.21<br />

1.0<br />

221<br />

18<br />

S<br />

S s<br />

1<br />

0<br />

0<br />

1<br />

S<br />

2<br />

cos / 4 cos / 4 sin / 4 1<br />

S d<br />

S<br />

2<br />

d<br />

sin / 4 cos / 4 sin / 4 2<br />

1<br />

1<br />

1<br />

1<br />

45°<br />

Greatly improved polarimetric<br />

characterization of both targets<br />

5/2/2011<br />

55


Scattering Demo Initial Results<br />

C T<br />

1.18<br />

0.14<br />

0<br />

179<br />

0.20<br />

0.97<br />

29<br />

16<br />

C R<br />

0.99<br />

.16<br />

0<br />

15<br />

.21<br />

1.0<br />

221<br />

18<br />

S<br />

S s<br />

1<br />

0<br />

0<br />

1<br />

S<br />

2<br />

cos / 4 cos / 4 sin / 4 1<br />

S d<br />

S<br />

2<br />

d<br />

sin / 4 cos / 4 sin / 4 2<br />

1<br />

1<br />

1<br />

1<br />

Greatly improved polarimetric<br />

characterization of both targets<br />

45°<br />

Greatly improved polarimetric<br />

characterization of both targets<br />

5/2/2011<br />

56


Receive Pattern Demo<br />

• Use mutual coupling compensation to synthesize patterns with low<br />

sidelobes (-30 dB goal), then do polarimetric compensation:<br />

Blue: H<br />

Black: V<br />

Compare to ideal<br />

simulated array in free<br />

space with no mounting<br />

hardware<br />

5/2/2011


Receive Pattern Demo<br />

• Use mutual coupling compensation to synthesize patterns with low<br />

sidelobes (-30 dB goal), then do polarimetric compensation:<br />

Blue: H<br />

Black: V<br />

Compare to ideal<br />

simulated array in free<br />

space with no mounting<br />

hardware<br />

5/2/2011


Receive Pattern Demo<br />

• Use mutual coupling compensation to synthesize patterns with low<br />

sidelobes (-30 dB goal), then do polarimetric compensation:<br />

Blue: H<br />

Black: V<br />

Compare to ideal<br />

simulated array in free<br />

space with no mounting<br />

hardware<br />

5/2/2011<br />

59


Large <strong>Array</strong> Simulations<br />

• Master/slave boundaries allow infinite array to be simulated under scan<br />

• Use resulting polarimetric fields to predict large-array per<strong>for</strong>mance<br />

Z<br />

DRb<br />

5/2/2011<br />

S<br />

S<br />

Tˆ<br />

HH<br />

Tˆ<br />

VH<br />

Rˆ<br />

HH<br />

Rˆ<br />

VH<br />

Tˆ<br />

Tˆ<br />

HV<br />

VV<br />

Rˆ<br />

Rˆ<br />

VV<br />

HV<br />

2<br />

2<br />

d<br />

d<br />

ATSR<br />

STSR<br />

Z<br />

~<br />

R<br />

T<br />

AT<br />

~<br />

R<br />

HH HH VH HV<br />

S<br />

DRb<br />

~<br />

~<br />

RVH<br />

THH<br />

ATVH<br />

RVV<br />

S<br />

T<br />

T<br />

HV<br />

HV<br />

AT<br />

AT<br />

VV<br />

VV<br />

2<br />

2<br />

d<br />

d<br />

60


Large <strong>Array</strong> Simulations<br />

• Resulting co-polar and crosspolar<br />

patterns<br />

• Per<strong>for</strong>mance <strong>for</strong> an infinite array<br />

• Per<strong>for</strong>mance <strong>for</strong> a 64x64 array<br />

using infinite array data:<br />

• Also shown that finite array simulations<br />

converge to infinite case<br />

5/2/2011 ATSR – Encouraging results with no correction<br />

STSR – Significant Errors<br />

61


Large <strong>Array</strong> Simulations<br />

• Resulting co-polar and crosspolar<br />

patterns<br />

• Per<strong>for</strong>mance <strong>for</strong> an infinite array<br />

• Per<strong>for</strong>mance <strong>for</strong> a 64x64 array<br />

using infinite array data:<br />

• Also shown that finite array simulations<br />

converge to infinite case<br />

5/2/2011 ATSR – Encouraging results with no correction<br />

STSR – Significant Errors<br />

62


Large <strong>Array</strong>s with Random Errors<br />

Worst-case results <strong>for</strong> -45°


Large <strong>Array</strong>s with Random Errors<br />

Worst-case results <strong>for</strong> -45°


Large <strong>Array</strong>s with Random Errors<br />

Worst-case results <strong>for</strong> -45°


Large <strong>Array</strong>s with Random Errors<br />

Worst-case results <strong>for</strong> -45°


Large <strong>Array</strong>s with Random Errors<br />

5/2/2011<br />

Worst-case results <strong>for</strong> -45°


Potential Re-Configurable HDB Capabilities<br />

• <strong>Digital</strong> overlapped subarray capability <strong>for</strong> fast volume search<br />

Digitizer +<br />

low-level<br />

processor<br />

Digitizer +<br />

low-level<br />

processor<br />

Digitizer +<br />

low-level<br />

processor<br />

Digitizer +<br />

low-level<br />

processor<br />

Partial beam<strong>for</strong>ming<br />

per<strong>for</strong>med at top of<br />

hierarchy<br />

Intermediate<br />

beam<strong>for</strong>mer<br />

Intermediate<br />

beam<strong>for</strong>mer<br />

Aggregation, true time<br />

delay, etc. is per<strong>for</strong>med at<br />

mid hierarchy<br />

5/2/2011<br />

Final beam<strong>for</strong>mer<br />

+ RSP<br />

Final radar signal processor<br />

with cognitive<br />

enhancements similar to<br />

those with analog<br />

beam<strong>for</strong>mers<br />

68


Potential Re-Configurable HDB Capabilities<br />

• Dynamic subarray allocation &<br />

array partitioning of T/R<br />

Transmit<br />

Examples:<br />

Simultaneous T/R with<br />

coupling cancellation<br />

Digitizer +<br />

low-level<br />

processor<br />

Digitizer +<br />

low-level<br />

processor<br />

Digitizer +<br />

low-level<br />

processor<br />

Digitizer +<br />

low-level<br />

processor<br />

Tx<br />

Rx<br />

Intermediate<br />

beam<strong>for</strong>mer<br />

Intermediate<br />

beam<strong>for</strong>mer<br />

Rx across full<br />

spectrum<br />

Guard Cells<br />

Normal <strong>Radar</strong><br />

Final beam<strong>for</strong>mer<br />

+ RSP<br />

Arbitrary, dynamic,<br />

subarray allocation to<br />

minimize and randomize<br />

grating lobes over time<br />

5/2/2011<br />

69


Current Developments<br />

• DAR 1.0<br />

– Being evaluated at U of Oklahoma<br />

• DAR 1.5<br />

– DAR 2.0 Transceiver + DAR 1.0 Backend<br />

– Pulse board <strong>for</strong> robust testing<br />

5/2/2011<br />

70


Current Developments<br />

• DAR 1.0<br />

– Being evaluated at U of Oklahoma<br />

• DAR 1.5<br />

– DAR 2.0 Transceiver + DAR 1.0 Backend<br />

– Pulse board <strong>for</strong> robust testing<br />

• DAR 2.0 <strong>Digital</strong> Backend<br />

– 50 MSPS x 16 I/Q channels<br />

– 8x real-time beams<br />

5/2/2011<br />

71


Current Developments<br />

• DAR 1.0<br />

– Being evaluated at U of Oklahoma<br />

• DAR 1.5<br />

– DAR 2.0 Transceiver + DAR 1.0 Backend<br />

– Pulse board <strong>for</strong> robust testing<br />

• DAR 2.0 <strong>Digital</strong> Backend<br />

– 50 MSPS x 16 I/Q channels<br />

– 8x real-time beams<br />

• 9x9 Antenna Panel<br />

– Dual pol / x-pol optimized<br />

– Prove-in large array cal<br />

5/2/2011<br />

72


Current Developments<br />

• DAR 1.0<br />

– Being evaluated at U of Oklahoma<br />

• DAR 1.5<br />

– DAR 2.0 Transceiver + DAR 1.0 Backend<br />

– Pulse board <strong>for</strong> robust testing<br />

• DAR 2.0 <strong>Digital</strong> Backend<br />

– 50 MSPS x 16 I/Q channels<br />

– 8x real-time beams<br />

• 9x9 Antenna Panel<br />

– Dual pol / x-pol optimized<br />

– Prove-in large array cal<br />

• STAR DAR<br />

– Concurrent multi-functionality<br />

– Fixed/tunable coupling structures<br />

– Packaging improvements<br />

Frequency<br />

Time<br />

5/2/2011<br />

73


DAR Subarray Version 2: Current Plans<br />

16-Channel Transceiver Board<br />

16-Channel <strong>Digital</strong> Board<br />

• Bandwidth increased to 28 MHz<br />

• > 50 Msps w/2 GB RAM total<br />

• Slightly larger FPGAs (Spartan 3A)<br />

• Element-level equalization<br />

• 8 Rx beams through high-speed<br />

interface to parallel proc. network<br />

• New GaN MMIC package<br />

Just returned from board house<br />

Under Development<br />

74


Initial Conclusions and Plans<br />

• Possible to achieve Z DR bias < 0.1 dB<br />

• Must establish good base per<strong>for</strong>mance through antenna design<br />

– Cylindrical array with stacked patch will help limit calibration<br />

sensitivity<br />

– Quality array alignment<br />

• In-situ monitoring & “round-trip” methods will be required<br />

– Sun, rain, and target-based techniques similar NEXRAD<br />

– In-situ monitoring to make sure array errors are random<br />

• Plan: Build larger arrays (9x9) with less mutual coupling effects to further<br />

probe calibration limits<br />

We believe that this is a good example <strong>for</strong> this type of program<br />

• Flexible<br />

• Adaptable<br />

• Low Cost<br />

5/2/2011<br />

75

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!