22.05.2014 Views

Fast Neutron Scattering Analysis - University of Cape Town

Fast Neutron Scattering Analysis - University of Cape Town

Fast Neutron Scattering Analysis - University of Cape Town

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Contraband detection,<br />

using neutrons<br />

Andy Buffler<br />

Department <strong>of</strong> Physics<br />

<strong>University</strong> <strong>of</strong> <strong>Cape</strong> <strong>Town</strong>


The non-intrusive characterization <strong>of</strong> bulk materials is required in<br />

many industrial and commercial contexts including:<br />

• mining<br />

• food quality control<br />

• containerized waste management<br />

Very <strong>of</strong>ten an analysis <strong>of</strong> the elemental composition <strong>of</strong> the material<br />

is needed, sometimes to form an image <strong>of</strong> the distribution <strong>of</strong> one or<br />

more elements comprising the material.<br />

In particular, there is a growing need for improved techniques to<br />

detect explosives and narcotics hidden in airline luggage and other<br />

containers, and landmines buried in the waters or soil <strong>of</strong> the earth.


Bombing <strong>of</strong> Pan Am Flight 103 (Boeing 747-121)<br />

at Lockerbie, Scotland on 21 December 1988


Terror attacks on<br />

World Trade Centre<br />

and Pentagon<br />

on 11 September 2001


Common approaches to detect hidden contraband include:<br />

X-rays: Well established and highly penetrating but are not sensitive<br />

to the light elements H , C, N and O, and object identification based<br />

mainly on visual imaging.<br />

Dogs: Extremely high success rate (esp. in South Africa) but their use<br />

is disadvantaged by large workloads.<br />

There is a need for alternative technologies which <strong>of</strong>fer high:<br />

• penetrability (to interrogate large containers)<br />

• sensitivity (for low false alarm rates)<br />

• specificity (to detect hidden contraband within a bulk<br />

sample <strong>of</strong> primarily innocuous content)<br />

Nuclear-based approaches <strong>of</strong>fer all <strong>of</strong> these features.


Ammonium Nitrate<br />

Composition B<br />

Composition 4 (C-4)<br />

Dynamite<br />

EGDN<br />

Nitrocellulose<br />

Nitroglycerene<br />

Octogen (HMX)<br />

PETN<br />

Picric Acid<br />

RDX<br />

TNT<br />

Tetryl<br />

Cocaine<br />

Heroin<br />

LSD<br />

Mandrax<br />

Morphine<br />

PCP<br />

Acetamide<br />

Ammonium acetate<br />

Barley<br />

Cotton<br />

Dacron<br />

Ethanol<br />

Lucite (Perspex)<br />

Melamine<br />

Methanol<br />

Neoprene<br />

Nylon<br />

Orlon<br />

Paper<br />

Polyester<br />

Polyethylene<br />

Polyurethane<br />

PVC<br />

Rayon<br />

Silk<br />

Soybean<br />

Sugar<br />

Water<br />

Wood<br />

Wool<br />

H C N O<br />

0 20 40 60 80 100<br />

Atom fraction (%)<br />

Explosives<br />

Illicit drugs<br />

Miscellaneous<br />

substances


Oxygen concentration (moles cm -3 )<br />

0.08<br />

0.07<br />

0.06<br />

0.05<br />

0.04<br />

0.03<br />

0.02<br />

Sand<br />

Water<br />

Sugar<br />

Cellulose<br />

Acryllic<br />

Ethanol<br />

PETN<br />

Nitroglycerine<br />

Nitrocellulose<br />

Picric acid<br />

EGDN<br />

Datasheet<br />

Dynamite<br />

TNT<br />

Black powder<br />

Polyurethane<br />

Tetryl<br />

Ammonium nitrate<br />

Composition B<br />

Cocaine<br />

Bulk nylon<br />

0.01<br />

Cotton<br />

Polyester<br />

Silk<br />

Melamine<br />

0.00 Wool<br />

0.00 0.01 0.02 0.03 0.04 0.05 0.06<br />

Nitrogen concentration (moles cm -3 )<br />

C-3<br />

C-4<br />

HMX<br />

Explosives<br />

Fabrics<br />

Polymers<br />

Miscellaneous materials


Nuclear Physics approaches for elemental analysis<br />

Charged particles p, d, α, … :<br />

Good for surface analyses only<br />

(e.g. Rutherford Backscattering)<br />

Not suitable for bulk objects<br />

α<br />

α<br />

sample<br />

γ-rays:<br />

Penetrating<br />

Not easily applicable to<br />

multi-elemental analyses<br />

<strong>Neutron</strong>s:<br />

Penetrating<br />

Sensitive to both light and heavy elements<br />

Undergo specific interactions with different nuclides<br />

Easily produced and detected<br />

γ<br />

sample<br />

γ’<br />

γ<br />

Transmitted<br />

γ-rays<br />

Compton<br />

scattered γ-rays


<strong>Neutron</strong> – based interrogation methods<br />

sample<br />

thermal<br />

neutrons<br />

γ<br />

Capture γ-rays<br />

fast<br />

neutrons<br />

γ<br />

Inelastic scattering<br />

γ-rays<br />

fast<br />

neutrons<br />

n<br />

Transmitted<br />

neutrons


slow neutrons in,<br />

capture gamma rays out<br />

(thermal neutron capture)<br />

252<br />

Cf source<br />

HPGe<br />

detector<br />

neutron<br />

Gamma<br />

ray<br />

CW agent


Thermal neutron capture<br />

thermal<br />

neutrons<br />

γ<br />

Capture γ-rays


fast neutrons in,<br />

gamma rays out<br />

(fast neutron inelastic scattering)<br />

mono-energetic<br />

fast neutrons<br />

sample<br />

γ<br />

Inelastic<br />

scattering γ-rays<br />

Accelerator-based system using<br />

mono-energetic 8 MeV neutrons<br />

and arrays <strong>of</strong> NaI detectors to<br />

detect de-excitation γ-rays from<br />

neutron inelastic scattering<br />

interactions.


<strong>Fast</strong> neutron<br />

inelastic scattering<br />

mono-energetic<br />

fast neutrons<br />

sample<br />

γ<br />

Inelastic<br />

scattering γ-rays<br />

Portable system based<br />

around a 14 MeV sealed<br />

tube neutron generator and<br />

BGO detector to detect deexcitation<br />

γ-rays from<br />

neutron inelastic<br />

scattering interactions.<br />

Pulsed Elemental <strong>Analysis</strong> with <strong>Neutron</strong>s (PELAN)


fast neutrons in, fast neutrons out<br />

(fast neutron transmission spectroscopy)<br />

fast “white”<br />

neutron beam<br />

n<br />

transmitted<br />

neutrons<br />

10<br />

ENDF/B-VI<br />

1<br />

H<br />

<strong>Scattering</strong> cross section (b)<br />

8<br />

6<br />

4<br />

12 C<br />

14<br />

N<br />

16<br />

O<br />

<strong>Neutron</strong> beam transmitted<br />

through the sample is<br />

attenuated according to<br />

total scattering cross<br />

section for each element.<br />

2<br />

0<br />

0 5 10 15<br />

Incident neutron energy (MeV)


<strong>Neutron</strong>s in, neutrons out<br />

fast<br />

neutrons<br />

n, n’<br />

Elastically and<br />

inelastically<br />

scattered neutrons<br />

The energy and intensity distributions <strong>of</strong> the scattered neutron<br />

field are functions <strong>of</strong> the:<br />

• incident neutron energy<br />

• angle <strong>of</strong> scattering<br />

• mass <strong>of</strong> the scattering nuclide


<strong>Fast</strong> <strong>Neutron</strong> <strong>Scattering</strong> <strong>Analysis</strong> (FNSA)<br />

Andy Buffler , Frank Brooks, Saalih Allie<br />

Department <strong>of</strong> Physics, <strong>University</strong> <strong>of</strong> <strong>Cape</strong> <strong>Town</strong>, South Africa<br />

Krish Bharuth-Ram<br />

Department <strong>of</strong> Physics, <strong>University</strong> <strong>of</strong> Durban-Westville, South Africa<br />

Rudolph Nchodu<br />

Department <strong>of</strong> Physics, <strong>University</strong> <strong>of</strong> the Western <strong>Cape</strong>, South Africa<br />

See:<br />

Buffler and Brooks et al, “Material classification by fast neutron scattering”,<br />

Nuclear Instruments and Methods B 173 (2001) 483


National Accelerator Centre, near <strong>Cape</strong> <strong>Town</strong>, South Africa


<strong>Fast</strong> <strong>Neutron</strong> <strong>Scattering</strong> <strong>Analysis</strong> (FNSA)<br />

Concept:<br />

Basic approach is to irradiate the sample under interrogation<br />

with a beam <strong>of</strong> fast mono-energetic neutrons and to detect the neutrons<br />

scattered out <strong>of</strong> the beam.<br />

Nuclide-specific information is present in the scattered neutron field.<br />

By detecting the neutrons elastically and inelastically scattered at<br />

different laboratory angles θ for different incident neutron energies E o<br />

, the<br />

amounts and positions <strong>of</strong> the scattering nuclides may be determined.<br />

monoenergetic<br />

neutron beam<br />

shielding<br />

Backward<br />

detector (B)<br />

scattering<br />

sample<br />

150°<br />

45°<br />

Forward<br />

detector (F)


1500 mm<br />

300 mm<br />

600 mm<br />

400 mm<br />

310 mm<br />

d<br />

Dtarget:<br />

2<br />

H(d,n) He<br />

reaction<br />

2 3<br />

Iron<br />

Borated<br />

wax<br />

n<br />

Sample<br />

Rotating<br />

Havar foil<br />

(E = 4.7/4.0 MeV)<br />

d<br />

M<br />

NE213<br />

Detector B<br />

θ<br />

B = 150o<br />

θ F<br />

= 45 o<br />

NE213<br />

Detector F<br />

Laboratory scattering experiments undertaken at the 6 MV<br />

Van de Graaff accelerator <strong>of</strong> the National Accelerator Centre, South Africa.<br />

• <strong>Neutron</strong> energy multiplexed between 7.5 MeV and 6.8 MeV by rotating<br />

a 11µm Havar foil in and out <strong>of</strong> the 4.5 MeV deuteron beam.<br />

• Pulse shape discrimination on all NE213 detectors.<br />

• Pulse height and time-<strong>of</strong>-flight information measured for small monoelemental<br />

samples, as well <strong>of</strong> compounds <strong>of</strong> known and “unknown”<br />

chemical composition.


<strong>Neutron</strong> elastic scattering<br />

(a) 12 C(n,n) 12 C<br />

Differential<br />

cross section<br />

dσ/dΩ (b sr -1 )<br />

4.0<br />

3.0<br />

2.0<br />

1.0<br />

0.0<br />

1.0 0.5 0.0 -0.5 1.0<br />

-1.0<br />

2.0<br />

3.0<br />

6.0<br />

5.0<br />

4.0<br />

E o<br />

(MeV)<br />

7.0<br />

8.0<br />

cos Θ<br />

)<br />

E scattered<br />

/ E incident<br />

for neutron<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

Kinematics<br />

A=1<br />

0.0<br />

0 30 60 90 120 150 180<br />

<strong>Neutron</strong> laboratory scattering angle (degrees)<br />

A=207<br />

A=56<br />

A=27<br />

A=16<br />

A=14<br />

A=12<br />

A=10<br />

A=7<br />

A=4<br />

A=2<br />

(b) 14 N(n,n) 14 N<br />

dσ/dΩ (b sr -1 )<br />

4.0<br />

3.0<br />

2.0<br />

1.0<br />

0.0<br />

1.0 0.5 0.0 -0.5 1.0<br />

-1.0<br />

(c) 16 O(n,n) 16 O<br />

dσ/dΩ (b sr -1 )<br />

4.0<br />

3.0<br />

2.0<br />

1.0<br />

cos Θ<br />

0.0<br />

1.0 0.5 0.0 -0.5 1.0<br />

-1.0<br />

2.0<br />

2.0<br />

3.0<br />

3.0<br />

5.0<br />

4.0<br />

E o<br />

(MeV)<br />

6.0<br />

6.0<br />

5.0<br />

4.0<br />

E o<br />

(MeV)<br />

7.0<br />

7.0<br />

8.0<br />

8.0<br />

cos Θ


Pulse height (L) channel<br />

60 40 20 0<br />

14E3<br />

γ<br />

7E3<br />

0<br />

0 10 20 30 40 50 60<br />

Pulse shape (S) channel<br />

Counts<br />

80E3<br />

40E3 γ n<br />

0<br />

γ n<br />

50E3<br />

25E3<br />

Pulse height (L) channel<br />

0 20 40 60<br />

n<br />

0


Pulse height and/or time-<strong>of</strong> flight measurements are made<br />

at 2 scattering angles and 2 neutron beam energies.<br />

Time-<strong>of</strong>-flight<br />

Pulse height<br />

Graphite scatterer<br />

E n = 7.5 MeV<br />

Detector at 150°


θ lab<br />

: 150 o<br />

45 o<br />

Parameter: Pulse height Time-<strong>of</strong>-flight<br />

R i<br />

(n)<br />

800<br />

400<br />

0<br />

400<br />

H<br />

C<br />

S D0<br />

signature<br />

(based on both pulse<br />

height and time-<strong>of</strong> flight)<br />

θ lab<br />

: 150 o<br />

800<br />

400<br />

0<br />

400<br />

H<br />

C<br />

45 o<br />

0<br />

400<br />

N<br />

R i<br />

(n)<br />

0<br />

400<br />

N<br />

0<br />

400<br />

O<br />

E o = 6.8 MeV<br />

0<br />

400<br />

O<br />

0<br />

400<br />

Al<br />

E o = 7.5 MeV<br />

0<br />

400<br />

Al<br />

0<br />

400<br />

S<br />

0<br />

400<br />

S<br />

0<br />

400<br />

Fe<br />

S L0<br />

signature<br />

0<br />

400<br />

Fe<br />

0<br />

400<br />

Pb<br />

0<br />

0 150 300 450 600 750 900<br />

Bin number n<br />

(based on pulse height<br />

only – does not require<br />

a pulsed beam)<br />

0<br />

400<br />

Pb<br />

0<br />

0 150 300 450 600<br />

Bin number n


<strong>Scattering</strong> signatures measured<br />

for unknown samples are<br />

unfolded to determine the<br />

elemental composition <strong>of</strong> the<br />

sample:<br />

N+<br />

Sn ( ) f R( n)<br />

= ∑ 4<br />

i = 1<br />

i<br />

i<br />

S(n)<br />

200<br />

150<br />

100<br />

50<br />

Hist Data<br />

Fit<br />

Background<br />

0<br />

0 150 300 450 600 750 900<br />

where:<br />

S(n) : scattering signature measured for a sample <strong>of</strong> unknown composition<br />

R i<br />

(n) : scattering signatures measured for N individual elements<br />

and 4 background components<br />

(±∆f i<br />

) : fitting coefficients<br />

f i<br />

n<br />

The atom fraction a i<br />

a<br />

i<br />

for each element in the unknown compound is simply<br />

f<br />

i<br />

= N<br />

∑<br />

i = 1<br />

f<br />

i<br />

The atom fractions a i<br />

±∆a i<br />

uniquely characterize the elemental composition<br />

<strong>of</strong> the scattering sample.


<strong>Scattering</strong> signatures<br />

measured for unknown<br />

samples are unfolded to<br />

determine the elemental<br />

composition <strong>of</strong> the sample.<br />

The measured atom<br />

fractions uniquely<br />

characterize the<br />

elemental composition <strong>of</strong><br />

the scattering sample.<br />

atom fraction<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

Methanol Ammonium Heroin<br />

nitrate simulant<br />

HCNOAlSFePb<br />

HCNOAlSFePb<br />

HCNOAlSFePb<br />

The identification <strong>of</strong> specific materials from measured atom<br />

fractions can be facilitated by introducing a χ 2 -based screening<br />

procedure to compare the atom fractions measured for an<br />

“unknown” sample with the known atom fractions <strong>of</strong> a large set <strong>of</strong><br />

candidate materials.


Results from analyses<br />

using scattering<br />

signatures based on:<br />

atom<br />

fraction<br />

0.8<br />

0.6<br />

Methanol Ammonium Acetamide Ammonium<br />

nitrate acetate<br />

(a) both pulse height<br />

and time-<strong>of</strong>-flight<br />

0.4<br />

0.2<br />

a i<br />

0.8<br />

0.6<br />

0.0<br />

0.0<br />

atom<br />

fraction<br />

Methanol Ammonium Acetamide Ammonium<br />

nitrate acetate<br />

(b) pulse height only<br />

a i<br />

0.4<br />

0.2<br />

Histogram: Expected<br />

H C N O Al S Fe Pb


The sensitivity <strong>of</strong> the approach for detecting particular materials<br />

is illustrated by introducing a function analogous to a weighted<br />

chi-square coefficient:<br />

2<br />

N<br />

⎛ ai<br />

− bik<br />

⎞<br />

∑⎜<br />

⎟<br />

2<br />

i = 1⎝<br />

∆ai<br />

χ =<br />

⎠<br />

x<br />

( k)<br />

N<br />

−2<br />

N ∑ai<br />

i = 1<br />

where:<br />

a i<br />

±∆a i<br />

: are the measured atom fractions for N<br />

candidate elements in sample x<br />

b ik<br />

: the corresponding atom fractions for a candidate<br />

material k <strong>of</strong> known chemical composition.<br />

More convenient to use a screening function P x<br />

(x,k) defined by<br />

normalizing each calculated χ 2 (k) value to a percentage value by<br />

P<br />

x<br />

( x, k)<br />

=<br />

100<br />

2<br />

x<br />

( k)<br />

45<br />

−1<br />

(<br />

2<br />

∑ χ ( ))<br />

x<br />

k<br />

k = 1<br />

χ


Screening materials k = 1 to 45<br />

The atom fractions measured for<br />

each “unknown” sample x are<br />

screened against candidate<br />

materials, e.g. the following set<br />

<strong>of</strong> 8 elements, 10 explosives,<br />

5 illicit drugs and 22 common<br />

substances.<br />

Elements:<br />

Common substances:<br />

1 Hydrogen 24 Paraffin wax<br />

2 Carbon 25 Polyethylene<br />

3 Nitrogen 26 Ethanol<br />

4 Oxygen 27 Methanol<br />

5 Aluminium 28 Water<br />

6 Sulphur 29 Ammonium acetate<br />

7 Iron 30 Nylon<br />

8 Lead 31 Lucite<br />

32 Polyurethane<br />

Explosives: 33 Acetamide<br />

9 Ammonium nitrate 34 Benzene<br />

10 C-4 35 Sugar<br />

11 RDX/HMX 36 Iron sulphate<br />

12 EGDN 37 Wood<br />

13 PETN 38 Paper<br />

14 Nitrocellulose 39 Cotton<br />

15 Nitroglycerine 40 Silk<br />

16 TNT 41 Orlon<br />

17 Tetryl 42 Wool<br />

18 Picric acid 43 Melamine<br />

44 Polyester<br />

Illicit drugs: 45 Aluminium oxide<br />

19 Heroin<br />

20 LSD<br />

21 Cocaine<br />

22 Morphine<br />

23 Mandrax


P x<br />

(x,k) represents the degree to which a sample x matches a<br />

member k <strong>of</strong> the set <strong>of</strong> 45 candidate materials.<br />

The distribution <strong>of</strong> P x<br />

(x,k) versus k displays a pr<strong>of</strong>ile <strong>of</strong> the<br />

screening <strong>of</strong> x against the 45 candidate materials, with peaks at the<br />

values <strong>of</strong> k corresponding to the most probable candidate<br />

materials.<br />

Acetamide<br />

P(x,k)<br />

100<br />

80<br />

Element Explosive Drug Common substance<br />

Acetamide<br />

60<br />

40<br />

20<br />

0<br />

0 5 10 15 20 25 30 35 40 45<br />

Material k


P(x,k)<br />

100<br />

80<br />

Ammonium nitrate<br />

(Explosive)<br />

Heroin simulant<br />

(Illicit drug)<br />

100<br />

80<br />

P(x,k)<br />

60<br />

60<br />

40<br />

40<br />

20<br />

20<br />

P(x,k)<br />

100<br />

0<br />

0 15 30 45<br />

80<br />

Methanol<br />

(Common material)<br />

Material k<br />

0<br />

0 15 30 45<br />

Ammonium acetate<br />

(Common material)<br />

100<br />

80<br />

P(x,k)<br />

60<br />

40<br />

20<br />

60<br />

40<br />

20<br />

0<br />

0 15 30 45<br />

Material k<br />

0<br />

0 15 30 45


Ammonium Nitrate<br />

Composition B<br />

Composition 4 (C-4)<br />

Dynamite<br />

EGDN<br />

Nitrocellulose<br />

Nitroglycerene<br />

Octogen (HMX)<br />

PETN<br />

Picric Acid<br />

RDX<br />

TNT<br />

Tetryl<br />

Cocaine<br />

Heroin<br />

LSD<br />

Mandrax<br />

Morphine<br />

PCP<br />

Acetamide<br />

Ammonium acetate<br />

Barley<br />

Cotton<br />

Dacron<br />

Ethanol<br />

Lucite (Perspex)<br />

Melamine<br />

Methanol<br />

Neoprene<br />

Nylon<br />

Orlon<br />

Paper<br />

Polyester<br />

Polyethylene<br />

Polyurethane<br />

PVC<br />

Rayon<br />

Silk<br />

Soybean<br />

Sugar<br />

Water<br />

Wood<br />

Wool<br />

H C N O<br />

0 20 40 60 80 100<br />

Atom fraction (%)<br />

Explosives<br />

Illicit drugs<br />

Miscellaneous<br />

substances


In many practical situations it may not be<br />

important to determine the actual type <strong>of</strong><br />

material, but rather the group (explosive,<br />

illicit drug, common substance) to which<br />

the material belongs.<br />

This identification is assisted by<br />

introducing a group pr<strong>of</strong>ile function<br />

G(x,g) for unknown sample x, by<br />

summing P(x,k) over the members k <strong>of</strong><br />

each group g :<br />

Gxg ( , ) = ∑ Pxk ( , )<br />

over each<br />

group<br />

where the 4 groups are:<br />

1. Elements<br />

2. Explosives<br />

3. Illicit drugs<br />

4. Common materials<br />

(a) Methanol<br />

100<br />

G(x,g)<br />

50<br />

0<br />

(b) Acetamide<br />

100<br />

G(x,g)<br />

50<br />

0<br />

(c) Ammonium nitrate<br />

100<br />

G(x,g)<br />

50<br />

0<br />

(d) Drug simulant<br />

100<br />

G(x,g)<br />

50<br />

0<br />

g = Element Drug<br />

Explosive Common material


A group probability function<br />

indicates the relative probability<br />

that the atom fractions measured<br />

by FNSA for a test sample match<br />

those for compounds in each <strong>of</strong><br />

the four groups:<br />

Pure elements<br />

Explosives<br />

Illicit drugs<br />

Common substances<br />

Probability that sample belongs to material group<br />

100<br />

Methanol<br />

50<br />

0<br />

100<br />

50<br />

Ammonium nitrate<br />

0<br />

100<br />

Heroin simulant<br />

50<br />

Methanol<br />

Heroin simulant<br />

Ammonium<br />

nitrate<br />

Results in a highly reliable<br />

classification which is suitable to<br />

the detection <strong>of</strong> explosives and<br />

illicit drugs.<br />

0<br />

Pure<br />

Element<br />

Explosive<br />

Illicit<br />

drug<br />

Common<br />

substance


Panel on the assessment<br />

<strong>of</strong> the practicality <strong>of</strong><br />

Pulse <strong>Fast</strong> <strong>Neutron</strong><br />

Transmission Spectroscopy<br />

for Aviation Safety<br />

Report: 1999<br />

Washington D.C.<br />

Recommendations:<br />

1. Do not consider accelerator-based technologies to have promise for<br />

deployment as a primary screening procedure for checked baggage<br />

inspection. Any screening procedure relying on an accelerator cannot compete<br />

with available technologies on either cost or practicality bases<br />

2. Do not fund any large accelerator-based hardware development<br />

projects. Combinations <strong>of</strong> experimental work with existing laboratory<br />

equipment, mathematical modeling and simulation can better define the<br />

potential <strong>of</strong> nuclear technologies without the expense or time required to design<br />

and build new hardware.


Location <strong>of</strong> contraband in FNSA measurements<br />

Rotate and translate package across collimated beam.<br />

Backward<br />

detector<br />

Forward<br />

detector<br />

Package<br />

Collimated<br />

mono-energetic<br />

neutron beam<br />

Transmission<br />

detector<br />

Shielding<br />

Rotating<br />

turntable<br />

Translating<br />

trolley


Results from a Rotational-Translational scan<br />

Counts measured at 45°<br />

as a function <strong>of</strong><br />

x (translational coordinate) and<br />

θ (rotational coordinate)<br />

explosive<br />

illicit drug<br />

dense cotton clothing<br />

packed in suitcase


Results from a<br />

Rotational-Translational<br />

scan<br />

(a) transmission detector<br />

(b) 45° detector<br />

(c) 150° detector (H-suppressed)<br />

(d) 150° detector (H-enhanced)<br />

water<br />

graphite<br />

air


Results from a<br />

Rotational-Translational<br />

scan<br />

(a) transmission detector<br />

(b) 45° detector<br />

(c) 150° detector (H-suppressed)<br />

(d) 150° detector (H-enhanced)<br />

explosive<br />

illicit drug<br />

dense cotton clothing


Detection <strong>of</strong> explosives in airline baggage by FNSA<br />

Focus on screening <strong>of</strong> outgoing baggage – requirements include<br />

high throughput and low false alarm rate.<br />

Signal: High density region (1.6 – 2.0 g cm -3 )<br />

Appropriate HCNO atom fraction<br />

High concentration <strong>of</strong> HCNO<br />

Effective explosive detection systems must <strong>of</strong>fer:<br />

(a) Rapid operation (< 20 s per bag)<br />

(b) Reliable detection<br />

Zero false negative rate (must detect all explosives > 200 g)<br />

Small false positive rate (few false alarms)<br />

(c) Safe use<br />

(d) Ease <strong>of</strong> use<br />

Not clear whether or not the new generation <strong>of</strong> X-ray systems will<br />

fully meet all these requirements.


Multi-stage interrogation protocol for explosives in outgoing luggage<br />

STAGE 1<br />

First (rapid) screening using<br />

X-ray method (10 seconds)<br />

Bag “suspect” ?<br />

No<br />

Yes<br />

(~3% <strong>of</strong> bags)<br />

FNSA could be used as<br />

the second-stage <strong>of</strong> a<br />

second phase <strong>of</strong> a<br />

two-stage screening<br />

system, in order to<br />

provide corroborative<br />

evidence via an<br />

independent and more<br />

sensitive screening<br />

Bag moved to STAGE 2 station<br />

STAGE 2<br />

Suspicious voxel(s) positioned in neutron beam<br />

Thorough FNSA screening (1 – 2 minutes)<br />

Bag still “suspect” ?<br />

STAGE 3<br />

Visual inspection<br />

No<br />

Yes<br />

( < 0.1% <strong>of</strong> bags)


Detection <strong>of</strong> illicit drugs in airline baggage by FNSA<br />

Focus on the screening <strong>of</strong> incoming baggage<br />

Signal:<br />

Appropriate HC atom fraction<br />

High H concentration<br />

Requirements less stringent and less precise than<br />

for explosives detection.<br />

(Detecting > 0.5 kg <strong>of</strong> illicit drugs with 90% efficiency is useful.)


Proposed system for the<br />

detection <strong>of</strong> illicit drugs in<br />

incoming airline luggage.<br />

FNSA could be used as the<br />

first stage <strong>of</strong> a two-stage<br />

screening system.<br />

The second stage is<br />

manual inspection by<br />

customs <strong>of</strong>ficials.<br />

<strong>Neutron</strong>s scattered out<br />

<strong>of</strong> the beam by a passing<br />

suitcase are detected in<br />

arrays <strong>of</strong> neutron detectors<br />

placed at forward and<br />

backward angles.<br />

backward<br />

neutron<br />

detectors<br />

fan<br />

beam<br />

collimator<br />

fast<br />

neutron<br />

source<br />

forward<br />

neutron<br />

detectors<br />

neutron<br />

beam<br />

luggage<br />

conveyor<br />

backward<br />

neutron<br />

detectors<br />

shielding


FNSA screening times per suspect item:<br />

<strong>Neutron</strong> source type<br />

STNG Accelerator Accelerator STNG<br />

E (MeV) 2.5 4.2 7.2 14.1<br />

φ (E ) (× 10 6 s -1 ) 1 0.145 1.13 10<br />

t M (s) 2.8 18.8 3.5 0.94<br />

E : neutron beam energy<br />

φ (E) : number <strong>of</strong> source neutrons incident on sample per second<br />

t M<br />

: FNSA measuring time per suspect item<br />

In addition, need to include time for:<br />

<strong>Neutron</strong> fluence reduction due to attenuation:<br />

Preliminary RT-scan:<br />

Computing:<br />

Mounting and positioning:<br />

10 - 30 s<br />

10 - 30 s<br />

5 - 10 s<br />

10 - 20 s<br />

⇒<br />

Total time for FNSA screening: 60 to 120 s per suspected item.


Conclusions<br />

Laboratory tests have shown that FNSA is a highly reliable<br />

method for characterizing materials in bulk.<br />

FNSA measures the important elements for contraband detection<br />

(H, C, N and O) with similar sensitivity.<br />

FNSA is complementary to other techniques employing<br />

mono-energetic neutron beams.<br />

Present work on FNSA is being directed towards the<br />

determination <strong>of</strong> the most suitable system parameters for practical<br />

applications, before constructing a prototype to subject to further<br />

testing and evaluation.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!