22.05.2014 Views

MAGNETIC FIELDS DUE TO CURRENTS

MAGNETIC FIELDS DUE TO CURRENTS

MAGNETIC FIELDS DUE TO CURRENTS

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

PHY110W MAGNETISM <strong>MAGNETIC</strong> <strong>FIELDS</strong> <strong>DUE</strong> <strong>TO</strong> <strong>CURRENTS</strong><br />

<strong>MAGNETIC</strong> <strong>FIELDS</strong> <strong>DUE</strong> <strong>TO</strong> <strong>CURRENTS</strong><br />

In the case of the electric field due<br />

to a certain charge distribution,<br />

we derived (from Coulomb's law)<br />

dE<br />

=<br />

1<br />

4πε<br />

0<br />

dq<br />

2<br />

r<br />

dq<br />

r <br />

P<br />

dE <br />

Which can be written in vector form as<br />

<br />

dE =<br />

1<br />

4πε<br />

0<br />

dq <br />

r<br />

3<br />

r<br />

(30-2)<br />

Using a current-length element,<br />

ids , within a current<br />

distribution (ie a wire),<br />

we derive the magnetic<br />

analogue – the Biot-Savart law:<br />

<br />

µ 0 ids<br />

dB =<br />

4π<br />

r<br />

Notes:<br />

×<br />

3<br />

<br />

r<br />

i<br />

i ds θ<br />

r dB <br />

×<br />

P<br />

(30-5)<br />

• µ 0 is the permeability constant for free space<br />

µ 0 = 4π × 10 -7 T·m/A.<br />

• The magnitude of the contribution to the field is<br />

µ 0 idssinθ<br />

dB<br />

4π<br />

2<br />

r<br />

= (30-3)<br />

• Where F B was perpendicular to B, so too is B<br />

perpendicular to the current which causes it.<br />

13


PHY110W MAGNETISM <strong>MAGNETIC</strong> <strong>FIELDS</strong> <strong>DUE</strong> <strong>TO</strong> <strong>CURRENTS</strong><br />

<strong>MAGNETIC</strong> FIELD <strong>DUE</strong> <strong>TO</strong> CURRENT<br />

IN A LONG, STRAIGHT WIRE<br />

d s <br />

i<br />

s<br />

θ<br />

R<br />

r<br />

× dB<br />

P<br />

Using symmetry (every current element ds in the upper<br />

half of the wire has a corresponding element in the<br />

lower half causing the same field at P), the magnitude<br />

of the magnetic field at point P due to a long, straight,<br />

current-carrying wire is<br />

∞<br />

0i<br />

2 4<br />

µ<br />

B = sinθ<br />

ds<br />

π ∫ (30-7)<br />

2<br />

r<br />

0<br />

= ° − =<br />

R<br />

, and<br />

r<br />

where sinθ<br />

sin( 180 θ)<br />

∴ B =<br />

µ 0i<br />

2π<br />

∞<br />

∫<br />

0<br />

R<br />

(<br />

2 2)<br />

s<br />

+<br />

R<br />

32<br />

ds<br />

2 2<br />

r = s + R<br />

∞<br />

µ 0i<br />

⎡ s ⎤<br />

∴ B = 12<br />

2π<br />

R ⎢( 2 2<br />

s R ) ⎥<br />

⎣ + ⎦0<br />

µ 0i<br />

∴ B = (30-6)<br />

2π<br />

R<br />

The direction of B is given by the RH curled fingers rule.<br />

14


PHY110W MAGNETISM <strong>MAGNETIC</strong> <strong>FIELDS</strong> <strong>DUE</strong> <strong>TO</strong> <strong>CURRENTS</strong><br />

THE <strong>MAGNETIC</strong> FIELD AROUND A LONG,<br />

STRAIGHT, CURRENT-CARRYING WIRE<br />

i<br />

B<br />

r<br />

The force a current-carrying wire experiences in an<br />

external magnetic field is therefore due to the<br />

superpositioning of the two magnetic fields:<br />

N<br />

S<br />

…<br />

N<br />

F <br />

S<br />

15


PHY110W MAGNETISM <strong>MAGNETIC</strong> <strong>FIELDS</strong> <strong>DUE</strong> <strong>TO</strong> <strong>CURRENTS</strong><br />

<strong>MAGNETIC</strong> FIELD <strong>DUE</strong> <strong>TO</strong> CURRENT<br />

IN A CIRCULAR WIRE<br />

i<br />

R<br />

α<br />

x<br />

r <br />

dB y<br />

P<br />

α<br />

dB <br />

dB x<br />

From the Biot-Savart law, the field at point P (along the<br />

axis of the a circular loop, radius R), due to a differential<br />

current element ids at the top of the loop, is given by<br />

<br />

<br />

µ 0 idssinα<br />

µ 0i<br />

ds<br />

dB = =<br />

2<br />

( 2 2<br />

4π<br />

r 4π<br />

R + x )<br />

By symmetry, all the components perpendicular to the<br />

axis (dB y ) sum to zero, so we need consider only dB x :<br />

dB<br />

x<br />

µ 0i<br />

ds µ 0i<br />

ds R<br />

= cosα<br />

=<br />

4π<br />

R + x 4 R + x R + x<br />

( 2 2) π ( 2 2) ( 2 2)<br />

12<br />

i, R and x have the same values for all elements around<br />

the loop, so when we integrate around the circumference…<br />

B<br />

x<br />

µ 0iR<br />

=<br />

4π<br />

R + x<br />

(<br />

2 2)<br />

32<br />

∫ ds (and ∫ ds is just 2πR)<br />

so<br />

B<br />

x<br />

=<br />

2<br />

µ iR<br />

0<br />

2<br />

(<br />

2 2)<br />

R<br />

+<br />

x<br />

32<br />

(30-28)<br />

16


PHY110W MAGNETISM <strong>MAGNETIC</strong> <strong>FIELDS</strong> <strong>DUE</strong> <strong>TO</strong> <strong>CURRENTS</strong><br />

A CURRENT-CARRYING COIL<br />

AS A <strong>MAGNETIC</strong> DIPOLE<br />

By considering a cross-section<br />

through a current-carrying coil, we<br />

can see why such an arrangement<br />

can be viewed as a magnetic dipole.<br />

i<br />

i out<br />

i in<br />

For a coil of N turns the magnetic<br />

dipole moment was determined to be µ = NiA (29-33)<br />

So the magnetic field along the axis of a currentcarrying<br />

coil can be written as<br />

B x<br />

µ 0µ<br />

=<br />

2π<br />

R + x<br />

(<br />

2 2)<br />

and for large distances x >> R,<br />

µ µ<br />

B x<br />

2π<br />

x<br />

32<br />

0<br />

= (30-29)<br />

3<br />

… which has the identical form to the expression for<br />

the electric field along the axis of an electric dipole:<br />

E<br />

p<br />

= (23-9)<br />

3<br />

2πε0z<br />

A current loop produces a magnetic<br />

field like that of a bar magnet and<br />

thus has north and south poles.<br />

The direction of µ is given by the<br />

right hand curled fingers rule.<br />

S<br />

µ N<br />

17


PHY110W MAGNETISM <strong>MAGNETIC</strong> <strong>FIELDS</strong> <strong>DUE</strong> <strong>TO</strong> <strong>CURRENTS</strong><br />

<strong>MAGNETIC</strong> FIELD <strong>DUE</strong> <strong>TO</strong><br />

A MOVING CHARGE<br />

From the Biot-Savart law, the field due to a differential<br />

current element ids is given by<br />

<br />

µ 0 ids×<br />

r<br />

dB =<br />

4π<br />

3<br />

r<br />

<br />

Setting ds =<br />

<br />

dQ<br />

v dt , and i = , we get<br />

dt<br />

<br />

µ 0 dQ v × r<br />

dB =<br />

4π<br />

3<br />

r<br />

If we define the differential charge element dQ as the<br />

charge on a single particle contributing to the current,<br />

then the magnetic field due to a moving charged<br />

particle is given by<br />

<br />

µ 0 qv × r<br />

B =<br />

4π<br />

3<br />

r<br />

As before, the direction of B is given by the direction<br />

<br />

of the cross product v × r , or the right hand curled<br />

fingers rule.<br />

18


PHY110W MAGNETISM <strong>MAGNETIC</strong> <strong>FIELDS</strong> <strong>DUE</strong> <strong>TO</strong> <strong>CURRENTS</strong><br />

FORCE BETWEEN<br />

TWO PARALLEL CONDUC<strong>TO</strong>RS<br />

d<br />

B L<br />

F a<br />

b<br />

ba<br />

F <br />

ab<br />

B <br />

a<br />

i a<br />

i b<br />

b<br />

The magnitude of the magnetic field due to the current<br />

in wire a at every point on wire b is given by<br />

B<br />

a<br />

µ 0ia<br />

=<br />

2π<br />

d<br />

and consequently the magnitude of the force on wire b<br />

due to the magnetic field of wire a (written F ba ) is<br />

µ 0Liaib<br />

Fba = iLB b a = = Fab<br />

(30-15)<br />

2π<br />

d<br />

• F ba and F ab are an action-reaction pair.<br />

• Parallel currents attract.<br />

• Antiparallel currents repel.<br />

The ampere can now be defined as …<br />

that unvarying current which, when maintained in each<br />

of two parallel conductors of infinite length and situated<br />

one metre apart in empty space, causes between them a<br />

force of exactly 2 × 10 -7 N per metre of length.<br />

19


PHY110W MAGNETISM <strong>MAGNETIC</strong> <strong>FIELDS</strong> <strong>DUE</strong> <strong>TO</strong> <strong>CURRENTS</strong><br />

AMPERE’S LAW<br />

Gauss’s law related the surface integral of the electric<br />

flux over a closed (Gaussian) surface to the net amount<br />

of charge enclosed by that surface.<br />

Ampere’s law relates the line integral of the magnetic<br />

field around a closed (Amperian) loop to the net<br />

amount of current enclosed by that loop.<br />

Mathematically: ∫ B <br />

⋅ ds = µ 0iencl<br />

(30-16)<br />

Amperian<br />

loop<br />

i 3<br />

i 1<br />

i 2<br />

ds <br />

θ<br />

B <br />

According to the right hand curled fingers rule, as we<br />

integrate anticlockwise around the above loop i 1 is<br />

regarded as positive, while i 2 is negative.<br />

i 3 is ignored because it is not enclosed by the loop.<br />

<br />

B⋅ ds = Bdscosθ = µ i − i<br />

∫<br />

∫<br />

0 1 2 (30-18)<br />

So: ( )<br />

In the same way Gauss’s law helped to determine the<br />

magnitude of electric fields due to symmetrical charge<br />

distributions, Ampere’s law is useful in determining the<br />

magnitude of the resultant magnetic fields due to<br />

current distributions which have some symmetry…<br />

20


PHY110W MAGNETISM <strong>MAGNETIC</strong> <strong>FIELDS</strong> <strong>DUE</strong> <strong>TO</strong> <strong>CURRENTS</strong><br />

APPLICATIONS OF AMPERE’S LAW I<br />

Magnetic field outside a long, straight conductor<br />

For a long, straight wire<br />

carrying current directly<br />

out of the page the<br />

symmetry dictates that we<br />

surround the wire with a<br />

concentric circular<br />

Amperian loop of radius r.<br />

Amperian<br />

loop<br />

i<br />

ds B <br />

r<br />

B lies at a tangent to the loop everywhere on the loop,<br />

so the angle θ between B and ds is zero.<br />

<br />

∴ B⋅ ds = B ds = B2π<br />

r<br />

∫<br />

∫<br />

And applying Ampere’s law:<br />

B2π r = µ ( ) 0 + i<br />

So the magnitude of the magnetic field around a long,<br />

straight, current-carrying conductor is<br />

B<br />

µ i<br />

2π<br />

r<br />

0<br />

= (30-19)<br />

(Which agrees exactly with what was derived from the<br />

Biot-Savart law.)<br />

21


PHY110W MAGNETISM <strong>MAGNETIC</strong> <strong>FIELDS</strong> <strong>DUE</strong> <strong>TO</strong> <strong>CURRENTS</strong><br />

APPLICATIONS OF AMPERE’S LAW II<br />

Magnetic field of a solenoid<br />

A solenoid is a long, straight, closely<br />

wound helical coil of wire, usually<br />

with a constant diameter which is<br />

much smaller than its length.<br />

For an ideal solenoid<br />

(of infinite length, and no<br />

leakage) the magnetic<br />

field outside the solenoid<br />

is zero, while the field<br />

lines inside are straight<br />

and uniformly spaced.<br />

D<br />

A<br />

h<br />

C<br />

B<br />

B <br />

Using the rectangular Amperian loop ABCDA,<br />

B C D A <br />

B ⋅ ds = B ⋅ ds + B ⋅ ds + B ⋅ ds + B ⋅ ds = Bh<br />

∫ ∫ ∫ ∫ ∫<br />

A B C D<br />

Applying Ampere’s law to a solenoid with n turns per<br />

metre and carrying current i we get:<br />

Bh<br />

= µ i ( nh)<br />

So the magnitude of the magnetic field inside an<br />

infinitely long solenoid is<br />

0<br />

B<br />

= µ 0ni<br />

(30-25)<br />

The equation will work for real solenoids provided it is<br />

applied to interior points well away from the ends.<br />

22

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!