22.05.2014 Views

MAGNETIC FIELDS DUE TO CURRENTS

MAGNETIC FIELDS DUE TO CURRENTS

MAGNETIC FIELDS DUE TO CURRENTS

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

PHY110W MAGNETISM <strong>MAGNETIC</strong> <strong>FIELDS</strong> <strong>DUE</strong> <strong>TO</strong> <strong>CURRENTS</strong><br />

<strong>MAGNETIC</strong> FIELD <strong>DUE</strong> <strong>TO</strong> CURRENT<br />

IN A CIRCULAR WIRE<br />

i<br />

R<br />

α<br />

x<br />

r <br />

dB y<br />

P<br />

α<br />

dB <br />

dB x<br />

From the Biot-Savart law, the field at point P (along the<br />

axis of the a circular loop, radius R), due to a differential<br />

current element ids at the top of the loop, is given by<br />

<br />

<br />

µ 0 idssinα<br />

µ 0i<br />

ds<br />

dB = =<br />

2<br />

( 2 2<br />

4π<br />

r 4π<br />

R + x )<br />

By symmetry, all the components perpendicular to the<br />

axis (dB y ) sum to zero, so we need consider only dB x :<br />

dB<br />

x<br />

µ 0i<br />

ds µ 0i<br />

ds R<br />

= cosα<br />

=<br />

4π<br />

R + x 4 R + x R + x<br />

( 2 2) π ( 2 2) ( 2 2)<br />

12<br />

i, R and x have the same values for all elements around<br />

the loop, so when we integrate around the circumference…<br />

B<br />

x<br />

µ 0iR<br />

=<br />

4π<br />

R + x<br />

(<br />

2 2)<br />

32<br />

∫ ds (and ∫ ds is just 2πR)<br />

so<br />

B<br />

x<br />

=<br />

2<br />

µ iR<br />

0<br />

2<br />

(<br />

2 2)<br />

R<br />

+<br />

x<br />

32<br />

(30-28)<br />

16

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!