22.05.2014 Views

MAGNETIC FIELDS DUE TO CURRENTS

MAGNETIC FIELDS DUE TO CURRENTS

MAGNETIC FIELDS DUE TO CURRENTS

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

PHY110W MAGNETISM <strong>MAGNETIC</strong> <strong>FIELDS</strong> <strong>DUE</strong> <strong>TO</strong> <strong>CURRENTS</strong><br />

<strong>MAGNETIC</strong> <strong>FIELDS</strong> <strong>DUE</strong> <strong>TO</strong> <strong>CURRENTS</strong><br />

In the case of the electric field due<br />

to a certain charge distribution,<br />

we derived (from Coulomb's law)<br />

dE<br />

=<br />

1<br />

4πε<br />

0<br />

dq<br />

2<br />

r<br />

dq<br />

r <br />

P<br />

dE <br />

Which can be written in vector form as<br />

<br />

dE =<br />

1<br />

4πε<br />

0<br />

dq <br />

r<br />

3<br />

r<br />

(30-2)<br />

Using a current-length element,<br />

ids , within a current<br />

distribution (ie a wire),<br />

we derive the magnetic<br />

analogue – the Biot-Savart law:<br />

<br />

µ 0 ids<br />

dB =<br />

4π<br />

r<br />

Notes:<br />

×<br />

3<br />

<br />

r<br />

i<br />

i ds θ<br />

r dB <br />

×<br />

P<br />

(30-5)<br />

• µ 0 is the permeability constant for free space<br />

µ 0 = 4π × 10 -7 T·m/A.<br />

• The magnitude of the contribution to the field is<br />

µ 0 idssinθ<br />

dB<br />

4π<br />

2<br />

r<br />

= (30-3)<br />

• Where F B was perpendicular to B, so too is B<br />

perpendicular to the current which causes it.<br />

13


PHY110W MAGNETISM <strong>MAGNETIC</strong> <strong>FIELDS</strong> <strong>DUE</strong> <strong>TO</strong> <strong>CURRENTS</strong><br />

<strong>MAGNETIC</strong> FIELD <strong>DUE</strong> <strong>TO</strong> CURRENT<br />

IN A LONG, STRAIGHT WIRE<br />

d s <br />

i<br />

s<br />

θ<br />

R<br />

r<br />

× dB<br />

P<br />

Using symmetry (every current element ds in the upper<br />

half of the wire has a corresponding element in the<br />

lower half causing the same field at P), the magnitude<br />

of the magnetic field at point P due to a long, straight,<br />

current-carrying wire is<br />

∞<br />

0i<br />

2 4<br />

µ<br />

B = sinθ<br />

ds<br />

π ∫ (30-7)<br />

2<br />

r<br />

0<br />

= ° − =<br />

R<br />

, and<br />

r<br />

where sinθ<br />

sin( 180 θ)<br />

∴ B =<br />

µ 0i<br />

2π<br />

∞<br />

∫<br />

0<br />

R<br />

(<br />

2 2)<br />

s<br />

+<br />

R<br />

32<br />

ds<br />

2 2<br />

r = s + R<br />

∞<br />

µ 0i<br />

⎡ s ⎤<br />

∴ B = 12<br />

2π<br />

R ⎢( 2 2<br />

s R ) ⎥<br />

⎣ + ⎦0<br />

µ 0i<br />

∴ B = (30-6)<br />

2π<br />

R<br />

The direction of B is given by the RH curled fingers rule.<br />

14


PHY110W MAGNETISM <strong>MAGNETIC</strong> <strong>FIELDS</strong> <strong>DUE</strong> <strong>TO</strong> <strong>CURRENTS</strong><br />

THE <strong>MAGNETIC</strong> FIELD AROUND A LONG,<br />

STRAIGHT, CURRENT-CARRYING WIRE<br />

i<br />

B<br />

r<br />

The force a current-carrying wire experiences in an<br />

external magnetic field is therefore due to the<br />

superpositioning of the two magnetic fields:<br />

N<br />

S<br />

…<br />

N<br />

F <br />

S<br />

15


PHY110W MAGNETISM <strong>MAGNETIC</strong> <strong>FIELDS</strong> <strong>DUE</strong> <strong>TO</strong> <strong>CURRENTS</strong><br />

<strong>MAGNETIC</strong> FIELD <strong>DUE</strong> <strong>TO</strong> CURRENT<br />

IN A CIRCULAR WIRE<br />

i<br />

R<br />

α<br />

x<br />

r <br />

dB y<br />

P<br />

α<br />

dB <br />

dB x<br />

From the Biot-Savart law, the field at point P (along the<br />

axis of the a circular loop, radius R), due to a differential<br />

current element ids at the top of the loop, is given by<br />

<br />

<br />

µ 0 idssinα<br />

µ 0i<br />

ds<br />

dB = =<br />

2<br />

( 2 2<br />

4π<br />

r 4π<br />

R + x )<br />

By symmetry, all the components perpendicular to the<br />

axis (dB y ) sum to zero, so we need consider only dB x :<br />

dB<br />

x<br />

µ 0i<br />

ds µ 0i<br />

ds R<br />

= cosα<br />

=<br />

4π<br />

R + x 4 R + x R + x<br />

( 2 2) π ( 2 2) ( 2 2)<br />

12<br />

i, R and x have the same values for all elements around<br />

the loop, so when we integrate around the circumference…<br />

B<br />

x<br />

µ 0iR<br />

=<br />

4π<br />

R + x<br />

(<br />

2 2)<br />

32<br />

∫ ds (and ∫ ds is just 2πR)<br />

so<br />

B<br />

x<br />

=<br />

2<br />

µ iR<br />

0<br />

2<br />

(<br />

2 2)<br />

R<br />

+<br />

x<br />

32<br />

(30-28)<br />

16


PHY110W MAGNETISM <strong>MAGNETIC</strong> <strong>FIELDS</strong> <strong>DUE</strong> <strong>TO</strong> <strong>CURRENTS</strong><br />

A CURRENT-CARRYING COIL<br />

AS A <strong>MAGNETIC</strong> DIPOLE<br />

By considering a cross-section<br />

through a current-carrying coil, we<br />

can see why such an arrangement<br />

can be viewed as a magnetic dipole.<br />

i<br />

i out<br />

i in<br />

For a coil of N turns the magnetic<br />

dipole moment was determined to be µ = NiA (29-33)<br />

So the magnetic field along the axis of a currentcarrying<br />

coil can be written as<br />

B x<br />

µ 0µ<br />

=<br />

2π<br />

R + x<br />

(<br />

2 2)<br />

and for large distances x >> R,<br />

µ µ<br />

B x<br />

2π<br />

x<br />

32<br />

0<br />

= (30-29)<br />

3<br />

… which has the identical form to the expression for<br />

the electric field along the axis of an electric dipole:<br />

E<br />

p<br />

= (23-9)<br />

3<br />

2πε0z<br />

A current loop produces a magnetic<br />

field like that of a bar magnet and<br />

thus has north and south poles.<br />

The direction of µ is given by the<br />

right hand curled fingers rule.<br />

S<br />

µ N<br />

17


PHY110W MAGNETISM <strong>MAGNETIC</strong> <strong>FIELDS</strong> <strong>DUE</strong> <strong>TO</strong> <strong>CURRENTS</strong><br />

<strong>MAGNETIC</strong> FIELD <strong>DUE</strong> <strong>TO</strong><br />

A MOVING CHARGE<br />

From the Biot-Savart law, the field due to a differential<br />

current element ids is given by<br />

<br />

µ 0 ids×<br />

r<br />

dB =<br />

4π<br />

3<br />

r<br />

<br />

Setting ds =<br />

<br />

dQ<br />

v dt , and i = , we get<br />

dt<br />

<br />

µ 0 dQ v × r<br />

dB =<br />

4π<br />

3<br />

r<br />

If we define the differential charge element dQ as the<br />

charge on a single particle contributing to the current,<br />

then the magnetic field due to a moving charged<br />

particle is given by<br />

<br />

µ 0 qv × r<br />

B =<br />

4π<br />

3<br />

r<br />

As before, the direction of B is given by the direction<br />

<br />

of the cross product v × r , or the right hand curled<br />

fingers rule.<br />

18


PHY110W MAGNETISM <strong>MAGNETIC</strong> <strong>FIELDS</strong> <strong>DUE</strong> <strong>TO</strong> <strong>CURRENTS</strong><br />

FORCE BETWEEN<br />

TWO PARALLEL CONDUC<strong>TO</strong>RS<br />

d<br />

B L<br />

F a<br />

b<br />

ba<br />

F <br />

ab<br />

B <br />

a<br />

i a<br />

i b<br />

b<br />

The magnitude of the magnetic field due to the current<br />

in wire a at every point on wire b is given by<br />

B<br />

a<br />

µ 0ia<br />

=<br />

2π<br />

d<br />

and consequently the magnitude of the force on wire b<br />

due to the magnetic field of wire a (written F ba ) is<br />

µ 0Liaib<br />

Fba = iLB b a = = Fab<br />

(30-15)<br />

2π<br />

d<br />

• F ba and F ab are an action-reaction pair.<br />

• Parallel currents attract.<br />

• Antiparallel currents repel.<br />

The ampere can now be defined as …<br />

that unvarying current which, when maintained in each<br />

of two parallel conductors of infinite length and situated<br />

one metre apart in empty space, causes between them a<br />

force of exactly 2 × 10 -7 N per metre of length.<br />

19


PHY110W MAGNETISM <strong>MAGNETIC</strong> <strong>FIELDS</strong> <strong>DUE</strong> <strong>TO</strong> <strong>CURRENTS</strong><br />

AMPERE’S LAW<br />

Gauss’s law related the surface integral of the electric<br />

flux over a closed (Gaussian) surface to the net amount<br />

of charge enclosed by that surface.<br />

Ampere’s law relates the line integral of the magnetic<br />

field around a closed (Amperian) loop to the net<br />

amount of current enclosed by that loop.<br />

Mathematically: ∫ B <br />

⋅ ds = µ 0iencl<br />

(30-16)<br />

Amperian<br />

loop<br />

i 3<br />

i 1<br />

i 2<br />

ds <br />

θ<br />

B <br />

According to the right hand curled fingers rule, as we<br />

integrate anticlockwise around the above loop i 1 is<br />

regarded as positive, while i 2 is negative.<br />

i 3 is ignored because it is not enclosed by the loop.<br />

<br />

B⋅ ds = Bdscosθ = µ i − i<br />

∫<br />

∫<br />

0 1 2 (30-18)<br />

So: ( )<br />

In the same way Gauss’s law helped to determine the<br />

magnitude of electric fields due to symmetrical charge<br />

distributions, Ampere’s law is useful in determining the<br />

magnitude of the resultant magnetic fields due to<br />

current distributions which have some symmetry…<br />

20


PHY110W MAGNETISM <strong>MAGNETIC</strong> <strong>FIELDS</strong> <strong>DUE</strong> <strong>TO</strong> <strong>CURRENTS</strong><br />

APPLICATIONS OF AMPERE’S LAW I<br />

Magnetic field outside a long, straight conductor<br />

For a long, straight wire<br />

carrying current directly<br />

out of the page the<br />

symmetry dictates that we<br />

surround the wire with a<br />

concentric circular<br />

Amperian loop of radius r.<br />

Amperian<br />

loop<br />

i<br />

ds B <br />

r<br />

B lies at a tangent to the loop everywhere on the loop,<br />

so the angle θ between B and ds is zero.<br />

<br />

∴ B⋅ ds = B ds = B2π<br />

r<br />

∫<br />

∫<br />

And applying Ampere’s law:<br />

B2π r = µ ( ) 0 + i<br />

So the magnitude of the magnetic field around a long,<br />

straight, current-carrying conductor is<br />

B<br />

µ i<br />

2π<br />

r<br />

0<br />

= (30-19)<br />

(Which agrees exactly with what was derived from the<br />

Biot-Savart law.)<br />

21


PHY110W MAGNETISM <strong>MAGNETIC</strong> <strong>FIELDS</strong> <strong>DUE</strong> <strong>TO</strong> <strong>CURRENTS</strong><br />

APPLICATIONS OF AMPERE’S LAW II<br />

Magnetic field of a solenoid<br />

A solenoid is a long, straight, closely<br />

wound helical coil of wire, usually<br />

with a constant diameter which is<br />

much smaller than its length.<br />

For an ideal solenoid<br />

(of infinite length, and no<br />

leakage) the magnetic<br />

field outside the solenoid<br />

is zero, while the field<br />

lines inside are straight<br />

and uniformly spaced.<br />

D<br />

A<br />

h<br />

C<br />

B<br />

B <br />

Using the rectangular Amperian loop ABCDA,<br />

B C D A <br />

B ⋅ ds = B ⋅ ds + B ⋅ ds + B ⋅ ds + B ⋅ ds = Bh<br />

∫ ∫ ∫ ∫ ∫<br />

A B C D<br />

Applying Ampere’s law to a solenoid with n turns per<br />

metre and carrying current i we get:<br />

Bh<br />

= µ i ( nh)<br />

So the magnitude of the magnetic field inside an<br />

infinitely long solenoid is<br />

0<br />

B<br />

= µ 0ni<br />

(30-25)<br />

The equation will work for real solenoids provided it is<br />

applied to interior points well away from the ends.<br />

22

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!