25.05.2014 Views

Applying Biomarker Information To Support Drug Discovery ... - IIR

Applying Biomarker Information To Support Drug Discovery ... - IIR

Applying Biomarker Information To Support Drug Discovery ... - IIR

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Applying</strong> <strong>Biomarker</strong> <strong>Information</strong><br />

<strong>To</strong> <strong>Support</strong> <strong>Drug</strong> <strong>Discovery</strong> &<br />

Development<br />

Rick Xu, MD, Ph.D.<br />

Department of Clinical Pharmacology<br />

Hoffman-La Roche Inc<br />

September, 2006


<strong>Biomarker</strong> & Clinical Endpoint<br />

<strong>Biomarker</strong>:<br />

A characteristic that is objectively<br />

measured & evaluated as an indicator of<br />

normal biologic, pathologic processes,<br />

or pharmacologic responses to a<br />

therapeutic intervention (NIH workshop)<br />

Values:<br />

• understand of mechanism of action<br />

• reduce the sample size and duration<br />

• less variable & reproducible<br />

• help trial design<br />

Challenges:<br />

Results may not be relevant or be able<br />

to predict clinical outcomes<br />

Clinical Endpoint:<br />

A characteristic or variable that<br />

reflects how a patient feels or<br />

functions, or how long a patient<br />

survives (NIH workshop)<br />

Values:<br />

• direct evidence to assess clinical<br />

outcomes<br />

Challenges:<br />

• cost<br />

• duration


Definition:<br />

Surrogate Endpoint<br />

A biomarker intended to substitute for a clinical endpoint. It is expected to<br />

predict clinical benefit, harm, or lack of benefit or harm (NIH work shop)<br />

Values:<br />

• understand of mechanism of action<br />

• reduce the sample size and duration<br />

• less variable & reproducible<br />

• be able to predict clinical outcomes<br />

Challenge:<br />

identify necessary evidence to establish a surrogate endpoint for a particular<br />

treatment clinical endpoint.<br />

Opportunity:<br />

put effort to investigate the high degree surrogacy information √


The Significance of High Degree<br />

Surrogacy <strong>Information</strong><br />

Predicted vs Observed Clin. Resp. with PEG-IFN (5KD)<br />

(data based upon 24 week treatment)<br />

ALT Normalization (%)<br />

150<br />

100<br />

50<br />

0<br />

Observation<br />

Prediction<br />

3M 6M 9M 3M 6M<br />

qw qw qw biw tiw<br />

Predicted Clin. Resp. (%)<br />

r 2 = 0.99<br />

p < 0.001<br />

Observed Clinical Response (%)


Develop a New Therapy<br />

• Strong Medical Needs<br />

> 200 million patients<br />

Lack of effective therapy (


PK/PD Criteria for a Target Molecule<br />

IFN 3MIU; tiw<br />

PEG 2-fold half-life<br />

Serum OAS (% of Baseline)<br />

PEG 5-fold half-life<br />

PEG 8-fold half-life<br />

0 800 0 800<br />

Time (hours)


PK Profiles of IFN / PEG-IFN in Rats<br />

1000000<br />

10000<br />

1000000<br />

IFN PEG 1<br />

10000<br />

100<br />

100<br />

Serum Conc. (U/ml)<br />

1<br />

0 6 12 18 24<br />

1000000<br />

*PEG-IFN<br />

10000<br />

100<br />

1<br />

0 10 20 30 40 50<br />

1000000<br />

1<br />

0 6 12 18 24<br />

1000000<br />

**PEG-IFN<br />

10000<br />

100<br />

1<br />

0 10 20 30 40 50<br />

1000000<br />

10000<br />

PEGSYS<br />

10000<br />

***PEG-IFN<br />

100<br />

100<br />

1<br />

0 6 12 18 24<br />

1<br />

0 6 12 18 24<br />

Time (hours)


Immunogenicity of PEG-IFN and IFN in Mice<br />

Antibody Titer a<br />

Treatment Median Range<br />

IFN (monomeric) 120 11 - 427<br />

IFN (aggregates) 2133 400 - 38,400<br />

PEG-IFN 0 0 - 57<br />

a<br />

using cell proliferation assay with 20-fold dilution


Comparison of Pharmacokinetic Profiles<br />

between PEG-IFN and IFN<br />

1000<br />

Serum Conc. (U/ml)<br />

100<br />

10<br />

IFN 3 MIU<br />

PEG-IFN 270 μg<br />

1<br />

0 50 100 150 200<br />

Time (hr)


Pharmacodynamic Response Increased Following<br />

PEG-IFN s.c. Administration<br />

1200<br />

Serum OAS (% of baseline)<br />

600<br />

0<br />

PEG2 135 mcg<br />

PEG2 45 mcg<br />

Rof. 3 MIU<br />

PEG2 270mcg<br />

Rof. 18 MIU<br />

0 50 100 150 200 250 300<br />

Time (hr)


Good Correlation between Predicted and<br />

Observed Trough OAS Level in Human<br />

OAS Trough Level ( % of Roferon 3 MIU)<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

Rof 3miu<br />

PEG2 Predicted<br />

PEG2 Observed<br />

45 μg 135 μg 270 μg


D-E-AE Relationship Following S.C. Treatment<br />

In Healthy Subjects<br />

PD / Response Rate (%)<br />

100<br />

75<br />

50<br />

25<br />

0<br />

Phase I<br />

135 μg 180 μg<br />

G-III Neutropenia<br />

100<br />

75<br />

50<br />

25<br />

0<br />

Probability (%)<br />

0 100 200 300<br />

Dose (μg)


Good Correlation between Model Predicted and<br />

Clinically Observed Response Rate<br />

ALT or PCR Normalization (%)<br />

100<br />

75<br />

50<br />

25<br />

0<br />

Predicted<br />

Observed<br />

45 μg 90 μg 180 μg 270 μg


D-E-AE Relationship Following S.C. Treatment<br />

PD / Response Rate (%)<br />

100<br />

75<br />

50<br />

25<br />

0<br />

Phase I<br />

135 μg 180 μg<br />

100<br />

75<br />

Phase II<br />

180 μg<br />

135 μg<br />

50<br />

25<br />

ANC< 750<br />

G-III Neutropenia<br />

0<br />

0 100 200 300 0 100 200 300<br />

Dose (μg)<br />

Probability (%)


Good Correlation between Model Predicted &<br />

Clinically Observed Response Rate<br />

ALT or PCR Normalization (%)<br />

100<br />

75<br />

50<br />

25<br />

0<br />

Predicted<br />

Observed<br />

45 μg 90 μg 180 μg 270 μg


Significance of Critical Reasoning<br />

Effects of rolipram in aged mice<br />

• Improvement in spatial memory<br />

• Improvement in LTP is<br />

• Attenuation of impairment in spatial memory<br />

PKA signaling plays key role in memory process


Findings of PKA Signaling Pathway<br />

Pre-Clinical <strong>Information</strong><br />

• High potency in multiple animal<br />

models (all studies were done<br />

in rodents)<br />

• good or acceptable PK<br />

• good or defendable <strong>To</strong>x.<br />

package<br />

• No QT issues<br />

• Clean or defendable safety<br />

pharmacology<br />

Human Experiences<br />

• Peripheral indications ( +, ?)<br />

• biomarker<br />

• clinical endpoint<br />

• Central Effect indications (-, ?)<br />

• biomarker<br />

• clinical endpoint<br />

• manageable safety / tolerability<br />

• good or manageable PK


Anatomic Differences in Brain between Rodent & Primate<br />

NA: Nucleus accumbens<br />

(reward-motivated actions)<br />

Amyg: Amygdala<br />

(affective regulation of memory)<br />

HIP: Hippocampus<br />

(memory consolidation)<br />

PFC: prefrontal cortex<br />

(working memory and executive function)<br />

Amy F.T. Arnsten et al. Trends in Mol. Med.


Mechanistic Pharmacology Platform in <strong>Support</strong> <strong>Drug</strong><br />

Candidate Selection – Cognition Improvement (CNS)<br />

• Screen Model testing<br />

NOR-test : rodent<br />

• Agnosia Model Testing<br />

NOR- aged rodent<br />

NOR- scopolamine challenge: rodent.<br />

• Spatial Memory Testing<br />

MWM- aged rodent<br />

MWM- scoploamine challenge: rodent and/or primate<br />

• Executive Function Testing<br />

DMTP- scopolamine challenge (rodent)<br />

DMTP- aged primate: primate


Apply <strong>Biomarker</strong> <strong>Information</strong> to Define<br />

Candidate Profiles at Early Stage<br />

Develop Long-acting Therapy<br />

• Business<br />

‣Multi-billion dollar market<br />

‣Current situation<br />

• Medically:<br />

‣May help reduce the infection at<br />

dosing site (s.c. qd)<br />

‣Once/week convenience<br />

• PEGSYS success<br />

Target Profile<br />

• Once weekly dosing for<br />

‣Mylosuppressive Neutropenia<br />

‣PBPC<br />

• Efficacy<br />

Equal or better than Filgrastim<br />

• Safety<br />

Comparable safety


Graphic Illustration -- Mechanism of Action<br />

Stem Cell<br />

Myeloblast<br />

Bone<br />

in circulation<br />

Polymorphonuclear<br />

Neutrophils<br />

Promyelocyte<br />

Stimulation<br />

G-CSF<br />

GM-CSF<br />

Stimulation<br />

Neutrophil<br />

myelocye<br />

Organs & Tissues (extra-vascular site)<br />

Polymorphonuclear<br />

Neutrophils<br />

Polymorphonuclear<br />

Neutrophils


Proposed PK/PD Model of the Effect of<br />

PEG-G / G-CSF on Neutrophil<br />

k a<br />

Plasma PEG-G / G-CSF Conc. & Vd<br />

k e<br />

Stem<br />

Cell<br />

S1<br />

k g<br />

‘E max<br />

‘EC 50<br />

‘γ<br />

M<br />

τ<br />

WBC<br />

(In circulation)<br />

E max<br />

EC 50<br />

γ<br />

k in<br />

k out<br />

S2<br />

WBC<br />

Extra vascular<br />

site


Model Prediction vs Literature Values<br />

60<br />

: Result from clinical study<br />

:<br />

Results of Model predication<br />

30<br />

0<br />

0 5 29 53 77 101 125<br />

Time (hr)


Rationale of Defining Candidate Profiles<br />

Plasma Conc. (ng/ml)<br />

1000<br />

100<br />

10<br />

1<br />

0.1<br />

0.01<br />

EC50<br />

half-Vd double alpha-HL<br />

double beta-HL<br />

0 20 40 60 80<br />

Time (hr)


Effect of PEG-G & Filgrastim on ANC Induction<br />

6 0 0 0 0<br />

30 μg/kg<br />

4 0 0 0 0<br />

2 0 0 0 0<br />

Red Line: PEG-G<br />

single dose<br />

ANC (/mm 3 )<br />

0<br />

6 0 0 0 0<br />

4 0 0 0 0<br />

2 0 0 0 0<br />

0<br />

6 0 0 0 0<br />

0 5 0 1 0 0 1 5 0 2 0 0<br />

60 μg/kg<br />

0 5 0 1 0 0 1 5 0 2 0 0<br />

100 μg/kg<br />

Blue line: Filgrastim<br />

10 μg/kg qd.<br />

Black line: Placebo<br />

4 0 0 0 0<br />

2 0 0 0 0<br />

0<br />

0 5 0 1 0 0 1 5 0 2 0 0<br />

6 0 0 0 0<br />

150 μg/kg<br />

4 0 0 0 0<br />

2 0 0 0 0<br />

0<br />

0 5 0 1 0 0 1 5 0 2 0 0


Mean CFU-GM Colony Formation Profiles Following<br />

PEG-G or Filgrastim S.C in Healthy Subjects<br />

300<br />

300<br />

CFU-GM (10 -6 cells)<br />

30 μg/kg 60 μg/kg<br />

200<br />

100<br />

0<br />

0 50 100 150 200 250 300<br />

300<br />

200<br />

200<br />

200<br />

100<br />

0<br />

0 50 100 150 200 250 300<br />

300<br />

100 μg/kg 150 μg/kg<br />

Red Line: PEG-G, SD<br />

Blue line: F 5 μg/kg, qd<br />

Green line: F 10 μg/kg, qd<br />

100<br />

100<br />

0<br />

0 50 100 150 200 250 300<br />

0<br />

0 50 100 150 200 250 300<br />

Time (hours)


Mean BFU-E Colony Formation Profiles Following PEG-<br />

G or Filgrastim S.C in Healthy Subjects<br />

BFU-E (10 -6 cells)<br />

300<br />

200<br />

100<br />

0<br />

300<br />

200<br />

100<br />

30 μg 60 μg<br />

0 50 100 150 200 250<br />

0 50 100 150 200 250<br />

100 μg<br />

300<br />

200<br />

100<br />

0<br />

300<br />

200<br />

100<br />

150 μg<br />

Red Line: PEG-G, SD<br />

Blue line: placebo<br />

Green line: F 10 μg/kg, qd<br />

0<br />

0 50 100 150 200 250<br />

0<br />

0 50 100 150 200 250<br />

Time (hours)


SUMMARY<br />

• <strong>Biomarker</strong>: same principles with new name <br />

broader coverage and Sig. impact<br />

• Values of having high degree surrogacy<br />

information<br />

• Benefit of being Critical<br />

• Importance of setting up adequate assumptions<br />

• <strong>To</strong>ol: Modeling & simulation


Acknowledgment<br />

PEGSYS Project:<br />

PKA signaling pathway<br />

PEG-GM-CSF Project:<br />

Pascal Bailon<br />

Dennis Keith<br />

Mary Graves<br />

Michael Brenda<br />

Alicia Palleroni<br />

Ann Goldstein<br />

Indra Patel<br />

Peter VanBrummelen<br />

Stephane Dickenson<br />

Joseph Hoffman<br />

Simon Pedder<br />

……..<br />

Rudy Schreiber<br />

Robert England<br />

Dennis Deptula<br />

Elizabeth Ashford<br />

Pascal Bailon<br />

Eric Platza<br />

Terry Hays<br />

Indra Patel

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!