09.06.2014 Views

F 19 SERVICE MANUAL - Reptips

F 19 SERVICE MANUAL - Reptips

F 19 SERVICE MANUAL - Reptips

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F <strong>19</strong> <strong>SERVICE</strong> <strong>MANUAL</strong><br />

THIS DOCUMENT IS A PROPERTY<br />

OF INDUSTRIE FORMENTI ITALIA<br />

NO AUTHORIZED MODIFICATIONS<br />

ARE PERMITTED.<br />

CREATED BY E.G.


There are two different types of F<strong>19</strong> chassis that are equipped with two<br />

different microcontroller.<br />

These microcontroller are known as ETT having a code SAA5297A and<br />

PAINTER with a code number SAA5553.<br />

From the point of view of the application on the F<strong>19</strong> chassis the two type of<br />

microcontroller are substantially having the same performances, the same pinout<br />

, the same firmware but they are not interchangeable as the power supply<br />

are different.<br />

In case of SAA5297A the power supply is 5 V for the SAA5553 is 3.3 V.<br />

Even if the two devices are non interchangeable the two chassis<br />

can be interchanged as the in/out interface are exactly the same.<br />

As the specifications of the two devices are the same and the first version of<br />

the chassis was equipped with the SAA5297A , in this document the<br />

characteristics of it are very much detailed meanwhile there is a very short<br />

description (as an addendum at the end) for the SAA5553.


F<strong>19</strong> CHASSIS DESCRIPTION<br />

Summary<br />

The F<strong>19</strong> is a chassis suitable to drive CRT having both 4 by 3 and 16 to 9 aspect<br />

ratio and dimension from 25" up to 34".<br />

As we can see from the block diagram the chassis is equipped with the most recent<br />

Integrated Circuit like the one chip TV processor TDA884x that does include all the low<br />

level signal processing including Video, Audio, synchronisation process, and chroma<br />

decoder . (see more detail at the "TDA884x FAMILY SPECIFICATION" paragraph), and<br />

the Sound Processor TDA9875A that perform all sound function including digital decoding<br />

of NICAM signals. (see more detail at the " TDA9870A & tda9875A MAIN<br />

CHARACTERISTICS" paragraph).<br />

The above mentioned devices are driven by an Integrated Circuit that does include<br />

the microcontroller function with 64 K ROM and the TELETEXT acquisition and 8 pages<br />

RAM. (SAA5297A)<br />

In the F<strong>19</strong> chassis there are, besides the stereo one, two possible module that are<br />

performing "FEATURES" like PIP (picture in picture) and / or CTI (colour transients<br />

improvement) and 4 by 3 to 16 by 9 signal processing. One further module is dedicated to<br />

the so called "Zero Power Stand By"<br />

A 26 Key Remote Control is performing the full control for the end- used but can<br />

also be used in " <strong>SERVICE</strong> MODE" to control and adjust, without open the back cover of<br />

the TV set all the necessary functions.<br />

With the 5 "LOCAL KEY BOARD" button all the end user function can also be<br />

performed<br />

When the TV set is equipped with a PLL tuner the microcontroller recognise it and<br />

the tuning method became a frequency synthesis system if not it work as a voltage tuning<br />

system (provided all necessary components are mounted)<br />

The TV make use of a multilevel MENU (activated both by the Remote Control and<br />

Local Keyboard) using five selectable languages ( Italian, German, English, France, end<br />

Spanish) with which it is possible to control sequentially all video and sound value, to<br />

adjust several parameter like picture format, sound response, sleep timer etc., and to set<br />

others important parameter like standard, select country for automatic tuning and sort etc.<br />

Here below a list of the characteristics of the TV se<br />

E.G.Data creazione 31/10/99 15.38 1 / 7 f<strong>19</strong>intro


TV SET CHARACTERISTICS (MONO & STEREO )<br />

PICTURE TUBE SIZE :<br />

• 4 : 3 ASPECT RATIO 21” / 25” / 28” / 29” / 34”<br />

• 16 : 9 ASPECT RATIO 28 “ / 32”<br />

• STANDARD<br />

• R.F. (ANTENNA) (FOR FREQ. SYNTH.) CCIR ( B / G/ L / L’ / D / K / I )<br />

• VIDEO (SCART & CINCH)<br />

B / G/ L / L’ / D / K / I / M / N<br />

• COLOUR (MAX. THREE STANDARDS)<br />

PAL / SECAM / NTSC<br />

• SOUND STANDARD:<br />

B / G/ L / L’ / D / K / I<br />

∗ MONO<br />

AM & FM<br />

∗ STEREO<br />

A2 OR NICAM<br />

TUNING SYSTEM SELECTABLE :<br />

FACTORY OPTION<br />

FREQUENCY SYTHETIZER<br />

• TOTAL AVAILABLE CHANNEL NUMBER 200<br />

• CHANNEL IN ONE RF STANDARD UP TO 100<br />

• NUMBER OF PROGRAM 100<br />

• DIRECT PROGRAM & CHANNEL CALL WITH 1, OR 2 OR 3 DIGIT<br />

• PROGRAM & CHANNEL STEP UP AND DOWN YES<br />

• VOLTAGE SYNTHESISER<br />

• CABLE & HYPERBAND CHANNEL<br />

YES<br />

• SWITCHABLE AFC<br />

YES<br />

• AUTOMATIC SEARCH TUNING<br />

YES<br />

• A S T WITH AUTO SORT<br />

YES<br />

AUDIO SECTION<br />

POWER<br />

• MONO<br />

6 W RMS.<br />

• STEREO<br />

2 x 6 W RMS.<br />

EXTERNAL CONNECTION<br />

• HEADPHONE<br />

STEREO SET ONLY<br />

• LOUDSPEAKERS<br />

INTERNAL L.S. SWITCHED<br />

A / V INPUT / OUTPUT<br />

• FRONT PANEL CINCH<br />

A / V INPUT<br />

• I FULL SCART (CVBS, STEREO, RBA)<br />

MULTIMEDIA INPUT OUTPUT<br />

• SCART (CVBS & STEREO IN / OUT)<br />

VCR, HI.FI, SATELLITE, ETC<br />

• SCART A TO SCART B LOOP THROUGH FOR PROGRAMS DUBBING<br />

TXT<br />

PANEUROPEAN CHARACTER SET<br />

• LEVEL 1<br />

8 PAGES<br />

• LEVEL 1,5 (FASTEXT)<br />

7 PAGES<br />

FEATURES<br />

• CTI (COLOUR TRANSIENT IMPROVEMENT) OPTION<br />

• 16:9 TO 4:3 VIDEO COMPRESSION<br />

ONLY FOR 16:9 TV SET<br />

• VERTICAL ZOOM OUT<br />

3 LEVEL<br />

• MENU DRIVEN SYSTEM<br />

• EASY TO USE REMOTE CONTROL<br />

• REMOTE CONTROL WITH “<strong>SERVICE</strong>” USE NOT ACCESSIBLE TO END USER<br />

• PIP<br />

OPTION<br />

E.G.Data creazione 31/10/99 15.38 2 / 7 f<strong>19</strong>intro


EEPROM<br />

PCF8582<br />

AUDIO<br />

A U D I O<br />

THIS MODULE IS PRESENT ONLY FOR STEREO SET<br />

2ND SCART<br />

A/V IN/OUT<br />

TDA9875<br />

SCART INTER.<br />

A /V OUT<br />

A/V IN<br />

AUDIO<br />

VIDEO<br />

&<br />

AUDIO<br />

FULL SCART<br />

RGB<br />

AUDIO<br />

TDA1521<br />

TUNER<br />

PLL<br />

MICRO<br />

PIP<br />

SIEMENS<br />

IIC bus<br />

PCA84C841/210<br />

TXT<br />

SAA5281/....<br />

SAA5297A<br />

T.O.P.<br />

PHILIPS<br />

SAW<br />

FILTER<br />

TXT & OSD<br />

R B G<br />

PIP (RGB)<br />

VIDEO PROCESSOR<br />

TDA 8362A<br />

TDA8395TDA844X<br />

S E C A M<br />

D.L. CROMA<br />

TDA4661<br />

POWER SUPPLY<br />

RGB<br />

RGB<br />

(OSD)<br />

VERTICAL<br />

TDA3654<br />

E.W. GEN.<br />

TDA4950<br />

H. DRIVER L.O.T.<br />

BU 508 D<br />

BC 639<br />

TDA 4605 & STH7N80F<br />

CUT-OFF<br />

E H T<br />

TRAFO<br />

V.<br />

H.<br />

F16UPF<strong>19</strong>.DRW<br />

E.G. 2/02/99<br />

F16 UPDATED F<strong>19</strong> BLOCK DIAGRAM<br />

26 V<br />

12 V<br />

140 V<br />

15 V<br />

8 V<br />

VIDEO AMPL.<br />

TDA5112<br />

RGB<br />

EAT<br />

110°


F <strong>19</strong><br />

IIC bus<br />

IIC bus<br />

EEPROM<br />

PCF8584 /<br />

ST2404CB<br />

TUNER<br />

PLL<br />

IIC bus<br />

LOCAL KEY BOARD<br />

E T T<br />

MICROCONTROLLER<br />

& TELETEX 8 PAGES<br />

PIP<br />

OPTION<br />

PIP (RGB)<br />

VIDEO & AUDIO<br />

AUDIO STEREO (NICAM) PROCESSOR<br />

THIS MODULE IS PRESENT ONLY FOR STEREO SET<br />

TXT<br />

& OSD<br />

R B G<br />

I.R. INPUT<br />

F<strong>19</strong> BLOCK DIAGRAM<br />

V<br />

I<br />

D<br />

E<br />

O<br />

A<br />

U<br />

D<br />

I<br />

O<br />

I.<br />

F.<br />

SAW<br />

FILTER<br />

I<br />

NTERCARRIER<br />

SAA5297A<br />

TDA 9811 (nicam) TDA 9870A (TDA9875A (nicam)<br />

2ND SCART<br />

AUDIO<br />

A/V IN/OUT<br />

A /V OUT<br />

AUDIO<br />

VIDEOSCART<br />

SWITCH LA7955<br />

A/V IN<br />

*IF VIDEO & PLL DEM<br />

*AGC & AFC, MUTE<br />

*AUDIO PLL DEM<br />

*PAL/NTSC (SECAM) DEC.<br />

*B.B CHROMA DELAY LINE<br />

*FULL SCART INTERFACE.<br />

4<br />

TDA 8843(4)<br />

U V<br />

FEATURES MODULE<br />

TDA4566 (CTI)<br />

SAA4981 (16:9 TO 4:3)<br />

OPTION<br />

POWER SUPPLY<br />

H. DRIVER<br />

TDA 4605 & STH7N90F1<br />

AUDIO SCART SWITCH HEF4053<br />

BC 338<br />

RGB<br />

*H & V SYNC PROCESSIG<br />

*FULL IIC BUS CONTROLL FOR:<br />

*AUTO CUT-OFF<br />

*ALL ANALOGUE FUCTIONS<br />

*GEOMETRY CORRECTION<br />

*FEATURES INTERFACE<br />

E-W POWER<br />

BUK474200A<br />

H DRIVE<br />

A/V/ CINCH<br />

(OPTION)<br />

FULL SCART<br />

IIC BUS ONE CHIP VIDEO PROCESSOR<br />

E-W-<br />

E-W DRIVE COIL<br />

DRIVER<br />

TRAFO<br />

150 V<br />

26 V<br />

12 V<br />

8 V<br />

5 V<br />

RGB<br />

CUT-OFF<br />

VERTICAL<br />

TDA8351<br />

L.O.T.<br />

BU 508 D<br />

TDA1521<br />

RGB<br />

VERTICAL<br />

FEEDBACK<br />

2 x 7 W<br />

AUDIO POWER<br />

LINE OUT<br />

(OPTION)<br />

VIDEO AMPL.<br />

TDA5112<br />

V.<br />

H.<br />

H. DEFL.<br />

& E H T<br />

TRAFO<br />

HEADPHONE<br />

E-W LOAD COIL<br />

EAT<br />

CRT<br />

110°<br />

F<strong>19</strong>BLDIA.DRW<br />

E.G. 17 / 7 / 99


F <strong>19</strong>.1<br />

I<br />

IIC bus<br />

IIC bus<br />

EEPROM<br />

PCF8584 /<br />

ST2404CB<br />

TUNER<br />

PLL<br />

IIC bus<br />

LOCAL KEY BOARD<br />

E T T<br />

SAA5297A or<br />

SAA5553M3<br />

MICROCONTROLLER<br />

& 8 PAGES TELETEXT<br />

PIP<br />

OPTION<br />

PIP (RGB)<br />

VIDEO & AUDIO<br />

AUDIO STEREO (NICAM) PROCESSOR<br />

THIS MODULE IS PRESENT ONLY FOR STEREO SET<br />

TXT<br />

& OSD<br />

R B G<br />

I.R. INPUT<br />

F<strong>19</strong>.1 BLOCK DIAGRAM<br />

V<br />

I<br />

D<br />

E<br />

O<br />

A<br />

U<br />

D<br />

I<br />

O<br />

I.<br />

F.<br />

SAW<br />

FILTER<br />

NTERCARRIER<br />

TDA 9811 (nicam) TDA 9870A (TDA9875A (nicam)<br />

2ND SCART<br />

AUDIO<br />

A/V IN/OUT<br />

A /V OUT<br />

AUDIO<br />

VIDEOSCART<br />

SWITCH LA7955<br />

A/V IN<br />

*IF VIDEO & PLL DEM<br />

*AGC & AFC, MUTE<br />

*AUDIO PLL DEM<br />

*PAL/NTSC (SECAM) DEC.<br />

*B.B CHROMA DELAY LINE<br />

*FULL SCART INTERFACE.<br />

4<br />

TDA 8843 (4)<br />

U V<br />

FEATURES MODULE<br />

TDA4566 (CTI)<br />

SAA4981 (16:9 TO 4:3)<br />

OPTION<br />

POWER SUPPLY<br />

H. DRIVER<br />

BC 338<br />

TDA 4605 & STH7N90F1<br />

AUDIO SCART SWITCH HEF4053<br />

150 V<br />

26 V<br />

12 V<br />

8 V<br />

5 V<br />

RGB<br />

*H & V SYNC PROCESSIG<br />

*FULL IIC BUS CONTROLL FOR:<br />

*AUTO CUT-OFF<br />

*ALL ANALOGUE FUCTIONS<br />

*GEOMETRY CORRECTION<br />

*FEATURES INTERFACE<br />

E-W-<br />

E-W POWER<br />

BUK474200A<br />

H DRIVE<br />

A/V/ CINCH<br />

(OPTION)<br />

FULL SCART<br />

IIC BUS ONE CHIP VIDEO PROCESSOR<br />

DRIVER<br />

TRAFO<br />

RGB<br />

CUT-OFF<br />

VERTICAL<br />

TDA8351<br />

E-W DRIVE COIL<br />

L.O.T.<br />

BU 508 D<br />

TDA1521<br />

RGB<br />

VERTICAL<br />

FEEDBACK<br />

2 x 7 W<br />

AUDIO POWER<br />

LINE OUT<br />

(OPTION)<br />

VIDEO AMPL.<br />

TDA5112<br />

V.<br />

H.<br />

H. DEFL.<br />

& E H T<br />

TRAFO<br />

HEADPHONE<br />

E-W LOAD COIL<br />

EAT<br />

CRT<br />

110°<br />

F<strong>19</strong>BDE&P.DRW<br />

E.G. 22/04/2000


F<strong>19</strong> TUNING<br />

&<br />

TELETEXT


SAA529XA FAMILY MAIN CHARACTERISTICS<br />

FEATURES<br />

General<br />

• Single chip microcontroller with integrated teletext decoder<br />

• Single +5 V power supply<br />

• Single crystal oscillator for teletext decoder, display and microcontroller<br />

• Teletext function can be powered-down independent of microcontroller function for<br />

reduced power consumption in standby<br />

• Pin compatibility throughout family.<br />

Microcontroller<br />

• 80C51 microcontroller core<br />

• 16/32/64 kbyte mask programmed ROM<br />

• 256/768/1280 bytes of microcontroller RAM<br />

• Eight 6-bit Pulse Width Modulator (PWM) outputs for control of TV analog signals<br />

• One 14-bit PWM for Voltage Synthesis Tuner control<br />

• Four 8-bit Analog-to-Digital converters<br />

• 2 high current open-drain outputs for directly driving LEDs etc.<br />

• I 2 C-bus interface<br />

• External ROM and RAM capability on QFP80 package version.<br />

Teletext acquisition<br />

• 1 page and 10 page Teletext version<br />

• Acquisition of 525-line and 625-line World System Teletext, with automatic selection<br />

• Acquisition and decoding of VPS data (PDC system A)<br />

• Page clearing in under 64 s (1 TV line)<br />

• Separate storage of extension packets (SAA5296/7, SAA5296/7A and SAA5496/7)<br />

• Inventory of transmitted Teletext pages stored in the Transmitted Page Table (TPT)<br />

end Subtitle Page Table (SPT) (SAA5296/7, SAA5296/7A and SAA5496/7)<br />

• Automatic detection of FASTEXT transmission<br />

E.G.Data creazione 01/11/99 17.27 8 / 30 F<strong>19</strong>MANU.doc


TO CURRENT INTEGRATOR<br />

VOLTAGE SINTESYS ONLY<br />

MENU V - V + P - P +<br />

SAA5297A.DRW<br />

E.G . 17 / 10 / 99<br />

TO X13<br />

FRANCE STD. SWITCH<br />

CTI DETECTOR<br />

16 : 9 DETECTOR<br />

SCART1 / SCART2 SWITCH<br />

SCART 1 / TV<br />

TO SCART 2 SWITCH<br />

FRONT CINCH / SCART1<br />

SWITCH<br />

SCART 1 INPUT DETECTOR<br />

SCART 2 INPUT DETECTOR<br />

HEAD PHONES DETECTOR<br />

STANDARD SWITCH<br />

UHF SUPPLY<br />

(VOLTAGE SINTESYS ONLY)<br />

TV / AV SWITCH<br />

LOCAL KEY BOARD<br />

TV ON / OFF SWITCH<br />

TUNER SUPPLY (V.S. ONLY)<br />

TUNER SUPPLY(V.S. ONLY)<br />

CVBS FROM ANTENNA<br />

CVBS FROM SCART<br />

DATA<br />

SLICER<br />

REF.PIN<br />

SAA5297A<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

<strong>19</strong><br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

V TUN.<br />

DSC<br />

SWT. L/L'<br />

CTI STS.<br />

16:9 STS<br />

SWT. S1/S2<br />

COPY SWT.<br />

SWT. CI/S1<br />

AV1 STS.<br />

AV2 STS.<br />

H.P. STS.<br />

SYSTEM<br />

VSS M+T<br />

UHF<br />

TV / AV<br />

P0.3<br />

P0.4<br />

P0.5<br />

ON / OFF<br />

VHF H<br />

VHF L<br />

VSSA<br />

CVBS0<br />

CVBS1<br />

BLACK<br />

IREF<br />

P<br />

O<br />

R<br />

T<br />

2<br />

P<br />

O<br />

R<br />

T<br />

3<br />

P<br />

O<br />

R<br />

T<br />

0<br />

PAGE<br />

RAM<br />

MICRO & TXT Block Diagram<br />

ROM RAM TIMER<br />

A/ D<br />

PWM<br />

TXT<br />

INT<br />

B<br />

U<br />

S<br />

T X T DATA<br />

SLICER &<br />

ACQUISITION<br />

P<br />

O<br />

R<br />

T<br />

1<br />

8051<br />

CORE<br />

OSCILLATOR<br />

DISPLAY<br />

TIMING<br />

DISPLAY<br />

SWT 16:9<br />

OSC. SWT.<br />

MSDA<br />

MSCL<br />

SDA 1<br />

INTO<br />

SCL 1<br />

AM/FM<br />

VDDM<br />

RESET<br />

OSCOUT<br />

OSCIN<br />

OSCGND<br />

VDDT<br />

VDDA<br />

VSYNC<br />

HSYNC<br />

BLK<br />

R<br />

G<br />

B<br />

RGBREF<br />

PIP STS<br />

INT. TEST<br />

FRAME<br />

52<br />

51<br />

50<br />

49<br />

48<br />

47<br />

46<br />

45<br />

44<br />

43<br />

42<br />

41<br />

40<br />

39<br />

38<br />

37<br />

36<br />

35<br />

34<br />

33<br />

32<br />

31<br />

30<br />

29<br />

28<br />

27<br />

TO CHANGE<br />

ASPECT RATIO<br />

TO SWITCH S.C.<br />

FROM 4.43<br />

TO 3.58 MHz<br />

I.R.<br />

5 V from ST-BY<br />

QZ100<br />

12 MHz<br />

MAIN<br />

IIC BUS<br />

IIC BUS<br />

FOR<br />

EEPROM<br />

SOUND STANDARD<br />

SWITCH<br />

FROM<br />

RESESET CIRCUIT<br />

5 V<br />

VERTICAL<br />

FLYBACK<br />

HORIZONTAL<br />

FLYBACK PULSE<br />

TO<br />

TDA884X<br />

RGB REFERENCE<br />

2,5 VVOLTAGE<br />

PIP DETECTOR<br />

NOT CONNECTED<br />

NOT CONNECTED


TO CURRENT INTEGRATOR<br />

VOLTAGE SINTESYS ONLY<br />

MENU V - V + P - P +<br />

LOCAL KEY BOARD<br />

TO X13<br />

FRANCE STD. SWITCH<br />

CTI DETECTOR<br />

16 : 9 DETECTOR<br />

SCART1 / SCART2 SWITCH<br />

SCART 1 / TV<br />

TO SCART 2 SWITCH<br />

FRONT CINCH / SCART1<br />

SWITCH<br />

SCART 1 INPUT DETECTOR<br />

SCART 2 INPUT DETECTOR<br />

HEAD PHONES DETECTOR<br />

STANDARD SWITCH<br />

UHF SUPPLY<br />

(VOLTAGE SINTESYS ONLY)<br />

TV / AV SWITCH<br />

TV ON / OFF SWITCH<br />

TUNER SUPPLY (V.S. ONLY)<br />

TUNER SUPPLY(V.S. ONLY)<br />

CVBS FROM ANTENNA<br />

CVBS FROM SCART<br />

SAA5553.DRW<br />

E.G 22/ 04 / 2000<br />

DATA<br />

SLICER<br />

REF.PIN<br />

SAA5553M3<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

<strong>19</strong><br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

V TUN.<br />

DSC<br />

SWT. L/L'<br />

CTI STS.<br />

16:9 STS<br />

SWT. S1/S2<br />

COPY SWT.<br />

SWT. CI/S1<br />

AV1 STS.<br />

AV2 STS.<br />

H.P. STS.<br />

SYSTEM<br />

VSS M+T<br />

UHF<br />

TV / AV<br />

P0.3<br />

P0.4<br />

P0.5<br />

ON / OFF<br />

VHF H<br />

VHF L<br />

VSSA<br />

CVBS0<br />

CVBS1<br />

BLACK<br />

IREF<br />

P<br />

O<br />

R<br />

T<br />

2<br />

P<br />

O<br />

R<br />

T<br />

3<br />

P<br />

O<br />

R<br />

T<br />

0<br />

PAGE<br />

RAM<br />

MICRO & TXT Block Diagram<br />

ROM RAM TIMER<br />

A/ D<br />

PWM<br />

TXT<br />

INT<br />

B<br />

U<br />

S<br />

T X T DATA<br />

SLICER &<br />

ACQUISITION<br />

8051<br />

CORE<br />

P<br />

O<br />

R<br />

T<br />

1<br />

OSCILLATOR<br />

DISPLAY<br />

TIMING<br />

DISPLAY<br />

SWT 16:9<br />

OSC. SWT.<br />

MSDA<br />

MSCL<br />

SDA 1<br />

INTO<br />

SCL 1<br />

AM/FM<br />

VDDM<br />

RESET<br />

OSCOUT<br />

OSCIN<br />

OSCGND<br />

VDDT<br />

VDDA<br />

VSYNC<br />

HSYNC<br />

BLK<br />

R<br />

G<br />

B<br />

RGBREF<br />

PIP STS<br />

INT. TEST<br />

FRAME<br />

52<br />

51<br />

50<br />

49<br />

48<br />

47<br />

46<br />

45<br />

44<br />

43<br />

42<br />

41<br />

40<br />

39<br />

38<br />

37<br />

36<br />

35<br />

34<br />

33<br />

32<br />

31<br />

30<br />

29<br />

28<br />

27<br />

TO CHANGE<br />

ASPECT RATIO<br />

TO SWITCH S.C.<br />

FROM 4.43<br />

TO 3.58 MHz<br />

I.R.<br />

5 V from ST-BY<br />

QZ100<br />

12 MHz<br />

MAIN<br />

IIC BUS<br />

IIC BUS<br />

FOR<br />

EEPROM<br />

SOUND STANDARD<br />

SWITCH<br />

FROM<br />

RESESET CIRCUIT<br />

3 V<br />

VERTICAL<br />

FLYBACK<br />

HORIZONTAL<br />

FLYBACK PULSE<br />

TO<br />

TDA884X<br />

RGB REFERENCE<br />

2,5 VVOLTAGE<br />

PIP DETECTOR<br />

NOT CONNECTED<br />

NOT CONNECTED


• Real-time packet 26 engine for processing accented (and other) characters<br />

• Comprehensive Teletext language coverage<br />

• Video signal quality detector.<br />

Teletext Display<br />

• 525-line and 625-line display<br />

• 12 10 character matrix<br />

• Double height, width and size On-Screen Display (OSD)<br />

• Definable border colour<br />

• Enhanced display features including meshing and shadowing<br />

• 260 characters in mask programmed ROM<br />

• Automatic FRAME output control with manual override<br />

• RGB push-pull output to standard decoder ICs<br />

• Stable display via slave synchronisation to horizontal sync and vertical sync.<br />

Additional features of SAA529xA devices<br />

• Wide Screen Signalling (WSS) bit decoding (line 23).<br />

2 GENERAL DESCRIPTION<br />

The SAA529x, SAA529xA and SAA549x family of microcontrollers are a derivative of the<br />

Philips’ industry-standard 80C51 microcontroller and are intended for use as the central<br />

control mechanism in a television receiver. They provide control functions for the television<br />

system and include an integrated teletext function.<br />

The teletext hardware has the capability of decoding and displaying both 525-line and 625-<br />

line World System Teletext. The same display hardware is used both for Teletext and On-<br />

Screen Display, which means that the display features give greater flexibility to<br />

differentiate the TV set.<br />

The family offers both 1 page and 10 page Teletext capability, in a range of ROM sizes.<br />

Increasing display capability is offered from the SAA5290 to the SAA5497.<br />

TELETEXT DECODER<br />

Data slicer<br />

E.G.Data creazione 01/11/99 17.27 9 / 30 F<strong>19</strong>MANU.doc


The data slicer extracts the digital teletext data from the incoming analog waveform. This<br />

is performed by sampling the CVBS waveform and processing the samples to extract the<br />

teletext data and clock.<br />

Acquisition timing<br />

The acquisition timing is generated from a logic level positive-going composite sync signal<br />

VCS. This signal is generated by a sync separator circuit which adaptively slices the sync<br />

pulses. The acquisition clocking and timing are locked to the VCS signal using a digital<br />

phase-locked-loop. The phase error in the acquisition phase-locked-loop is detected by a<br />

signal quality circuit which disables acquisition if poor signal quality is detected.<br />

Teletext acquisition<br />

This family is capable of acquiring 625-line and 525-line World System Teletext see “World<br />

System Teletext and Data Broadcasting System”. Teletext pages are identified by seven<br />

numbers: magazine (page hundreds), page tens, page units, hours tens, hours units,<br />

minutes tens and minutes units. The last four digits, hours and minutes, are known as the<br />

subcode, and were originally intended to be time related, hence their names.<br />

For the ten page device, each packet can only be written into one place in the teletext<br />

RAM so if a page matches more than one of the page requests the data is written into<br />

the area of memory corresponding to the lowest numbered matching page request.<br />

At power-up each page request defaults to any page, hold on and error check Mode 0.<br />

Rolling headers and time<br />

When a new page has been requested it is conventional for the decoder to turn the header<br />

row of the display green and to display each page header as it arrives until the correct<br />

page has been found.<br />

Error checking<br />

Before teletext packets are written into the page memory they are error checked. The error<br />

checking carried out depends on the packet number, the byte number, the error check<br />

mode bits in the page request data and the TXT1.8 BIT bit. If an uncorrectable error<br />

occurs in one of the Hamming checked addressing and control bytes in the page header<br />

or in the Hamming checked bytes in packet 8/30, bit 4 of the byte written into the memory<br />

is set, to act as an error flag to the software. If uncorrectable errors are detected in any<br />

other Hamming checked data the byte is not written into the memory.<br />

E.G.Data creazione 01/11/99 17.27 10 / 30 F<strong>19</strong>MANU.doc


Packet 26 processing<br />

One of the uses of packet 26 is to transmit characters which are not in the basic teletext<br />

character set. The family automatically decodes packet 26 data and, if a character<br />

corresponding to that being transmitted is available in the character set, automatically<br />

writes the appropriate character code into the correct location in the teletext memory. This<br />

is not a full implementation of the packet 26 specification allowed for in level 2 teletext, and<br />

so is often referred to as level 1.5.<br />

By convention, the packets 26 for a page are transmitted before the normal packets. To<br />

prevent the default character data overwriting the packet 26 data the device incorporates a<br />

mechanism which prevents packet 26 data from being overwritten.<br />

Fastext detection<br />

When a packet 27, designation code 0 is detected, whether or not it is acquired, the<br />

TXT13.FASTEXT bit is set. If the device is receiving 525-line teletext, a packet X/0/27/0 is<br />

required to set the flag. The flag can be reset by writing a logic 0 into the SFR bit.<br />

When a packet 8/30 is detected, or a packet 4/30 when the device is receiving a 525-line<br />

transmission, the TXT13.Pkt 8/30 is set. The flag can be reset by writing a logic 0 into the<br />

SFR bit.<br />

THE DISPLAY<br />

Introduction<br />

The capabilities of the display are based on the requirements of level 1 teletext, with some<br />

enhancements for use with locally generated on screen displays. The display consists of<br />

25 rows each of 40 characters, with the characters displayed being those from rows 0 to<br />

24 of the basic page memory. If the TXT7.STATUS ROW TOP bit is set row 24 is<br />

displayed at the top of the screen, followed by row 0, but normally memory rows are<br />

displayed in numerical order. The teletext memory stores 8 bit character codes which<br />

correspond to a number of displayable characters and control characters, which are<br />

normally displayed as spaces. The character set of the device is described in more detail<br />

below.<br />

E.G.Data creazione 01/11/99 17.27 11 / 30 F<strong>19</strong>MANU.doc


(OPTION BYTE 1<br />

BIT 3 SETTED TO 0<br />

EAST EUROPE<br />

CHARACTER SET<br />

NATIONAL OPTION FOR:<br />

POLISH<br />

GERMAN<br />

ESTONIAN<br />

SERBO-CROAT<br />

CZECH<br />

SLOVAKIA<br />

RUMANIAN<br />

WEST EUROPE<br />

CHARACTER SET<br />

NATIONAL OPTION FOR:<br />

ENGLISH<br />

GERMAN<br />

SWEDISH<br />

ITALIAN<br />

FREANCH<br />

SPANISH<br />

TURKISH<br />

(OPTION BYTE 1<br />

BIT 6 SETTED TO 1<br />

WEST<br />

F<strong>19</strong> E&WCS.DRW<br />

E.G. 7/11/99<br />

EAST<br />

D<br />

A<br />

PL<br />

CZ<br />

H<br />

Y<br />

R


Character matrix<br />

Each character is defined by a matrix 12 pixels wide and 10 pixels high. When displayed,<br />

each pixel is 1 12 s wide and 1 TV line, in each field, high.<br />

East/West selection<br />

In common with their predecessors, these devices store teletext pages as a series of 8 bit<br />

character codes which are interpreted as either control codes (to change colour, invoke<br />

flashing etc.) or displayable characters. When the control characters are excluded, this<br />

gives an addressable set of 212 characters at any given time.<br />

National option characters<br />

The meanings of some character codes between 20H and 7FH depend on the C12 to C14<br />

language control bits from the teletext page header.<br />

The interpretation of the C12 to C14 language control bits is dependent on the East/West<br />

bit.<br />

On-Screen Display characters<br />

Character codes 80H to 9FH are not addressed by the teletext decoding hardware. An<br />

editor is available to allow these characters to be redefined by the customer. The<br />

alternative character shapes in columns 8a and 9a (SAA549x only) can be displayed when<br />

the ‘graphics’ serial attribute is set. This increases the number of customer definable<br />

characters to 64.<br />

Clock generator<br />

The oscillator circuit is a single-stage inverting amplifier in a Pierce oscillator configuration.<br />

The circuitry between XTALIN and XTALOUT is basically an inverter biased to the transfer<br />

point. A crystal must be used as the feedback element to complete the oscillator circuitry.<br />

It is operated in parallel resonance. XTALIN is the high gain amplifier input and XTALOUT<br />

is the output. To drive the device externally XTALIN is driven from an external source and<br />

XTALOUT is left open-circuit.<br />

E.G.Data creazione 01/11/99 17.27 12 / 30 F<strong>19</strong>MANU.doc


SOUND I.F.<br />

AM<br />

SOUND<br />

FILTER<br />

12 V<br />

TUNUNG<br />

VOLTAGE<br />

TO PIN 2<br />

TUNER<br />

TO X13<br />

TR500<br />

F204<br />

TR2<strong>19</strong><br />

R174<br />

12V<br />

TR218<br />

5V<br />

CVBS PIN 6<br />

IC 204<br />

TO PIN 4 IC 201 R128<br />

TO PIN<br />

TO PIN 8 IC 201 R140 R141<br />

10, 11<br />

TR200<br />

IC 200<br />

TR110<br />

TR201<br />

FRON PIN 8 SCART 1<br />

F575<br />

TO PIN 1<br />

IC 204<br />

F576<br />

TR107<br />

TO STEREO<br />

NICAM<br />

MODULE<br />

T<br />

O<br />

T<br />

U<br />

N<br />

E<br />

R<br />

TO PIN 4<br />

IC 10<br />

PIN 5<br />

PIN 3<br />

PIN 4<br />

TR210<br />

TR2<br />

TR 502<br />

TR 501<br />

TR209<br />

TR503<br />

TR111<br />

FROM PIN 8 SCART 2<br />

5V<br />

R146<br />

MENU V - V + P - P +<br />

5V<br />

TO SWITC INT/EX SOUND<br />

TV ON / OFF<br />

CVBS FROM<br />

ANTENNA<br />

CVBS<br />

FROM SCART<br />

TR203<br />

TR211<br />

SAA5297A<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

<strong>19</strong><br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

V TUN.<br />

DSC<br />

SWT. L/L'<br />

CTI STS.<br />

16:9 STS<br />

SWT. S1/S2<br />

COPY SWT.<br />

SWT. CI/S1<br />

AV1 STS.<br />

AV2 STS.<br />

H.P. STS.<br />

SYSTEM<br />

VSS M+T<br />

UHF<br />

TV / AV<br />

P0.3<br />

P0.4<br />

P0.5<br />

ON / OFF<br />

VHF H<br />

VHF L<br />

VSSA<br />

CVBS0<br />

CVBS1<br />

BLACK<br />

IREF<br />

SWT 16:9<br />

OSC. SWT.<br />

MSDA<br />

MSCL<br />

SDA 1<br />

INTO<br />

SCL 1<br />

AM/FM<br />

VDDM<br />

RESET<br />

OSCOUT<br />

OSCIN<br />

OSCGND<br />

VDDT<br />

VDDA<br />

VSYNC<br />

HSYNC<br />

BLK<br />

R<br />

G<br />

B<br />

RGBREF<br />

PIP STS<br />

COR<br />

INT. TEST<br />

FRAME<br />

MICRO & TXT PERIPHERALS<br />

52<br />

51<br />

50<br />

49<br />

48<br />

47<br />

46<br />

45<br />

44<br />

43<br />

42<br />

41<br />

40<br />

39<br />

38<br />

37<br />

36<br />

35<br />

34<br />

33<br />

32<br />

31<br />

30<br />

29<br />

28<br />

27<br />

TO CTI &<br />

16:9 MOULE<br />

IIC BUS<br />

IRR100<br />

QZ100<br />

12 MHz<br />

TR 109<br />

IIC BUS<br />

TR206<br />

TR 205<br />

SOUND STDANDARD SWITCH<br />

TR 101<br />

TR 108<br />

R 106<br />

TR 102<br />

R167<br />

D 108<br />

TR 103<br />

D 105<br />

5V<br />

5V ST-BY<br />

FOR VOLTAGE<br />

SISTETIZER ONLY<br />

5 V<br />

TR 208<br />

3.58MHz<br />

EEPROM<br />

IC 101<br />

TR 105<br />

4.43 MHz<br />

TO PIN 10<br />

IC 102<br />

D 102 FLYBACK PULSE<br />

FROM EHT<br />

VERTICAL<br />

BLANKING<br />

FROM PIN 8<br />

IC 5<br />

TO PIN<br />

23, 24, 25<br />

IC 204<br />

F<strong>19</strong>MTPER.DRW<br />

E.G. 24 /10 /99<br />

TO<br />

PIN 35<br />

IC 204


TR200<br />

TR201<br />

SOUND I.F.<br />

AM<br />

SOUND<br />

FILTER<br />

F204<br />

CVBSPIN 6<br />

IC 204<br />

F575<br />

TO PIN 1<br />

IC 204<br />

F576<br />

TR107<br />

TO STEREO<br />

NICAM<br />

MODULE<br />

TO PIN 4<br />

IC 10<br />

PIN 5<br />

T<br />

O<br />

T<br />

U<br />

N<br />

E<br />

R<br />

PIN 3<br />

PIN 4<br />

12V<br />

TO PIN<br />

10, 11<br />

IC 200<br />

TR210<br />

TR2<br />

TR 502<br />

TR110<br />

TR 501<br />

TR218<br />

12 V<br />

TUNUNG<br />

VOLTAGE<br />

TO PIN 2<br />

TUNER<br />

5V<br />

TR2<strong>19</strong><br />

TO PIN 4 IC 201<br />

TO X13<br />

R174<br />

R128<br />

TR500<br />

TO PIN 8 IC 201 R140 R141<br />

TR209<br />

TR503<br />

TR111<br />

FRON PIN 8 SCART 1<br />

FROM PIN 8 SCART 2<br />

5V<br />

R146<br />

MENU V - V + P - P +<br />

5V<br />

TO SWITC INT/EX SOUND<br />

TV ON / OFF<br />

CVBS FROM<br />

ANTENNA<br />

CVBS<br />

FROM SCART<br />

TR203<br />

TR211<br />

SAA 5553<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

<strong>19</strong><br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

V TUN.<br />

DSC<br />

SWT. L/L'<br />

CTI STS.<br />

16:9 STS<br />

SWT. S1/S2<br />

COPY SWT.<br />

SWT. CI/S1AM/FM<br />

AV1 STS. VDDM<br />

AV2 STS. RESET<br />

H.P. STS. OSCOUT<br />

SYSTEM OSCIN<br />

VSS M+T<br />

UHF<br />

TV / AV<br />

P0.3<br />

P0.4<br />

P0.5<br />

ON / OFF<br />

VHF H<br />

VHF L<br />

VSSA<br />

CVBS0<br />

CVBS1<br />

BLACK<br />

IREF<br />

SWT 16:9<br />

OSC. SWT.<br />

MSDA<br />

MSCL<br />

SDA 1<br />

INTO<br />

SCL 1<br />

OSCGND<br />

VDDT<br />

VSSA<br />

VSYNC<br />

HSYNC<br />

BLK<br />

R<br />

G<br />

B<br />

RGBREF<br />

PIP STS<br />

COR<br />

INT. TEST<br />

FRAME<br />

MICRO & TXT PERIPHERALS<br />

52<br />

51<br />

50<br />

49<br />

48<br />

47<br />

46<br />

45<br />

44<br />

43<br />

42<br />

41<br />

40<br />

39<br />

38<br />

37<br />

36<br />

35<br />

34<br />

33<br />

32<br />

31<br />

30<br />

29<br />

28<br />

27<br />

TO CTI &<br />

16:9 MOULE<br />

IIC BUS<br />

IRR100<br />

QZ100<br />

12 MHz<br />

TR 109<br />

IIC BUS<br />

SOUND STDANDARD SWITCH<br />

TR 101<br />

TR 108<br />

TR 102<br />

R167<br />

D 108<br />

TR 103<br />

D 105<br />

3,3 V<br />

3,3 V<br />

D 102<br />

5V<br />

TR206<br />

TR 205<br />

TR8<br />

5 V<br />

FOR VOLTAGE<br />

SISTETIZER ONLY<br />

TR7<br />

D5<br />

TR 208<br />

3.58MHz<br />

EEPROM<br />

IC 101<br />

TR 105<br />

R39<br />

2,5V<br />

FLYBACK<br />

FROM EHT<br />

VERTICAL<br />

BLANKING<br />

FROM PIN 8<br />

IC 5<br />

TO PIN<br />

23, 24, 25<br />

IC 204<br />

F<strong>19</strong>PAPER.DRW<br />

E.G. 22 / 04 /2000<br />

4.43 MHz<br />

TO PIN 10<br />

IC 102<br />

5 V<br />

R40<br />

TO<br />

PIN 35<br />

IC 204<br />

PAINTER


VIDEO<br />

SIGNAL<br />

PROCESSING


F <strong>19</strong><br />

TO PIN 33<br />

IC100<br />

CVBS EF<br />

FOR TXT<br />

TO PIN 24<br />

TR203<br />

IC 100<br />

(CVBS FOR TXT)<br />

TO PIN 9<br />

IC 100<br />

AV1<br />

STATUS<br />

SCART 1<br />

FROM PIN 6<br />

IC100<br />

AV1 / AV2<br />

SWITCH<br />

FROM PIN 7<br />

IC100<br />

AV1 / TV<br />

SWITCH<br />

TO AV2<br />

<strong>19</strong><br />

8<br />

15<br />

11<br />

7<br />

16<br />

20<br />

CVBS IN<br />

TV<br />

CVBS<br />

TO PIN 10<br />

IC 100<br />

AV2 STATUS<br />

EF<br />

TR201<br />

EF<br />

TR204<br />

TR211<br />

1<br />

3<br />

EF<br />

TR200<br />

2<br />

EF<br />

4<br />

7<br />

IIC<br />

TR202<br />

EF<br />

VIDEO IN<br />

CINCH<br />

8<br />

12 V<br />

6<br />

5<br />

9<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

<strong>19</strong><br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

SIF<br />

AUDEXT<br />

NC<br />

NC<br />

PLLIF<br />

IFVIDEO OUT<br />

SCL<br />

SDA<br />

DECOUPLING<br />

CHR.IN<br />

EX.CVBS/Y IN<br />

VP1<br />

INT CVBS IN<br />

GND<br />

AUDIO OUT<br />

DECOUPLING<br />

EX. CVBS IN<br />

BLKIN<br />

B OUT<br />

G OUT<br />

R OUT<br />

BCL/VG<br />

R IN<br />

G IN<br />

B IN<br />

RGB INSERT.<br />

Y IN<br />

Y OUT<br />

1/3 0F IC201<br />

LA7955<br />

CVBS IN<br />

CVBS OUT<br />

FOR VOLTAGE SINTHESIS ONLY<br />

TDA884X<br />

I.F.<br />

VIDEO<br />

AGC<br />

AFC<br />

DEM.<br />

IDENT<br />

SOUND<br />

PROCES.<br />

(MONO)<br />

SYNC<br />

PROCES.<br />

V. & H.<br />

TIME<br />

BASE<br />

IIC<br />

TRANSRECEIVER<br />

TR212<br />

EF<br />

20 <strong>19</strong><br />

MSD<br />

PAL<br />

(SECAM)<br />

NTSC<br />

C.D. &<br />

RGB<br />

MATRIX<br />

VIDEO<br />

CONTROL<br />

8<br />

EXT RGB<br />

SWITCH<br />

& RGB<br />

DRIVE<br />

SCART 2<br />

DECOUPLING<br />

DEENPHASIS<br />

AGC OUT<br />

DECOPLING<br />

I REF<br />

VERT. RAMP<br />

EHT PROTEC.<br />

IF IN 2<br />

IF IN 1<br />

V. DRIVE A<br />

V. DRIVE B<br />

E - W OUT<br />

GND 2<br />

PH. 1 FILTER<br />

PH. 2 FILTER<br />

H. IN, S.C. OUT<br />

HOR. OUT<br />

DECOUPLING<br />

CVBS 1 OUT<br />

V P 2<br />

DET FILTER<br />

X TAL 2<br />

X TAL 1<br />

S.C. REF OUT<br />

R - Y IN<br />

B - Y IN<br />

R - Y OUT<br />

B - Y OUT<br />

56<br />

55<br />

54<br />

53<br />

52<br />

51<br />

50<br />

49<br />

48<br />

47<br />

46<br />

45<br />

44<br />

43<br />

42<br />

41<br />

40<br />

39<br />

38<br />

37<br />

36<br />

35<br />

34<br />

33<br />

32<br />

31<br />

30<br />

29<br />

EF<br />

RGB AMPLIFIER<br />

MODULE<br />

VIDEO SIGNAL PATH<br />

TO CRT<br />

8 V<br />

UV<br />

12 V<br />

IIC<br />

3,57MHz<br />

5 V<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

TR208<br />

3.58MHz<br />

TR206<br />

4.43MHz<br />

A10<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

C T I<br />

&<br />

4 : 3<br />

TO<br />

16 : 9<br />

FROM PIN 52<br />

IC 100 4:3 TO 16:9<br />

SWITCH<br />

8 V<br />

TR500<br />

10<br />

11<br />

UHF<br />

VHF H<br />

VHF LTR502<br />

FROM PIN 1<br />

IC 100<br />

TR501<br />

5 V<br />

TR205<br />

FROM EHT<br />

TR503<br />

FROM IC 100<br />

PIN 14, 20, 21<br />

BAND SWITCHING<br />

TR105<br />

FROM<br />

PIN 51<br />

IC 100<br />

F<strong>19</strong>VIDEP.DRW<br />

E.G. 14 / 11 / 99


Reset signal<br />

The externally applied RESET signal (active HIGH) is used to initialize the microcontroller<br />

core, in addition to the teletext decoder. However, the teletext decoder incorporates a<br />

separate internal reset function which is activated on the rising edge of the analog supply<br />

pin, VDDA . The purpose of this internal reset circuit is to initialize the teletext decoder when<br />

returning from the “text standby mode”.<br />

TDA884X FAMILY SPECIFICATION<br />

FEATURES<br />

The following features are available in all IC’s:<br />

• Multi-standard vision IF circuit with an alignment-freePLL demodulator without external<br />

components<br />

• Alignment-free multi-standard FM sound demodulator(4.5 MHz to 6.5 MHz)<br />

• Audio switch<br />

• Flexible source selection with CVBS switch andY(CVBS)/C input so that a comb filter can<br />

be applied<br />

• Integrated chrominance trap circuit<br />

• Integrated luminance delay line<br />

• Asymmetrical peaking in the luminance channel with a(defeatable) noise coring function<br />

• Black stretching of non-standard CVBS or luminancesignals<br />

• Integrated chroma band-pass filter with switchablecentre frequency<br />

• Dynamic skin tone control circuit<br />

• Blue stretch circuit which offsets colours near whitetowards blue<br />

• RGB control circuit with “Continuous CathodeCalibration” and white point adjustment<br />

• Possibility to insert a “blue back” option when no videosignal is available<br />

• Horizontal synchronization with two control loops andalignment-free horizontal<br />

oscillatoroptimised N2 application.Functionally the IC series is split up is 3 categories,<br />

viz:<br />

E.G.Data creazione 01/11/99 17.27 13 / 30 F<strong>19</strong>MANU.doc


TUNER<br />

AGC<br />

I.F IN<br />

PLL<br />

FILTER<br />

Deenphasis<br />

EXTERNAL<br />

AUDIO IN<br />

A.F.<br />

54<br />

53<br />

48<br />

49<br />

5<br />

A<br />

F<br />

W<br />

AFA<br />

AFB<br />

2<br />

IF &<br />

TUNER<br />

A G C<br />

VIDEO IF<br />

AMPLIFIER<br />

A F C<br />

Sensitivity<br />

TDA 8844<br />

55<br />

15<br />

DEENPHASIS LINE<br />

Internal<br />

Audio<br />

EXTERNAL<br />

AUDIO<br />

SWITCH<br />

SWT<br />

MONO AUDIO OUTPUT<br />

TUNER T.O.P<br />

gating<br />

calibration<br />

I.F. value<br />

PLL<br />

DEMOD.<br />

& VCO<br />

VIDEO<br />

AMPLIFIER<br />

CVBS OUT<br />

CVBS (int) IN CVBS / Y IN (comb filter)<br />

CVBS OUTPUT CVBS (ext) IN CHROMA IN<br />

VIDEO<br />

IDENT.<br />

AVL<br />

SWITCH &<br />

VOLUME<br />

6<br />

MOD<br />

Pos./Neg.<br />

AVL<br />

Volume<br />

Y DELAY,<br />

C. TRAP,<br />

Y PEAKING<br />

VIDEO<br />

MUTE<br />

13 17 11 10 38<br />

Luma<br />

H. SYNC<br />

SEPARATOR<br />

AUDIO PRE<br />

AMPLIFIER<br />

& MUTE<br />

CVBS & Y/C<br />

SWITCH<br />

To Sync<br />

H. sync<br />

PHI 1<br />

DETECTOR<br />

Chroma<br />

CHROMA<br />

CLOCHE &<br />

BANDPASS<br />

V. SYNC<br />

SEPARATOR<br />

LINE<br />

OSCILL.<br />

VERTICAL<br />

DEVIDER<br />

V. sync<br />

SCL<br />

7 8<br />

IIC<br />

TRANS-<br />

RECEIVER<br />

IIC<br />

SDA<br />

PAL / NTSC<br />

SECAM<br />

DECODER<br />

AUTO<br />

SYSTEM<br />

IDENT.<br />

MANAGER<br />

VERTICAL<br />

SAWTOOTH<br />

GENERATOR<br />

Secam<br />

Decoupling<br />

SAT<br />

MAT<br />

DSA<br />

16<br />

CON<br />

BRI<br />

GAI<br />

Subcarrier<br />

Xtal<br />

34 35<br />

BURST PHASE<br />

DETECTOR<br />

& VCXO<br />

BASE BAND<br />

CHROMA<br />

DELAY LINE<br />

R-Y & B-Y<br />

MATRIX<br />

SAT CONTR.<br />

BLACK STRETCH<br />

SKIN TINT CORR.<br />

RGB SWITCH<br />

RGB CONTROL<br />

AUTO CUT-OFF<br />

& OUTPUT<br />

36<br />

33<br />

28<br />

29<br />

30<br />

27<br />

31<br />

Fsc<br />

Y<br />

B-Y<br />

R-Y<br />

Y<br />

B-Y<br />

32<br />

R-Y<br />

23<br />

R<br />

24<br />

G<br />

25<br />

B<br />

26 F.B.<br />

18<br />

<strong>19</strong><br />

20<br />

21<br />

Loop<br />

filter<br />

Phase<br />

Detector<br />

Black<br />

Currente<br />

Input<br />

R<br />

G<br />

B<br />

I<br />

N<br />

P<br />

U<br />

T<br />

O<br />

U<br />

T<br />

P<br />

U<br />

T<br />

AVL<br />

Decoupling<br />

INTER-<br />

CARRIER<br />

IN<br />

(45)<br />

1<br />

BandGap<br />

Decoupling<br />

1 A 10 MHz<br />

B.P.F.<br />

AUDIO<br />

LIMITER<br />

9 12 37 14<br />

8 V Main<br />

Supply<br />

8 V<br />

Supply<br />

Ground<br />

AUDIO<br />

PLL DEM.<br />

56<br />

Sound<br />

Decoupling<br />

43 42 41 40<br />

Phi 1<br />

filter<br />

Phi 2<br />

filter<br />

PHI 2<br />

LINE OUT<br />

S.C. GENER.<br />

Flyback in<br />

Sand<br />

Castle<br />

Out<br />

Line<br />

Pulse<br />

Out<br />

51 52<br />

E - W<br />

GEOMETRY<br />

45<br />

E-W<br />

Vertical<br />

DRIVE<br />

Sawtooth Reference<br />

50<br />

EHT<br />

Overvoltage<br />

VERTICAL<br />

DRIVE<br />

22<br />

47<br />

46<br />

Vertical<br />

Drive<br />

Output<br />

V- Guard &<br />

B.C. limiter<br />

TDA8844BLDIA.DRW<br />

E.G. 17 /10 / 99


• Versions intended to be used in economy TV receiverswith all basic functions (envelope:<br />

S-DIP 56 and QFP 64)<br />

• Versions with additional features like E-W geometrycontrol, H-V zoom function and YUV<br />

interface which are intended for TV receivers with 110° picture tubes(envelope: S-DIP 56)<br />

• Versions which have in addition a second RGB inputwith saturation control and a second<br />

CVBS output (envelope: QFP 64)<br />

• Vertical count-down circuit<br />

• Vertical driver optimised for DC-coupled vertical outputstages<br />

GENERAL DESCRIPTION<br />

The various versions of the TDA 884X/5X series areI 2 C-bus controlled single chip TV<br />

processors which are<br />

intended to be applied in PAL, NTSC, PAL/NTSC and multi-standard television receivers.<br />

The N2 version is pin and application compatible with the N1 version, however,a new<br />

feature has been added which makes the N2 more attractive. The IF PLL demodulator has<br />

been replaced byan alignment-free IF PLL demodulator with internal VCO (no tuned circuit<br />

required). The setting of the variousfrequencies (33.4, 33.9, 38, 38.9, 45,75 and 58.75<br />

MHz) can be made via the I 2 C-bus.<br />

Because of this difference the N2 version is compatiblewith the N1, however, N1 devices<br />

cannot be used in an optimized N2 application<br />

Functionally the IC series is split up is 3 categories, viz:<br />

• Versions intended to be used in economy TV receivers with all basic functions (envelope:<br />

S-DIP 56 and QFP 64)<br />

• Versions with additional features like E-W geometry control, H-V zoom function and YUV<br />

interface which areintended for TV receivers with 110° picture tubes (envelope: S-DIP 56)<br />

• Versions which have in addition a second RGB input with saturation control and a<br />

second CVBS output (envelope: QFP 64)<br />

FUNCTIONAL DESCRIPTION<br />

Vision IF amplifier<br />

The IF-amplifier contains 3 ac-coupled control stages with a total gain control range which<br />

is higher then 66 dB. The sensitivity of the circuit is comparable with that of modern<br />

E.G.Data creazione 01/11/99 17.27 14 / 30 F<strong>19</strong>MANU.doc


IF-IC’s.<br />

The video signal is demodulated by means of an alignment-free PLL carrier regenerator<br />

with an internalVCO. This VCO is calibrated by means of a digital control circuit which<br />

uses the X-tal frequency of the colour decoder as a reference. The frequency setting for<br />

the various standards (33.4, 33.9, 38, 38.9, 45.75 and 58.75 MHz) is realised via the I 2 C-<br />

bus. To get a good performance for phase modulated carrier signals the control speed of<br />

the PLL can be increased by means of the FFI bit.<br />

The AFC output is generated by the digital control circuit of the IF-PLL demodulator and<br />

can be read via the I 2 C-bus.<br />

For fast search tuning systems the window of the AFC can be increased with a factor 3.<br />

The setting is realised with the AFW bit. The AFC data is valid only when the horizontal<br />

PLL is in lock (SL = 1)<br />

Depending on the type the AGC-detector operates on top-sync level (single standard<br />

versions) or on top sync and top white- level (multi standard versions). The demodulation<br />

polarity is switched via the I 2 C-bus. The AGC detector time-constant capacitor is<br />

connected externally. This mainly because of the flexibility of the application. The timeconstant<br />

of the AGC system during positive modulation is rather long to avoid visible<br />

variations of the signal amplitude. To improve the speed of the AGC system a circuit has<br />

been included which detects whether the AGC detector is activated every frame period.<br />

When during 3 field periods no action detected the speed of the system is increased. For<br />

signals without peak white information the system switches automatically to a gated black<br />

level AGC. Because a black level clamp pulse is required for this way of operation the<br />

circuit will only switch to black level AGC in the internal mode.<br />

The circuits contain a video identification circuit which is independent of the<br />

synchronisation circuit. Therefore search tuning is possible when the display section of the<br />

receiver is used as a monitor. However, this ident circuit cannot be made as sensitive as<br />

the slower sync ident circuit (SL) and we recommend to use both ident outputs to obtain a<br />

reliable search system. The ident output is supplied to the tuning system via the I 2 C-bus.<br />

The input of the identification circuit is connected to pin 13 (S-DIP 56 devices), the<br />

“internal” CVBS input (see Fig.6).<br />

This has the advantage that the ident circuit can also be made operative when a<br />

scrambled signal is received (descrambler connected between pin 6 (IF video output) and<br />

pin 13). A second advantage is that the ident circuit can be used when the IF amplifier is<br />

not used (e.g. with built-in satellite tuners).<br />

E.G.Data creazione 01/11/99 17.27 15 / 30 F<strong>19</strong>MANU.doc


The video ident circuit can also be used to identify the selected CBVS or Y/C signal. The<br />

switching between the 2 modes can be realised with the VIM bit.<br />

Video switches<br />

The circuits have two CVBS inputs (internal and external CVBS) and a Y/C input. When<br />

the Y/C input is not required the Y input can be used as third CVBS input. The switch<br />

configuration is given in Fig.6. The selection of the various sources is made via the I 2 C-<br />

bus.<br />

For the TDA 884X devices the video switch configuration is identical to the switch of the<br />

TDA 8374/75 series. So the circuit has one CVBS output (amplitude of 2 VP-P for the<br />

TDA884X series) and the I 2 C-bus control is similar to that of the TDA 8374/75. For the<br />

TDA 885X IC’s the video switch circuit has a second output (amplitude of 1 VP-P ) which<br />

can be set independently of the position of the first output. The input signal for the decoder<br />

is also available on the CVBS1-output.<br />

Therefore this signal can be used to drive the Teletext decoder. If S-VHS is selected for<br />

one of the outputs the luminance and chrominance signals are added so that a CVBS<br />

signal is obtained again.<br />

Sound circuit<br />

The sound bandpass and trap filters have to be connected externally. The filtered<br />

intercarrier signal is fed to a limiter circuit and is demodulated by means of a PLL<br />

demodulator. This PLL circuit tunes itself automatically to the incoming carrier signal so<br />

that no adjustment is required.<br />

The volume is controlled via the I 2 C-bus. The deemphasis capacitor has to be connected<br />

externally. The non-controlled audio signal can be obtained from this pin (via a buffer<br />

stage).<br />

The FM demodulator can be muted via the I 2 C-bus. This function can be used to switchoff<br />

the sound during a channel change so that high output peaks are prevented.<br />

The TDA 8840/41/42/46 contain an Automatic Volume Levelling (AVL) circuit which<br />

automatically stabilises the audio output signal to a certain level which can be set by the<br />

viewer by means of the volume control. This function prevents big audio output fluctuations<br />

due to variations of the modulation depth of the transmitter. The AVL function can be<br />

activated via the I 2 C-bus.<br />

Synchronisation circuit<br />

E.G.Data creazione 01/11/99 17.27 16 / 30 F<strong>19</strong>MANU.doc


The sync separator is preceded by a controlled amplifier which adjusts the sync pulse<br />

amplitude to a fixed level. These pulses are fed to the slicing stage which is operating at<br />

50% of the amplitude. The separated sync pulses are fed to the first phase detector and to<br />

the coincidence detector. This coincidence detector is used to detect whether the line<br />

oscillator is synchronised and can also be used for transmitter identification. This circuit<br />

can be made less sensitive by means of the STM bit. This mode can be used during<br />

search tuning to avoid that the tuning system will stop at very weak input signals. The first<br />

PLL has a very high statical steepness so that the phase of the picture is independent of<br />

the line frequency.<br />

The horizontal output signal is generated by means of an oscillator which is running at<br />

twice the line frequency. Its frequency is divided by 2 to lock the first control loop to the<br />

incoming signal. The time-constant of the loop can be forced by the I 2 C-bus (fast or<br />

slow). If required the IC can select the time-constant depending on the noise content of the<br />

incoming video signal.<br />

The free-running frequency of the oscillator is determined by a digital control circuit which<br />

is locked to the reference signal of the colour decoder. When the IC is switched-on the<br />

horizontal output signal is suppressed and the oscillator is calibrated as soon as all subaddress<br />

bytes have been sent. When the frequency of the oscillator is correct the<br />

horizontal drive signal is switched-on. To obtain a smooth switching-on and switching-off<br />

behaviour of the horizontal output stage the horizontal output frequency is doubled during<br />

switch-on and switch-off (slow start/stop). During that time the duty cycle of the output<br />

pulse has such a value that maximum safety is obtained for the output stage.<br />

To protect the horizontal output transistor the horizontal drive is immediately switched off<br />

when a power-on-reset is detected. The drive signal is switched-on again when the normal<br />

switch-on procedure is followed, i.e. all sub-address bytes must be sent and after<br />

calibration the horizontal drive signal will be released again via the slow start procedure.<br />

When the coincidence detector indicates an out-of-lock situation the calibration procedure<br />

is repeated.<br />

The circuit has a second control loop to generate the drive pulses for the horizontal driver<br />

stage. The horizontal output is gated with the flyback pulse so that the horizontal output<br />

transistor cannot be switched-on during the flyback time.<br />

Via the I 2 C-bus adjustments can be made of the horizontal and vertical geometry. The<br />

vertical sawtooth generator drives the vertical output drive circuit which has a differential<br />

output current. For the E-W drive a single ended current output is available. A special<br />

E.G.Data creazione 01/11/99 17.27 17 / 30 F<strong>19</strong>MANU.doc


feature is the zoom function for both the horizontal and vertical deflection and the vertical<br />

scroll function which are available in some versions. When the horizontal scan is reduced<br />

to display 4:3 pictures on a 16:9 picture tube an accurate video blanking can be switched<br />

on to obtain well defined edges on the screen.<br />

Overvoltage conditions (X-ray protection) can be detected via the EHT tracking pin. When<br />

an overvoltage condition is detected the horizontal output drive signal will be switched-off<br />

via the slow stop procedure but it is also possible that the drive is not switched-off and that<br />

just a protection indication is given in the I 2 C-bus output byte.<br />

The choice is made via the input bit PRD. The IC’s have a second protection input on the<br />

ϕ2 filter capacitor pin. When this input is activated the drive signal is switched-off<br />

immediately and switched-on again via the slow start procedure. For this reason this<br />

protection input can be used as “flash protection”.<br />

The drive pulses for the vertical sawtooth generator are obtained from a vertical<br />

countdown circuit. This countdown circuit has various windows depending on the incoming<br />

signal (50 Hz or 60 Hz and standard or non standard). The countdown circuit can be<br />

forced in various modes by means of the I 2 C-bus. During the insertion of RGB signals<br />

the maximum vertical frequency is increased to 72 Hz so that the circuit can also<br />

synchronise on signals with a higher vertical frequency like VGA. To obtain short switching<br />

times of the countdown circuit during a channel change the divider can be forced in the<br />

search window by means of the NCIN bit. The vertical deflection can be set in the deinterlace<br />

mode via the I 2 C bus. To avoid damage of the picture tube when the vertical<br />

deflection fails the guard output current of the TDA 8350/51 can be supplied to the beam<br />

current limiting input. When a failure is detected the RGB-outputs are blanked and a bit is<br />

set (NDF) in the status byte of the I 2 C-bus. When no vertical deflection output stage is<br />

connected thisguard circuit will also blank the output signals. This can be overruled by<br />

means of the EVG bit.<br />

Chroma and luminance processing<br />

The circuits contain a chroma bandpass and trap circuit. The filters are realised by means<br />

of gyrator circuits and<br />

they are automatically calibrated by comparing the tuning frequency with the X-tal<br />

frequency of the decoder. The luminance delay line and the delay for the peaking circuit<br />

are also realised by means of gyrator circuits. The centre frequency of the chroma<br />

bandpass filter is switchable via the I 2 C-bus so that the performance can be optimised for<br />

E.G.Data creazione 01/11/99 17.27 18 / 30 F<strong>19</strong>MANU.doc


“front-end” signals and external CVBS signals. During SECAM reception the centre<br />

frequency of the chroma trap is reduced to get a better suppression of the SECAM carrier<br />

frequencies. All IC’s have a black stretcher circuit which corrects the black level for<br />

incoming video signals which have a deviation between the black level and the blanking<br />

level (back porch). The timeconstant for the black stretcher is realised internally.<br />

The resolution of the peaking control DAC has been increased to 6 bits. All IC’s have a<br />

defeatable coringfunction in the peaking circuit. Some of these IC’s have a YUV interface<br />

(see table on page 2) so that picture improvement IC’s like the TDA 9170 (Contrast<br />

improvement), TDA 9177 (Sharpness improvement) and TDA 4556/66 (CTI) can be<br />

applied. When the CTI IC’s are applied it is possible to increase the gain of the luminance<br />

channel by means of the GAI bit in subaddress 03 so that the resulting RGB output signals<br />

are not affected.<br />

Colour decoder<br />

Depending on the IC type the colour decoder can decode PAL, PAL/NTSC or<br />

PAL/NTSC/SECAM signals. The PAL/NTSC decoder contains an alignment-free X-tal<br />

oscillator, a killer circuit and two colour difference demodulators. The 90° phase shift for<br />

the reference signal is made internally.<br />

The IC’s contain an Automatic Colour Limiting (ACL) circuit which is switchable via the I 2<br />

C-bus and which prevents that oversaturation occurs when signals with a high chroma-toburst<br />

ratio are received. The ACL circuit is designed such that it only reduces the chroma<br />

signal and not the burst signal. This has the advantage that the colour sensitivity is not<br />

affected by this function. The SECAM decoder contains an auto-calibrating PLL<br />

demodulator which has two references, viz: the 4.4 MHz sub-carrier frequency which is<br />

obtained from the X-tal oscillator which is used to tune the PLL to the desired free-running<br />

frequency and the bandgap reference to obtain the correct absolute value of the output<br />

signal. The VCO of the PLL is calibrated during each vertical blanking period, when the IC<br />

is in search or SECAM mode.<br />

The frequency of the active X-tal is fed to the Fsc output (pin 33) and can be used to tune<br />

an external comb filter (e.g. the SAA 4961).<br />

The base-band delay line (TDA 4665 function) is integrated in the PAL/SECAM IC’s and in<br />

the NTSC IC TDA 8846A. In the latter IC it improves the cross colour performance<br />

(chroma comb filter). The demodulated colour difference signals are internally supplied to<br />

the delay line. The colour difference matrix switches automatically between PAL/SECAM<br />

and NTSC, however, it is also possible to fix the matrix in the PAL standard.<br />

E.G.Data creazione 01/11/99 17.27 <strong>19</strong> / 30 F<strong>19</strong>MANU.doc


The “blue stretch” circuit is intended to shift colour near “white” with sufficient contrast<br />

values towards more blue to obtain a brighter impression of the picture.<br />

Which colour standard the IC’s can decode depends on the external X-tals. The X-tal to be<br />

connected to pin 34 must have a frequency of 3.5 MHz (NTSC-M, PAL-M or PAL-N) and<br />

pin 35 can handle X-tals with a frequency of 4.4 and 3.5 MHz. Because the X-tal frequency<br />

is used to tune the line oscillator the value of the X-tal frequency must be given to the IC<br />

via the I 2 C-bus. It is also possible to use the IC in the so called “Tri-norma” mode for<br />

South America. In that case one X-tal must be connected to pin 34 and the other 2 to pin<br />

35. The switching between the 2 latter X-tals must be done externally. This has the<br />

consequence that the search loop of the decoder must be controlled by the µ-computer.<br />

To prevent calibration problems of the horizontal oscillator the external switching between<br />

the 2 X-tals should be carried out when the oscillator is forced to pin 34. For a reliable<br />

calibration of the horizontal oscillator it is very important that the X-tal indication bits (XA<br />

and XB) are not corrupted. For this reason the X-tal bits can be read in the output bytes so<br />

that the software can check the I 2 C-bus transmission.<br />

Under bad-signal conditions (e.g. VCR-playback in feature mode), it may occur that the<br />

colour killer is activated although the colour PLL is still in lock. When this killing action is<br />

not wanted it is possible to overrule the colour killer by forcing the colour decoder to the<br />

required standard and to activate the FCO-bit (Forced Colour On) in the control-5<br />

subaddress.<br />

The IC’s contain a so-called “Dynamic skin tone (flesh) control” feature. This function is<br />

realised in the YUV domain by detecting the colours near to the skin tone. The correction<br />

angle can be controlled via the I 2 C-bus.<br />

RGB output circuit and black-current stabilisation<br />

The colour-difference signals are matrixed with the luminance signal to obtain the RGBsignals.<br />

The TDA 884X devices have one (linear) RGB input. This RGB signal can be<br />

controlled on contrast and brightness (like TDA 8374/75). By means of the IE1 bit the<br />

insertion blanking can be switched on or off. Via the IN1 bit it can be read whether the<br />

insertion pin has a high level or not.<br />

The TDA 885X IC’s have an additional RGB input. This RGB signal can be controlled on<br />

contrast, saturation and brightness. The insertion blanking of this input can be switched-off<br />

by means of the IE2 bit. Via the IN2 bit it can be read whether the insertion pin has a high<br />

level or not.<br />

E.G.Data creazione 01/11/99 17.27 20 / 30 F<strong>19</strong>MANU.doc


The output signal has an amplitude of about 2 volts black-to-white at nominal input signals<br />

and nominal settings of the controls. To increase the flexibility of the IC it is possible to<br />

insert OSD and/or teletext signals directly at the RGB outputs. This insertion mode is<br />

controlled via the insertion input (pin 26 in the S-DIP 56- and pin 38 in the QFP-64<br />

envelope). This blanking action at the RGB outputs has some delay which must be<br />

compensated externally.<br />

To obtain an accurate biasing of the picture tube a “Continuous Cathode Calibration”<br />

circuit has been developed. This function is realised by means of a 2-point black level<br />

stabilisation circuit. By inserting 2 test levels for each gun and comparing the resulting<br />

cathode currents with 2 different reference currents the influence of the picture tube<br />

parameters like the spread in cut-off voltage can be eliminated.<br />

This 2-point stabilisation is based on the principle that the ratio between the cathode<br />

currents is coupled to the ratio between the drive voltages according to:<br />

[ I ki / I k2 ] = [ V dr1 / V dr2 ]<br />

The feedback loop makes the ratio between the cathode currents Ik1 and Ik2 equal to the<br />

ratio between the reference currents (which are internally fixed) by changing the (black)<br />

level and the amplitude of the RGB output signals via 2 converging loops. The system<br />

operates in such a way that the black level of the drive signal is controlled to the cut-off<br />

point of the gun so that a very good grey scale tracking is obtained. The accuracy of the<br />

adjustment of the black level is just dependent on the ratio of internal currents and these<br />

can be made very accurately in integrated circuits. An additional advantage of the 2-point<br />

measurement is that the control system makes the absolute value of Ik1 and Ik2 identical<br />

to the internal reference currents. Because this adjustment is obtained by means of an<br />

adaption of the gain of the RGB control stage this control stabilises the gain of the<br />

complete channel (RGB output stage and cathode characteristic).<br />

As a result variations in the gain figures during life will be compensated by this 2-point<br />

loop.<br />

An important property of the 2-point stabilisation is that the off-set as well as the gain of<br />

the RGB path is adjusted by the feedback loop. Hence the maximum drive voltage for the<br />

cathode is fixed by the relation between the test pulses, the reference current and the<br />

relative gain setting of the 3 channels. This has the consequence that the drive level of the<br />

CRT cannot be adjusted by adapting the gain of the RGB output stage. Because different<br />

picture tubes may require different drive levels the typical “cathode drive level” amplitude<br />

can be adjusted by means of an I 2 C-bus setting. Dependent on the chosen cathode drive<br />

E.G.Data creazione 01/11/99 17.27 21 / 30 F<strong>19</strong>MANU.doc


level the typical gain of the RGB output stages can be fixed taking into account the drive<br />

capability of the RGB outputs (pins <strong>19</strong> to 21). More details about the design will be given in<br />

the application report.<br />

The measurement of the “high” and the “low” current of the 2- point stabilisation circuit is<br />

carried out in 2 consecutive fields. The leakage current is measured in each field. The<br />

maximum allowable leakage current is 100 µA When the TV receiver is switched-on the<br />

RGB output signals are blanked and the black current loop will try to set the right picture<br />

tube bias levels. Via the AST bit a choice can be made between automatic start-up or a<br />

start-up via the µ-processor. In the automatic mode the RGB drive signals are switched-on<br />

as soon as the black current loop<br />

has been stabilised. In the other mode the BCF bit is set to 0 when the loop is stabilised.<br />

The RGB drive can than be switched-on by setting the AST bit to 0. In the latter mod some<br />

delay can be introduced between the setting of the BCF bit and the switching of the AST<br />

bit so that switch-on effects can be suppressed. It is also possible to start-up the devices<br />

with a fixed internal delay (as with the TDA 837X and the TDA884X/5X N1). This mode is<br />

activated with the BCO bit.<br />

The vertical blanking is adapted to the incoming CVBS signal (50 Hz or 60 Hz). When the<br />

flyback time of the vertical output stage is longer than the 60 Hz blanking time the blanking<br />

can be increased to the same value as that of the 50 Hz blanking. This can be set by<br />

means of the LBM bit.<br />

For an easy (manual) adjustment of the Vg2 control voltage the VSD bit is available. When<br />

this bit is activated the black current loop is switched-off, a fixed black level is inserted at<br />

the RGB outputs and the vertical scan is switched-off so that a horizontal line is displayed<br />

on the screen. This line can be used as indicator for the Vg2 adjustment. Because of the<br />

different requirements for the optimum cut-off voltage of the picture tube the RGB output<br />

level is adjustable when the VSD bit is activated. The control range is 2.5 ± 0.7 V and can<br />

be controlled via the brightness control DAC. It is possible to insert a so called “blue back”<br />

back-ground level when no video is available. This feature can be activated via the BB bit<br />

in the control2 subaddress.<br />

E.G.Data creazione 01/11/99 17.27 22 / 30 F<strong>19</strong>MANU.doc


F <strong>19</strong><br />

TO PIN 33<br />

IC100<br />

CVBS EF<br />

FOR TXT<br />

TO PIN 24<br />

TR203<br />

IC 100<br />

(CVBS FOR TXT)<br />

TO PIN 9<br />

IC 100<br />

AV1<br />

STATUS<br />

SCART 1<br />

FROM PIN 6<br />

IC100<br />

AV1 / AV2<br />

SWITCH<br />

FROM PIN 7<br />

IC100<br />

AV1 / TV<br />

SWITCH<br />

TO AV2<br />

<strong>19</strong><br />

8<br />

15<br />

11<br />

7<br />

16<br />

20<br />

CVBS IN<br />

TV<br />

CVBS<br />

TO PIN 10<br />

IC 100<br />

AV2 STATUS<br />

EF<br />

TR201<br />

EF<br />

TR204<br />

TR211<br />

1<br />

3<br />

EF<br />

TR200<br />

2<br />

EF<br />

4<br />

7<br />

IIC<br />

TR202<br />

EF<br />

VIDEO IN<br />

CINCH<br />

8<br />

12 V<br />

6<br />

5<br />

9<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

<strong>19</strong><br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

SIF<br />

AUDEXT<br />

NC<br />

NC<br />

PLLIF<br />

IFVIDEO OUT<br />

SCL<br />

SDA<br />

DECOUPLING<br />

CHR.IN<br />

EX.CVBS/Y IN<br />

VP1<br />

INT CVBS IN<br />

GND<br />

AUDIO OUT<br />

DECOUPLING<br />

EX. CVBS IN<br />

BLKIN<br />

B OUT<br />

G OUT<br />

R OUT<br />

BCL/VG<br />

R IN<br />

G IN<br />

B IN<br />

RGB INSERT.<br />

Y IN<br />

Y OUT<br />

1/3 0F IC201<br />

LA7955<br />

CVBS IN<br />

CVBS OUT<br />

FOR VOLTAGE SINTHESIS ONLY<br />

TDA884X<br />

I.F.<br />

VIDEO<br />

AGC<br />

AFC<br />

DEM.<br />

IDENT<br />

SOUND<br />

PROCES.<br />

(MONO)<br />

SYNC<br />

PROCES.<br />

V. & H.<br />

TIME<br />

BASE<br />

IIC<br />

TRANSRECEIVER<br />

TR212<br />

EF<br />

20 <strong>19</strong><br />

MSD<br />

PAL<br />

(SECAM)<br />

NTSC<br />

C.D. &<br />

RGB<br />

MATRIX<br />

VIDEO<br />

CONTROL<br />

8<br />

EXT RGB<br />

SWITCH<br />

& RGB<br />

DRIVE<br />

SCART 2<br />

DECOUPLING<br />

DEENPHASIS<br />

AGC OUT<br />

DECOPLING<br />

I REF<br />

VERT. RAMP<br />

EHT PROTEC.<br />

IF IN 2<br />

IF IN 1<br />

V. DRIVE A<br />

V. DRIVE B<br />

E - W OUT<br />

GND 2<br />

PH. 1 FILTER<br />

PH. 2 FILTER<br />

H. IN, S.C. OUT<br />

HOR. OUT<br />

DECOUPLING<br />

CVBS 1 OUT<br />

V P 2<br />

DET FILTER<br />

X TAL 2<br />

X TAL 1<br />

S.C. REF OUT<br />

R - Y IN<br />

B - Y IN<br />

R - Y OUT<br />

B - Y OUT<br />

56<br />

55<br />

54<br />

53<br />

52<br />

51<br />

50<br />

49<br />

48<br />

47<br />

46<br />

45<br />

44<br />

43<br />

42<br />

41<br />

40<br />

39<br />

38<br />

37<br />

36<br />

35<br />

34<br />

33<br />

32<br />

31<br />

30<br />

29<br />

EF<br />

RGB AMPLIFIER<br />

MODULE<br />

VIDEO SIGNAL PATH<br />

TO CRT<br />

8 V<br />

UV<br />

12 V<br />

IIC<br />

3,57MHz<br />

5 V<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

TR208<br />

3.58MHz<br />

TR206<br />

4.43MHz<br />

A10<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

C T I<br />

&<br />

4 : 3<br />

TO<br />

16 : 9<br />

FROM PIN 52<br />

IC 100 4:3 TO 16:9<br />

SWITCH<br />

8 V<br />

TR500<br />

10<br />

11<br />

UHF<br />

VHF H<br />

VHF LTR502<br />

FROM PIN 1<br />

IC 100<br />

TR501<br />

5 V<br />

TR205<br />

FROM EHT<br />

TR503<br />

FROM IC 100<br />

PIN 14, 20, 21<br />

BAND SWITCHING<br />

TR105<br />

FROM<br />

PIN 51<br />

IC 100<br />

F<strong>19</strong>VIDEP.DRW<br />

E.G. 14 / 11 / 99


IC204 TDA884X<br />

26 23/24/25 <strong>19</strong>/20/21 18<br />

F<strong>19</strong> RGB AMPLIFIER<br />

12 V<br />

200 V<br />

TO G1 TRC<br />

RGB<br />

IN<br />

RGB<br />

OUT<br />

2<br />

3<br />

1<br />

FAST<br />

BLK.<br />

IN<br />

R17,R18,R<strong>19</strong><br />

RGB IN FROM SCART<br />

R215<br />

R216<br />

R217<br />

R600<br />

2<br />

6/11/14<br />

5<br />

D800, D801, D802<br />

9/12/15<br />

E.F.<br />

4 / 5 / 6<br />

R613<br />

R614<br />

R615<br />

1/3/4<br />

7/10/13<br />

TO<br />

RGB<br />

KATODE<br />

R604<br />

R605<br />

R606<br />

STV 5112<br />

F<strong>19</strong> RGBCO.DRW<br />

E.G. 14 / 11 /99<br />

3 X


F <strong>19</strong> FEATURE MODULE<br />

Colour Transient Improvment<br />

&<br />

4 : 3 to 16 : 9 Signal Processing


SAA4981<br />

Monolithic integrated 16 : 9<br />

Compressor<br />

FEATURES<br />

• Fixed horizontal compression by a factor of 4 ¤3 for most video standards<br />

• Three fixed screen positions (left, centre and right)<br />

• 5 MHz bandwidth<br />

• Bypass function<br />

• Inputs for luminance and chrominance of side panels<br />

• Standard video inputs and outputs (Y, (Β-Y) and (Ρ-Y))<br />

• Horizontal and vertical sync signals are not processed<br />

• Pre filters and post filters on chip.<br />

GENERAL DESCRIPTION<br />

The integrated 16 : 9 compressor is an IC which compresses the active part of a video line<br />

by a factor of 4 ¤3 from, for example, 52 ms to 39ms. This is necessary to display 4:3<br />

video software on a 16 : 9 tube in the correctproportion. The capacitively coupled video<br />

inputs are Y, (Β-Y) and (Ρ-Y).<br />

The synchronisation input HREF is a line frequencyreference signal. The bandwidth of the<br />

IC is up to 5 MHz and the signal delay is realized with SC Line Memories (Switched<br />

Capacitors Line Memories). The output of the 16 : 9 compressor also has the format Y,<br />

(Β Y) and (Ρ-Y) and provides the following two possibilities:<br />

1. Bypass function (the input signal is not compressed)<br />

2. Compressed video by a factor of 4 ¤3 with three different fixed screen positions (left,<br />

centre and right). The luminance and chrominance of the side panels are determined by<br />

the external signals YSIDE, BYSIDE and RYSIDE.<br />

The horizontal compression is a time discrete and amplitude continuous signal processing.<br />

This provides pre and post filters which are realized on-chip.<br />

FUNCTIONAL DESCRIPTION<br />

SAA4981 16:9 TO 4:3 PROCESSOR Pagina 1 di 3 e.g.SAA4981R.doc


V CCA<br />

V EEA<br />

V CCD<br />

V EED SUB<br />

20 <strong>19</strong> 8 7 4<br />

YIN<br />

23<br />

CLAMP<br />

5 MHz<br />

LOW-PASS FILTER<br />

SC LINE MEMORY<br />

SC LINE MEMORY<br />

MUX<br />

SC LINE<br />

MEMORIES<br />

6.7 MHz<br />

LOW-PASS FILTER<br />

MUX Y<br />

18<br />

YOUT<br />

SAA4981<br />

C1 C2 C3<br />

B-Y)IN<br />

22<br />

CLAMP<br />

5 MHz<br />

LOW-PASS FILTER<br />

SC LINE MEMORY<br />

SC LINE MEMORY<br />

MUX<br />

SC LINE<br />

MEMORIES<br />

6.7 MHz<br />

LOW-PASS FILTER<br />

MUX BY<br />

17<br />

(B-Y)OUT<br />

C1 C2 C3<br />

R-Y)IN<br />

21<br />

CLAMP<br />

5 MHz<br />

LOW-PASS FILTER<br />

SC LINE MEMORY<br />

SC LINE MEMORY<br />

MUX<br />

SC LINE<br />

MEMORIES<br />

6.7 MHz<br />

LOW-PASS FILTER<br />

MUX RY<br />

16<br />

(R-Y)OUT<br />

HREF<br />

6<br />

HORIZONTAL<br />

SEPARATION<br />

C1<br />

3<br />

C1 C2 C3<br />

54 MHz<br />

PLL<br />

CONTROLLER<br />

C2<br />

C3<br />

CLAMP REFERENCE<br />

3<br />

12<br />

9<br />

10<br />

11 1 2 3 24 5 15 14 13<br />

MHA277<br />

TEST CTRL2<br />

CTRL1 CTRL3<br />

pagewidth<br />

C LMY<br />

CLMBY<br />

C LMRY<br />

BGREFCLAOUT<br />

BYSIDE<br />

YSIDE RYSIDE


Applicable video standards<br />

The integrated 16 : 9 compressor can be used for the following video standards; B, C, D,<br />

G, H, I, K, K1, L, M and N. standards D, I, K, K1 and L will show a reducedvideo bandwidth<br />

above 5 MHz.<br />

Clamping circuit<br />

The clamping circuits clamp the video input signals Y, (Β-Y) and (Ρ-Y) to the DC level of<br />

the clamp reference signal fed from the clamp reference circuit. This is necessary to<br />

ensure that the input signals are in the correct input voltage range for the 5 MHz low-pass<br />

filters and the SC line memories.<br />

Internal pre filters<br />

Before the signals are sampled in the time discrete and amplitude continuous area, lowpass<br />

filtering is necessary to avoid any aliasing. Even if the inputs have already been lowpass<br />

filtered further filtering is advantageous for the electromagnetic compatibility (EMC).<br />

The same transfer function is used for all three low-pass filters because of the same<br />

bandwidth for the luminance and chrominance signals (up to 5 MHz)<br />

SC line memories<br />

After the low-pass filters the input signals are fed to the SC line memories. The signals are<br />

sampled at a clock frequency of 13.5 MHz. One video line later the signals are read with a<br />

clock frequency of 18 MHz in the compression mode. The result of the different clock<br />

frequencies is a horizontal compression by a factor of 4 ¤3 . The clocks and the horizontal<br />

starting pulses for the SC line memories are fed from the controller.<br />

Two line memories are required for each signal path because in the compression mode, in<br />

one video line the signals are sampled to the SC line memories with 13.5 MHz and one<br />

video line later the signals are read with 18 MHz. In the bypass mode, via the SC line<br />

memories, in one video line the signals are sampled with 13.5 MHz and one video line<br />

later the signals are read with 13.5 MHz.<br />

The SC line memories are suitable for signals with a bandwidth up to 5 MHz. With a<br />

multiplexer (MUX) behind the SC line memories, the sampled video signal is connected to<br />

the internal post filters.<br />

Output multiplexer MUX Y, MUX (Β-Y) and MUX (Ρ-Y)<br />

SAA4981 16:9 TO 4:3 PROCESSOR Pagina 2 di 3 e.g.SAA4981R.doc


The output multiplexers are controlled via C1 and C2 fed from the controller. The<br />

multiplexers are used to connect one of the four input signals to the output and, also,<br />

enable fast switching.<br />

The input signals of the multiplexers for one component<br />

• The output signal of the post filter<br />

• The uncompressed signal after the input clamping<br />

• The clamping reference signal<br />

• The signal for the side panel determined by YSIDE, BYSIDE and RYSIDE.<br />

The horizontal separation circuit<br />

The 54 MHz horizontal PLL is locked to the positive edge of the digital HREF signal, which<br />

is generated in the positive edge of the burst key of a sandcastle signal.<br />

54 MHz horizontal PLL<br />

The 13.5 MHz clock frequency for the sampling clock and the 18 MHz clock frequency for<br />

the reading clock are generated in the 54 MHz horizontal PLL. The 13.5 MHzclock and the<br />

18 MHz clock are line locked.<br />

Clamp reference<br />

Reference voltages are generated In the clamp reference block. These DC signals are<br />

used in the clamping circuits as input signals for the output multiplexers and as reference<br />

voltages for the SC line memories. Four external capacitors at the pins CLMY , CLMBY ,<br />

CLMRY and BGREF respectively are necessary to provide smoothing for the reference<br />

voltages. A black level reference signal is available at CLAOUT.<br />

Controller<br />

The controller generates the clocks and the horizontal start signals for the SC line<br />

memories and, also, the control signals for the output multiplexers. The timing for the start<br />

reading signal for three different screen positions (left, centre and right) and the control<br />

signals for the multiplexers (C1 and C2) is fixed. For the uncompressed signals a bypass<br />

via the SC line memories and a bypass not via the SC line memories is available. When<br />

the signals do not pass the line memories, the frequencyresponse is not affected by the sifunction.<br />

SAA4981 16:9 TO 4:3 PROCESSOR Pagina 3 di 3 e.g.SAA4981R.doc


HREF<br />

1.5 µs<br />

1.5 µs<br />

64 µs<br />

sampled video<br />

(2)<br />

(1)<br />

(2)<br />

49 µs (used for compression)<br />

6.3 µs<br />

52 µs<br />

side<br />

panel<br />

36.75 µs<br />

compressed video<br />

(centre position)<br />

side<br />

panel<br />

side<br />

panel<br />

compressed video<br />

(right position)<br />

compressed video<br />

(left position)<br />

side<br />

panel<br />

bypassed video<br />

(bypass via the Line Memories)<br />

bypassed video<br />

(2)<br />

(1)<br />

(2)<br />

(full bypass not through the Line Memories)<br />

MHA278


TDA4566<br />

Colour transient improvement circuit<br />

GENERAL DESCRIPTION<br />

The TDA4566 is a monolithic integrated circuit for colour-transient improvement (CTI) and<br />

luminance delay line in gyrator technique in colour television receivers.<br />

Features<br />

• Colour transient improvement for colour difference signals (R-Y) and (B-Y) with transient<br />

detecting-, storage- and switching stages resulting in high transients of colour difference<br />

output signals<br />

• A luminance signal path (Y) which substitutes the conventional Y-delay coil with an<br />

integrated Y-delay line<br />

• Switchable delay time from 550 ns to 820 ns in steps of 90 ns and additional fine<br />

adjustment of 37 ns<br />

• Two Y output signals; one of 180 ns less delay<br />

TDA4566 CTI Pagina 1 di 1<br />

e.g.TDA4566R.doc


F<strong>19</strong> CTI & 16:9 TO 4 : 3 COMPRESSOR<br />

6<br />

9<br />

8<br />

1<br />

2<br />

12 V<br />

Y<br />

R-Y<br />

B-Y<br />

IC2 TDA4566<br />

15 13<br />

THESHOLD SWT.<br />

14 10<br />

17<br />

1<br />

CLAMP<br />

dV/dt<br />

dV/dt<br />

GYRATOR<br />

DELAY CELLS<br />

7 x 90 ns<br />

INTEGRATOR<br />

& PULSE<br />

FORMER<br />

t = 180 ns<br />

SWT. &<br />

STORE<br />

SWT. &<br />

STORE<br />

2 3 4 5 6 9 18<br />

12<br />

11<br />

8<br />

7<br />

Y<br />

R-Y<br />

B-Y<br />

IC 1<br />

23<br />

22<br />

21<br />

6<br />

CLAMP<br />

CLAMP<br />

CLAMP<br />

HOR.<br />

SEPAR.<br />

SAA4981<br />

LPF<br />

LPF<br />

LPF<br />

54 MHz<br />

PLL<br />

LINE MEMORY<br />

LINE MEMORY<br />

LINE MEMORY<br />

LINE MEMORY<br />

LINE MEMORY<br />

LINE MEMORY<br />

CONTROLLER<br />

20 8<br />

MUX<br />

MUX<br />

MUX<br />

LPF<br />

LPF<br />

LPF<br />

MUX<br />

MUX<br />

MUX<br />

CLAMP<br />

REFERENCE<br />

18<br />

17<br />

16<br />

13<br />

14<br />

5 V<br />

Y OUT<br />

R-Y<br />

OUT<br />

B-Y<br />

OUT<br />

10<br />

7<br />

4<br />

3<br />

7 20 4 12 11 10 9 <strong>19</strong> 1 2 3 24 5<br />

15<br />

5<br />

11<br />

8 V<br />

R4<br />

S.C INPUT<br />

C10<br />

16<br />

14<br />

13<br />

DUAL MONOSTABLE<br />

MULTIVIBRATOR<br />

M.M.<br />

15<br />

JS 7<br />

JS 6<br />

JS 5<br />

8 16 1<br />

M.M.<br />

3 5<br />

10<br />

2<br />

H REF<br />

5 V<br />

T2<br />

EF<br />

C9<br />

R2<br />

IC 4 HEF 4538<br />

8 V<br />

D1<br />

TR1<br />

12 V<br />

16:9 TO 4:3 SWITCH SIGNAL<br />

note:<br />

If CTI ( IC 2 TDA4566 IS NOT<br />

PRESENT THAN JS 5, JS 6 & JS7<br />

MUST BE INSERTED<br />

F<strong>19</strong>FEAT.DRW<br />

E.G. 12/12/99<br />

12


SCANNING<br />

SECTION


TDA8351<br />

DC-coupled vertical deflection<br />

Circuit<br />

FEATURES<br />

Few external components<br />

Highly efficient fully DC-coupled vertical output bridge circuit<br />

Vertical flyback switch<br />

Guard circuit<br />

Protection against:<br />

• short-circuit of the output pins (7 and 4)<br />

• short-circuit of the output pins to VP<br />

• Temperature (thermal) protection<br />

• High EMC immunity because of common mode inputs<br />

• A guard signal in zoom mode.<br />

•<br />

GENERAL DESCRIPTION<br />

The TDA8351 is a power circuit for use in 9and 11 colour deflection systems for<br />

field frequencies of 50 to 120 Hz. The circuit provides a DC driven vertical deflection<br />

output circuit, operating as a highly efficient class G system.<br />

FUNCTIONAL DESCRIPTION<br />

The vertical driver circuit is a bridge configuration. The deflection coil is connected<br />

between the output amplifiers, which are driven in phase opposition. An external resistor<br />

(RM ) connected in series with the deflection coil provides internal feedback information.<br />

The differential input circuit is voltage driven. The input circuit has been adapted to enable<br />

it to be used with the TDA9150, TDA9151B, TDA9160A, TDA9162, TDA8366 and<br />

TDA8376 which deliver symmetrical current signals. An external resistor (RCON )<br />

connected between the differential input determines the output current through the<br />

deflection coil.<br />

TDA8351 VERTICAL OUTPUT Pagina 1 di 2 e.g.TDA8351R


The relationship between the differential input current and the output current is defined by:<br />

Idiff RCON =Icoil RM .<br />

The output current is adjustable from 0.5 A (p-p) to 3 A(p-p) by varying RM . The maximum<br />

input differential voltage is 1.8 V. In the application it is recommended that Vdiff = 1.5 V<br />

(typ). This is recommended because of the spread of input current and the spread in the<br />

value of RCON .<br />

The flyback voltage is determined by an additional supply voltage VFB . The principle of<br />

operating with two supply voltages (class G) makes it possible to fix the supply voltage VP<br />

optimum for the scan voltage and the second supply voltage VFB optimum for the flyback<br />

voltage. Using this method, very high efficiency is achieved.<br />

The supply voltage VFB is almost totally available as flyback voltage across the coil, this<br />

being possible due to the absence of a decoupling capacitor (not necessary, due to the<br />

bridge configuration). The output circuit is fully protected against the following:<br />

thermal protection<br />

• short-circuit protection of the output pins (pins 4 and 7)<br />

• short-circuit of the output pins to VP .<br />

A guard circuit VO(guard) is provided. The guard circuit is activated at the following<br />

conditions:<br />

• during flyback<br />

• during short-circuit of the coil and during short-circuit of the output pins (pins 4 and 7)<br />

to VP or ground<br />

• during open loop<br />

• when the thermal protection is activated. This signal can be used for blanking the<br />

picture tubescreen.<br />

TDA8351 VERTICAL OUTPUT Pagina 2 di 2 e.g.TDA8351R


th<br />

V P<br />

V FB<br />

V O(guard)<br />

7<br />

3 8<br />

6<br />

V P<br />

CURRENT<br />

SOURCE<br />

TDA8351<br />

V P<br />

V O(A)<br />

V O(A)<br />

I drive(pos)<br />

I drive(neg)<br />

1<br />

2<br />

I S<br />

I T<br />

I<br />

T<br />

V P<br />

9<br />

V I(fb)<br />

V<br />

I<br />

S<br />

V O(B)<br />

4<br />

V O(B)<br />

5<br />

GND<br />

MBC988- 1


PINNING<br />

SYMBOL PIN DESCRIPTION<br />

I drive(pos) 1 input power-stage (positive);<br />

includes I I(sb) signal bias<br />

I drive(neg) 2 input power-stage (negative);<br />

includes I I(sb) signal bias<br />

V P 3 operating supply voltage<br />

V O(B) 4 output voltage B<br />

GND 5 ground<br />

V FB 6 input flyback supply voltage<br />

V O(A) 7 output voltage A<br />

V O(guard) 8 guard output voltage<br />

V I(fb) 9 input feedback voltage<br />

handbook, 2 columns<br />

I drive(pos) 1<br />

I drive(neg)<br />

V P<br />

VO(B)<br />

GND<br />

V FB<br />

V O(A)<br />

VO(guard)<br />

V I(fb)<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

TDA8351<br />

MBC989


IC 204<br />

TDA8844<br />

28 V<br />

146 V<br />

HEATER<br />

VOLTAGE<br />

11<br />

12<br />

1<br />

T 3<br />

EHT<br />

FOCUS<br />

20 mS<br />

IC 5 TDA8351<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

47 46 45 40<br />

64 /uS<br />

EF<br />

TR207<br />

TR12<br />

BUK474<br />

2<br />

TR15<br />

L20<br />

T 2<br />

4<br />

3<br />

L22<br />

D24<br />

C71<br />

L25<br />

D25<br />

VIDEO<br />

SUPPLAY<br />

LINE<br />

TR18<br />

BU508D<br />

LINEARITY<br />

PIN 3<br />

TDA8351<br />

200 V<br />

D 53<br />

50 V 7<br />

8<br />

PIN6<br />

TDA8351<br />

YOKE<br />

5 5<br />

L26 C52<br />

16 V C51<br />

9<br />

3<br />

6<br />

R35<br />

10<br />

C154<br />

VG2<br />

B.C.L.<br />

PIN22<br />

TDA8844<br />

PIN 50<br />

EHT P.<br />

<strong>SERVICE</strong><br />

FLYBACK<br />

PULSE TO:<br />

PIP<br />

TUNING<br />

OSD SYNC<br />

VERTICAL<br />

YOKE<br />

F<strong>19</strong> VERTICAL & LINE OUTPUT<br />

PLUS E-W CORRECTION<br />

F<strong>19</strong> V&HDF.DRW<br />

E.G. 27/12/99


1 3<br />

SCART 1<br />

6 2<br />

EF<br />

CVBS & INTERCARRIER OUT<br />

TR110<br />

EF<br />

TR202<br />

TR201<br />

TR210<br />

6<br />

55<br />

2<br />

SCART<br />

OUT<br />

EXT. IN<br />

TR525<br />

15<br />

10<br />

2<br />

1<br />

FROM PIN8<br />

IC 100<br />

SCART/CINCH<br />

SWITCH<br />

8 V<br />

R239<br />

F575<br />

IC 204<br />

TDA844X<br />

14<br />

12<br />

13<br />

AUDIO<br />

CINCH IN<br />

R208<br />

SOUND<br />

IF IN<br />

F576<br />

R242<br />

1<br />

15<br />

IC 400 TDA2613<br />

9 8 7 6 5 4 3 2 1<br />

11<br />

IC200 (2/3) HEF 4053<br />

FROM PIN 12<br />

IC100<br />

SAA5297A<br />

TR209<br />

AUDIO OUT<br />

TR575<br />

F<strong>19</strong> AUDIO MONO SIGNAL PATH<br />

28 V<br />

F<strong>19</strong>AMSPH.DRW<br />

E.G. 29/12799


TDA 9870A & TDA9875A MAIN CHARACTERISTICS<br />

FEATURES<br />

Demodulator and decoder section<br />

• Sound IF (SIF) input switch e.g. to select between terrestrial TV SIF and SAT SIF<br />

sources SIF AGC with 24 dB control range SIF 8-bit Analog-to-Digital Converter<br />

(ADC)<br />

• DQPSK demodulation for different standards, simultaneously with 1-channel FM<br />

demodulation NICAM decoding (B/G, I and L standard) Two-carrier<br />

multistandard FM demodulation (B/G, D/K and M standard<br />

• Decoding for three analog multi-channel systems (A2, A2+ and A2*) and satellite<br />

sound Optional AM demodulation for system L, simultaneously with NICAM<br />

• Programmable identification (B/G, D/K and M standard) and different identification<br />

times.<br />

• DSP section<br />

• Digital crossbar switch for all digital signal sources and destinations<br />

• Control of volume, balance, contour, bass, treble,<br />

• pseudo stereo, spatial, bass boost and soft-mute<br />

• Plop-free volume control<br />

• Automatic Volume Level (AVL) control<br />

• Adaptive de-emphasis for satellite<br />

• Programmable beeper<br />

• Monitor selection for FM/AM DC values and signals, with peak detection option I 2 S-bus<br />

interface for a feature extension (e.g. Dolby surround) with matrix, level adjust and<br />

mute.<br />

• Analog audio section<br />

• Analog crossbar switch with inputs for mono and stereo<br />

E.G.Data creazione 01/11/99 17.27 23 / 30 F<strong>19</strong>MANU.doc


• (also applicable as SCART 3 input), SCART 1<br />

• input/output, SCART 2 input/output and line output<br />

• User defined full-level/3 dB scaling for SCART outputs<br />

• Output selection of mono, stereo, dual A/B, dual A or Dual B<br />

• 20 kHz bandwidth for SCART-to-SCART copies<br />

• Standby mode with functionality for SCART copies<br />

• Dual audio digital-to-analog converter from DSP to analog crossbar switch, bandwidth<br />

15 kHz Dual audio ADC from analog inputs to DSP Two dual audio Digital-to-<br />

Analog Converters (DACs) for loudspeaker (Main) and headphone (Auxiliary) outputs;<br />

also applicable for L, R, C and S in the Dolby Pro Logic mode with feature extension.<br />

GENERAL DESCRIPTION<br />

The TDA9875A is a single-chip Digital TV Sound Processor (DTVSP) for analog and<br />

digital multi-channel sound systems in TV sets and satellite receivers.<br />

Supported standards<br />

The multistandard/multi-stereo capability of the TDA9875A is mainly of interest in Europe,<br />

but also in Hong Kong/Peoples Republic of China and South East Asia. This includes<br />

B/G, D/K, I, M and L standard. In other application areas there exists only subsets of those<br />

standard combinations otherwise only single standards are transmitted.<br />

M standard is transmitted in Europe by the American Forces Network (AFN) with European<br />

channel spacing (7 MHz VHF, 8 MHz UHF) and monaural sound. The AM sound of L/L’ standard<br />

is normally demodulated in the 1 st sound IF. The resulting AF signal has to be entered into the<br />

mono audio input of the TDA9875A. A second possibility is to use the internal AM demodulator<br />

stage, however this gives limited performance. Korea has a stereo sound system similar to Europe<br />

and is supported by the TDA9875A. Differences include deviation, modulation contents and<br />

identification. It is based on M standard.<br />

FUNCTIONAL DESCRIPTION<br />

Description of the demodulator and decoder section<br />

SIF INPUT<br />

E.G.Data creazione 01/11/99 17.27 24 / 30 F<strong>19</strong>MANU.doc


Two input pins are provided, SIF1 e.g. for terrestrial TV and SIF2 e.g. for a satellite tuner.<br />

For higher SIF signal levels the SIF input can be attenuated with an internal switchable<br />

10 dB resistor divider. As no specific filters are integrated, both inputs have the same<br />

specification giving flexibility in application. The selected signal is passed through an AGC<br />

circuit and then digitized by an 8-bit ADC operating at 24.576 MHz.<br />

AGC<br />

The gain of the AGC amplifier is controlled from the ADC output by means of a digital<br />

control loop employing hysteresis. The AGC has a fast attack behaviour to prevent ADC<br />

overloads and a slow decay behaviour to prevent AGC oscillations. For AM demodulation<br />

the AGC must be switched off. When switched off, the control loop is reset and fixed gain<br />

settings can be chosen from Table 15 (subaddress 0).<br />

MIXER<br />

The digitized input signal is fed to the mixers, which mix one or both input sound carriers<br />

down to zero IF. A 24-bit control word for each carrier sets the required frequency. Access<br />

to the mixer control word registers is via the I 2 C-bus. When receiving NICAM programs,<br />

a feedback signal is added to the control word of the second carrier mixer to establish a<br />

carrier-frequency loop.<br />

FM AND AM DEMODULATION<br />

An FM or AM input signal is fed via a band-limiting filter to a demodulator that can be used<br />

for either FM or AM demodulation. Apart from the standard (fixed) de-emphasis<br />

characteristic, an adaptive de-emphasis is available for encoded satellite programs. A<br />

stereo decoder recovers the left and right signal channels from the demodulated sound<br />

carriers. Both the European and Korean stereo systems are supported.<br />

FM IDENTIFICATION<br />

The identification of the FM sound mode is performed by AM synchronous demodulation of<br />

the pilot signal and narrow-band detection of the identification frequencies. The result is<br />

available via the I 2 C-bus interface. A selection can be made via the I 2 C-bus for B/G,<br />

D/K and M standard and for three different modes that represent different trade-offs<br />

between speed and reliability of identification.<br />

NICAM DEMODULATION<br />

The NICAM signal is transmitted in a DQPSK code at a bit rate of 728 kbit/s. The NICAM<br />

demodulator performs DQPSK demodulation and feeds the resulting bitstream and clock<br />

signal onto the NICAM decoder and, for evaluation purposes, to PCLK (pin 1) and NICAM<br />

E.G.Data creazione 01/11/99 17.27 25 / 30 F<strong>19</strong>MANU.doc


(pin 2). A timing loop controls the frequency of the crystal oscillator to lock the sampling<br />

rate to the symbol timing of the NICAM data.<br />

NICAM DECODER<br />

The device performs all decoding functions in accordance with the “EBU NICAM 728<br />

specification”. After locking to the frame alignment word, the data is descrambled by<br />

applying the defined pseudo-random binary sequence; the device will then synchronize to<br />

the periodic frame flag bit C0.<br />

The status of the NICAM decoder can be read out from the NICAM status register by the<br />

user. The OSB bit indicates that the decoder has locked to the NICAM data. The VDSP bit<br />

indicates that the decoder has locked to the NICAM data and that the data is valid sound<br />

data. The C4 bit indicates that the sound conveyed by the FM mono channel is identical to<br />

the sound conveyed by the NICAM channel. The error byte contains the number of sound<br />

sample errors, resulting from parity checking, that occurred in the past 128 ms period.<br />

NICAM AUTO-MUTE<br />

This function is enabled by setting bit AMUTE LOW subaddress 14 Upper and lower error<br />

limits may be defined by writing appropriate values to two registers in the I 2 C-bus section<br />

(subaddresses 16 and 17; . When the number of errors in a 128 ms period exceeds the<br />

upper error limit the auto-mute function will switch the output sound from NICAM to<br />

whatever sound is on the first sound carrier (FM or AM). When the error count is smaller<br />

than the lower error limit the NICAM sound is restored. The auto-mute function can be<br />

disabled by setting bit AMUTE HIGH. In this condition clicks become audible when the<br />

error count increases; the user will hear a signal of degrading quality.<br />

A decision to enable/disable the auto-muting is taken by the microcontroller based on an<br />

interpretation of the application control bits C1, C2, C3 and C4 and, possibly, any<br />

additional strategy implemented by the set maker in the microcontroller software.<br />

For NICAM L applications, it is recommended to demodulate AM sound in the first sound<br />

IF and connect the audio signal to the mono input of the TDA9875A. By setting the AMSEL<br />

bit subaddress 14. the auto-mute function will switch to the audio ADC instead of switching<br />

to the first sound carrier.<br />

CRYSTAL OSCILLATOR<br />

The digital-controlled crystal oscillator (DCXO) is illustrated in Fig.8 (see Chapter 12). The<br />

circuitry of the DCXO is fully integrated, only the external 24.576 MHz crystal is needed.<br />

E.G.Data creazione 01/11/99 17.27 26 / 30 F<strong>19</strong>MANU.doc


TEST PINS<br />

Both test pins are active HIGH, in normal operation of the device they are wired to VSSD1<br />

Test functions are for manufacturing tests only and are not available to customers. Without<br />

external circuitry these pads are pulled down to LOW level with internal resistors.<br />

POWER FAIL DETECTOR<br />

The power fail detector monitors the internal power supply for the digital part of the device.<br />

If the supply has temporary been lower than the specified lower limit, the power-on reset<br />

bit POR, transmitter register subaddress 0 will be set to HIGH. The CLRPOR bit, slave<br />

register subaddress 1 resets the power-on reset flip-flop to LOW. If this is detected, an<br />

initialization of the TDA9875A has to be carried out to ensure reliable operation.<br />

LEVEL SCALING<br />

All input channels to the digital crossbar switch (except for the loudspeaker feedback path)<br />

are equipped with a level adjust facility to change the signal level in a range of 15 dB. It<br />

is recommended to scale all input channels to be 15 dB below full scale (15 dB full scale)<br />

under nominal conditions.<br />

NICAM PATH<br />

The NICAM path has a switchable J17 de-emphasis.<br />

FM (AM) PATH<br />

A high-pass filter suppresses DC offsets from the FM demodulator due to carrier frequency<br />

offsets and supplies the monitor/peak function with DC values and an unfiltered signal, e.g.<br />

for the purpose of carrier detection. The de-emphasis function offers fixed settings for the<br />

supported standards (50 µs, 60 µs 75 µs and J17). An adaptive de-emphasis is available<br />

for Wegener-Panda 1 encoded programs. A matrix performs the dematrixing of the A2<br />

stereo, dual and mono signals.<br />

NICAM AUTO-MUTE<br />

If NICAM B/G, I, D/K is received, the auto-mute is enabled and the signal quality becomes<br />

poor, the digital crossbar switch switches automatically to FM and switches the matrix to<br />

channel 1. The automatic switching depends on the NICAM bit error rate.<br />

The auto-mute function can be disabled via the I 2 C-bus. For NICAM L applications, it is<br />

recommended to demodulate AM sound in the first sound IF and connect the audio signal<br />

to the mono input of the TDA9875A. By setting the AMSEL bit subaddress 14 (see Section<br />

10.3.11), the auto-mute function will switch to the audio ADC instead of switching to the<br />

E.G.Data creazione 01/11/99 17.27 27 / 30 F<strong>19</strong>MANU.doc


first sound carrier. The ADC source selector subaddress 23 (see Section 10.3.20) should<br />

be set to mono input, where the AM sound signal should be connected.<br />

LOUDSPEAKER (MAIN) CHANNEL<br />

The matrix provides the following functions; forced mono, stereo, channel swap, channel<br />

1, channel 2 and spatial effects.<br />

There are fixed coefficient sets for spatial settings of 30%, 40% and 52%.<br />

The Automatic Volume Level (AVL) function provides a constant output level of 23 dB full<br />

scale for input levels between 0 and 29 dB full scale. There are some fixed decay time<br />

constants to choose from, i.e. 2, 4 and 8 seconds.<br />

Pseudo stereo is based on a phase shift in one channel via a 2 nd -order all-pass filter.<br />

There are fixed coefficient sets to provide 90 degrees phase shift at frequencies of 150,<br />

200 and 300 Hz.<br />

Volume is controlled individually for each channel ranging from +24 to -83 dB with 1 dB<br />

resolution. There is also a mute position. For the purpose of a simple control software in<br />

the microcontroller, the decimal number that is sent as an I 2 C-bus data byte for volume<br />

control is identical to the volume setting in dBs (e.g. the I 2 C-bus data byte +10 sets the<br />

new volume value to +10 dB).<br />

Balance can be realized by independent control of the left and right channel volume<br />

settings.<br />

Contour is adjustable between 0 and +18 dB with 1 dB resolution. This function is linked to<br />

the volume setting by means of microcontroller software.<br />

Bass is adjustable between +15 and -12 dB with 1 dB resolution and treble is adjustable<br />

between +/-12 dB with 1 dB resolution.<br />

For the purpose of a simple control software in the microcontroller, the decimal number<br />

that is sent as an I 2 C-bus data byte for contour, bass or treble is identical to the new<br />

contour, bass or treble setting in dBs (e.g. the I 2 C-bus data byte +8 sets the new value to<br />

+8 dB). Extra bass boost is provided up to 20 dB with 2 dB resolution. The implemented<br />

coefficient set serves merely as an example on how to use this filter.<br />

The beeper provides tones in a range from approximately 400 Hz to 30 kHz. The<br />

frequency can be selected via the I 2 C-bus. The beeper output signal is added to<br />

theloudspeaker and headphone channel signals. The beeper volume is adjustable with<br />

E.G.Data creazione 01/11/99 17.27 28 / 30 F<strong>19</strong>MANU.doc


espect to full scale between 0 and 93 dB with 3 dB resolution. The beeper is not<br />

effected by mute.<br />

Soft-mute provides a mute ability in addition to volume control with a well defined time (32<br />

ms) after which the soft-mute is completed. A smooth fading is achieved by a cosine<br />

masking.<br />

HEADPHONE (AUXILIARY) CHANNEL<br />

The matrix provides the following functions; forced mono, stereo, channel swap, channel<br />

and channel 2 (or C and S in Dolby Surround Pro Logic mode). Volume is controlled<br />

individually for each channel in a range from +24 to 83 dB with 1 dB resolution. There is<br />

also a mute position. For the purpose of a simple control software in the microcontroller,<br />

the decimal number that is sent as an I 2 C-bus data byte for volume control is identical to<br />

the volume setting in dB (e.g. the I 2 C-bus data byte +10 sets the new volume value to<br />

+10 dB). Balance can be realized by independent control of the left and right channel<br />

volume settings.<br />

Bass is adjustable between +15 and -12 dB with 1 dB resolution and treble is adjustable<br />

between +/- 12 dB with 1 dB resolution.<br />

For the purpose of a simple control software in the microcontroller, the decimal number<br />

that is sent as an I 2 C-bus data byte for bass or treble is identical to the new bass or<br />

treble setting in dB (e.g. the I 2 C-bus data byte +8 sets the new value to +8 dB).<br />

The beeper provides tones in a range from approximately 400 Hz to 30 kHz. The<br />

frequency can be selected via the I 2 C-bus. The beeper output signal is added to the<br />

loudspeaker and headphone channel signals. The beeper volume is adjustable with<br />

respect to full scale between 0 and 93 dB with 3 dB resolution. The beeper is not<br />

effected by mute.<br />

Soft-mute provides a mute ability in addition to volume control with a well defined time (32<br />

ms) after which the soft-mute is completed. A smooth fading is achieved by a cosine<br />

masking.<br />

SCART INPUTS<br />

The SCART specification allows for a signal level of up to 2 V (rms). Because of signal<br />

handling limitations, due to the 5 V supply voltage of the TDA9875A, it is necessary to<br />

have fixed 3 dB attenuators at the SCART inputs to obtain a 2 V input. This results in a +3<br />

dB SCART-to-SCART copy gain. If 0 dB copy gain is preferred (with maximum 1.4V input),<br />

there are +3 dB/0 dB amplifiers at the outputs of SCART 1 and SCART 2 and at the line<br />

E.G.Data creazione 01/11/99 17.27 29 / 30 F<strong>19</strong>MANU.doc


output. The input attenuator is realized by an external series resistor in combination with<br />

the input impedance, both of which form a voltage divider. With this voltage divider the<br />

maximum SCART signal level of 2 V (rms) is scaled down to 1.4 V (rms) at the input pin.<br />

EXTERNAL AND MONO INPUTS<br />

The 3 dB input attenuators are not required for the external and mono inputs, because<br />

those signal levels are under control of the TV designer. The maximum allowed input level<br />

is 1.4 V (rms). By adding external series resistors, the external inputs can be used as an<br />

additional SCART input.<br />

SCART OUTPUTS<br />

The SCART outputs employ amplifiers with two gain settings. The gain can be set to +3<br />

dB or to 0 dB via the I 2 C-bus. The +3 dB position is needed to compensate for the 3 dB<br />

attenuation at the SCART inputs should SCART-to-SCART copies with 0 dB gain be<br />

preferred [under the condition of 1.4 V (rms) maximum input level]. The 0 dB position is<br />

needed, for example, for an external-to-SCART copy with 0 dB gain.<br />

LINE OUTPUT<br />

The line output can provide an unprocessed copy of the audio signal in the loudspeaker<br />

channels. This can be either an external signal that comes from the dual audio ADC, or a<br />

signal from an internal digital audio source that comes from the dual audio DAC. The line<br />

output employs amplifiers with two gain settings. The +3 dB position is needed to<br />

compensate for the attenuation at the SCART inputs, while the 0 dB position is needed, for<br />

example, for non-attenuated external or internal digital signals (see Section 6.3.4).<br />

E.G.Data creazione 01/11/99 17.27 30 / 30 F<strong>19</strong>MANU.doc


TO PIN 9 IC1<br />

TDA9811<br />

TR8<br />

INTERCARRIER<br />

EF<br />

FROM PIN 20 IC1<br />

TDA9811<br />

6 V<br />

TO L/L' FILTER<br />

SWITCH<br />

TR8<br />

AM AUDIO<br />

FROM PIN 22 IC1<br />

TDA9811<br />

II S<br />

IIC BUS<br />

STD SWITCH<br />

TR6<br />

EF<br />

L /L' SWITCH<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

<strong>19</strong><br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

PLCK<br />

NICAM<br />

ADDR1<br />

SCL<br />

SDA<br />

VSSA1<br />

VDEC1<br />

Iref<br />

P1<br />

SIF2<br />

Vref<br />

SIF1<br />

ADDR2<br />

Vssd1<br />

Vdd1<br />

CRESET<br />

Vssd4<br />

XTAL1<br />

XTAL0<br />

P2<br />

SYSLCK<br />

SCK<br />

WS<br />

SDO2<br />

SDO1<br />

SDI2<br />

SDI1<br />

TEST1<br />

MONOIN<br />

TEST2<br />

EXT/R<br />

EXT/L<br />

IIC<br />

IN / OUT<br />

IDENT<br />

I / O<br />

PORT<br />

PEAK<br />

DETEC.<br />

VCXO<br />

CLOCK<br />

IIS<br />

ENC.<br />

DEC.<br />

FM DEM<br />

(AM DEM)<br />

DEMATR<br />

DEEMPH<br />

LEVEL<br />

ADJ.<br />

CHANNEL<br />

SELECTION<br />

QPSK<br />

DEM.<br />

NICAM<br />

DEC.<br />

LEVEL<br />

ADJ.<br />

AUDIO PROCESSING<br />

L.S.<br />

AVL,VOL<br />

CONTOUR<br />

BASS<br />

TREBLE<br />

PSEUDO<br />

BASS CORR<br />

DAC<br />

INPUT SWITCH<br />

AGC ADC<br />

DAC<br />

DAC<br />

H.P.<br />

VOL.<br />

BASS<br />

TREB.<br />

DAC<br />

TDA9875A<br />

ANALOGUE CROSS BAR SWITCH<br />

TEST<br />

VDD2<br />

LOR<br />

LOL<br />

MOL<br />

MOR<br />

Vdda<br />

AUXOL<br />

AUXOR<br />

Vssa3<br />

pcapl<br />

pcapr<br />

vREF3<br />

SCOL2<br />

SCOR2<br />

Vssa4<br />

Vssd2<br />

SCOL1<br />

SCOR2<br />

Vref2<br />

i.c.<br />

i.c.<br />

Vssa2<br />

i.c.<br />

i.c.<br />

Vref(n)<br />

Vref(p)<br />

Vdec2<br />

SCIL2<br />

SCIR2<br />

Vssd3<br />

SCIL1<br />

SCIR1<br />

TDA9875A PINOUT & PERIPHERALS<br />

64<br />

63<br />

62<br />

61<br />

60<br />

59<br />

58<br />

57<br />

56<br />

55<br />

54<br />

53<br />

52<br />

51<br />

50<br />

49<br />

48<br />

47<br />

46<br />

45<br />

44<br />

43<br />

42<br />

41<br />

40<br />

39<br />

38<br />

37<br />

36<br />

35<br />

34<br />

33<br />

AUDIO LINE OUT<br />

6 V<br />

TR11<br />

TR12<br />

TR9<br />

AUDIO OUT TO SCART<br />

AUDIO FROM SCART<br />

6 V<br />

TO AUDIO<br />

AMPLIFIER<br />

TR10<br />

TO HEADPHONES<br />

APLIFIER<br />

IC4<br />

TDA2822M<br />

TDA9875A.DRW<br />

E.G. 7/11/99


TDA9811<br />

Multistandard VIF-PLL<br />

with QSS-IF and AM demodulator<br />

FEATURES<br />

• 5 V supply voltage<br />

• Two switched VIF inputs, gain controlled wide band VIF-amplifier (AC-coupled)<br />

• True synchronous demodulation with active carrier regeneration (very linear<br />

demodulation, good intermodulation figures, reduced harmonics, excellent pulse<br />

response)<br />

• Gated phase detector for L/L accent standard VCO frequency switchable between L<br />

and L accent (alignment external) picture carrier frequency<br />

• Separate video amplifier for sound trap buffering with high video bandwidth VIF AGC<br />

detector for gain control, operating as peak sync detector for B/G (optional external<br />

AGC) and peak white detector for L; signal controlled reaction time for L<br />

• Tuner AGC with adjustable takeover point (TOP)<br />

• AFC detector without extra reference circuit<br />

• SIF input for single reference QSS mode (PLL controlled); SIF AGC detector for gain<br />

controlled SIF amplifier; single reference QSS mixer able to operate in high<br />

performance single reference QSS mode<br />

• AM demodulator without extra reference circuit<br />

• AM mute (especially for NICAM)<br />

• Stabilizer circuit for ripple rejection and to achieve constant output signals.<br />

GENERAL DESCRIPTION<br />

The TDA9811 is an integrated circuit for multistandard vision IF signal processing and<br />

sound AM demodulation, with single reference QSS-IF in TV and VCR sets.<br />

TDA9811 QSS Pagina 1 di 4 e.g. TDA9811R


h<br />

VIF input switch<br />

TOP<br />

tuner<br />

AGC<br />

loop<br />

filter<br />

2 x f PC<br />

AFC<br />

30 28 3 6<br />

<strong>19</strong><br />

7<br />

25<br />

24<br />

23<br />

TUNER AND VIF-AGC<br />

VCO TWD<br />

AFC DETECTOR<br />

VIFB<br />

VIFA<br />

SIF<br />

5<br />

4<br />

2<br />

1<br />

32<br />

31<br />

VIF AMPLIFIER<br />

AND<br />

INPUT SWITCH<br />

SIF<br />

AMPLIFIER<br />

FPLL<br />

SINGLE REFERENCE<br />

MIXER AND<br />

AM DEMODULATOR<br />

VIDEO DEMODULATOR<br />

AND AMPLIFIER<br />

TDA9811<br />

VIDEO<br />

BUFFER<br />

AF AMPLIFIER<br />

AND SWITCH<br />

21<br />

10<br />

22<br />

12<br />

video<br />

1 V (p-p)<br />

CVBS<br />

2 V (p-p)<br />

V i(vid)<br />

AF/AM<br />

INTERNAL VOLTAGE<br />

STABILIZER<br />

SIF-AGC<br />

29 27 26 9 8<br />

20 11 18 16 15 17<br />

13<br />

14<br />

n.c.<br />

n.c.<br />

1/2 V P<br />

5 V<br />

standard<br />

switch<br />

CAGC<br />

C AGC C BL<br />

MHA046<br />

(2nd SIF)<br />

V o QSS<br />

L′/L<br />

switch<br />

n.c.<br />

n.c.<br />

n.c.<br />

mute switch, AM


FUNCTIONAL DESCRIPTION<br />

Vision IF amplifier and input switch The vision IF amplifier consists of three AC-coupled<br />

differential amplifier stages. Each differential stage comprises a feedback network<br />

controlled by emitterdegeneration. T<br />

The first differential stage is extended by two pairs of emitter followers to provide two IF<br />

input channels. The VIF input can be selected by pin 30<br />

Tuner and VIF AGC<br />

The AGC capacitor voltage is transferred to an internal IF control signal, and is fed to the<br />

tuner AGC to generate the tuner AGC output current (open-collector output).<br />

The tuner AGC takeover point can be adjusted. This allows the tuner and the SWIF filter to<br />

be matched to achieve the optimum IF input level.<br />

The AGC detector charges/discharges the AGC capacitorto the required voltage for setting<br />

of VIF and tuner gain in order to keep the video signal at a constant level.<br />

Therefore for negative video modulation the sync level and for positive video modulation<br />

the peak white level of the video signal is detected. In order to reduce the reaction<br />

time for positive modulation, where a very large time constant is needed, an additional<br />

level detector increases the discharging current of the AGC capacitor (fast mode)<br />

in the event of a decreasing VIF amplitude step. The additional level information is given<br />

by the black-level detector voltage.<br />

Frequency Phase Locked Loop detector (FPLL)<br />

The VIF-amplifier output signal is fed into a frequency detector and into a phase detector<br />

via a limiting amplifier.<br />

During acquisition the frequency detector produces a DC current proportional to the<br />

frequency difference between the input and the VCO signal. After frequency lock-in the<br />

phase detector produces a DC current proportional to the phase difference between the<br />

VCO and the input signal. The DC current of either frequency detector or phase detector is<br />

converted into a DC voltage via the loop filter, which controls the VCO frequency. In the<br />

event of positive modulated signals the phase detector is gated by composite sync in order<br />

to avoid signal distortion for overmodulated VIF signals.<br />

TDA9811 QSS Pagina 2 di 4 e.g. TDA9811R


VCO, Travelling Wave Divider (TWD) and AFC<br />

The VCO operates with a resonance circuit (with L and C in parallel) at double the PC<br />

frequency. The VCO is controlled by two integrated variable capacitors.<br />

The control voltage required to tune the VCO from its free-running frequency to actually<br />

double the PC frequency is generated by the frequency-phase detector and fed via the<br />

loop filter to the first variable capacitor (FPLL). This control voltage is amplified and<br />

additionally converted into a current which represents the AFC output signal. The VCO<br />

centre frequency can be decreased (required for L accent standard) by activating an<br />

additional internal capacitor. This is achieved by using the L accent switch. In this event<br />

the second variable capacitor can be controlled by a variable resistor at the L accent<br />

switch for setting the VCO centre frequency to the required L accent value. At centre<br />

frequency the AFC output current is equal to zero.<br />

The oscillator signal is divided-by-two with a TWD which generates two differential output<br />

signals with a 90 degree phase difference independent of the frequency.<br />

Video demodulator and amplifier<br />

The video demodulator is realized by a multiplier which is designed for low distortion and<br />

large bandwidth. The vision IF input signal is multiplied with the ‘in phase’ signal of the<br />

travelling wave divider output. In the demodulator stage the video signal polarity can be<br />

switched in accordancewith the TV standard. The demodulator output signal is fed via an<br />

integrated low-pass filter for attenuation of the carrier harmonics to the video amplifier. The<br />

video amplifier is realized by an operational amplifier with internal feedback and high<br />

bandwidth. A low-pass filter is integrated to achieve an attenuation of the carrier harmonics<br />

for B/G and L standard. The standard dependent level shift in this stage delivers the same<br />

sync level for positive and negative modulation. The video output signal is 1 V (p-p) for<br />

nominal vision IF modulation.<br />

Video buffer<br />

For an easy adaption of the sound traps an operational amplifier with internal feedback is<br />

used in the event of B/G and L standard. This amplifier is featured with a high bandwidth<br />

and 7 dB gain. The input impedance is adapted output stage delivers a nominal 2 V (p-p)<br />

positive video signal. Noise clipping is provided.<br />

TDA9811 QSS Pagina 3 di 4 e.g. TDA9811R


SIF amplifier and AGC<br />

The sound IF amplifier consists of two AC-coupled differential amplifier stages. Each<br />

differential stage comprises a controlled feedback network provided by emitter<br />

degeneration. The SIF AGC detector is related to the SIF input signals (average level of<br />

AM or FM carriers) and controls the SIF amplifier to provide a constant SIF signal to the<br />

AM demodulator and single reference QSS mixer. The SIF AGC reaction time is set to<br />

‘slow’ for nominal video conditions. But with a decreasing VIF amplitude step the SIF AGC<br />

is set to ‘fast’ mode controlled by the VIF AGC detector. In FM mode this reaction time is<br />

also set to ‘fast’ controlled by the standard switch.<br />

Single reference QSS mixer The single reference QSS mixer is realized by a multiplier.<br />

The SIF amplifier output signal is fed to the single reference QSS mixer and converted to<br />

intercarrier frequency by the regenerated picture carrier (VCO).<br />

The mixer output signal is fed via a high-pass for attenuation of the video signal<br />

components to the output pin 20. With this system a high performance hi-fi stereo<br />

sound processing can be achieved.<br />

AM demodulator<br />

The AM demodulator is realized by a multiplier. The modulated SIF amplifier output signal<br />

is multiplied in phase with the limited (AM is removed) SIF amplifier output signal. The<br />

demodulator output signal is fed via an integrated low-pass filter for attenuation of the<br />

carrier harmonics to the AF amplifier.<br />

Internal voltage stabilizer and 1 ¤2 VP -reference<br />

The bandgap circuit internally generates a voltage of approximately 1.25 V, independent of<br />

supply voltage and temperature. A voltage regulator circuit, connected to this voltage,<br />

produces a constant voltage of 3.6 V which is used as an internal reference voltage.<br />

For all audio output signals the constant reference voltage cannot be used because large<br />

output signals are required.<br />

TDA9811 QSS Pagina 4 di 4 e.g. TDA9811R


PINNING<br />

SYMBOL PIN DESCRIPTION<br />

V i VIF1 1 VIF differential input signal voltage 1<br />

V i VIF2 2 VIF differential input signal voltage 2<br />

C BL 3 black level detector<br />

V i VIF3 4 VIF differential input signal voltage 3<br />

andbook, halfpage<br />

Vi VIF1<br />

1<br />

32<br />

Vi SIF2<br />

V i VIF4 5 VIF differential input signal voltage 4<br />

Vi VIF2<br />

2<br />

31<br />

Vi SIF1<br />

TADJ 6 tuner AGC takeover adjust (TOP)<br />

T PLL 7 PLL loop filter<br />

C SAGC 8 SIF AGC capacitor<br />

STD 9 standard switch<br />

V o CVBS 10 CVBS output signal voltage<br />

LSWI 11 L/L accent switch<br />

CBL<br />

Vi VIF3<br />

V i VIF4<br />

TADJ<br />

TPLL<br />

3<br />

4<br />

5<br />

6<br />

7<br />

30<br />

29<br />

28<br />

27<br />

26<br />

INSWI<br />

VP<br />

CVAGC<br />

GND<br />

Cref<br />

V oAF 12 AM audio voltage frequency output<br />

n.c. 13 not connected<br />

CSAGC<br />

STD<br />

8<br />

9<br />

TDA9811<br />

25<br />

24<br />

VCO2<br />

VCO1<br />

n.c. 14 not connected<br />

n.c. 15 not connected<br />

n.c. 16 not connected<br />

MUTE 17 AM mute<br />

n.c. 18 not connected<br />

Vo CVBS<br />

LSWI<br />

Vo AF<br />

n.c.<br />

10<br />

11<br />

12<br />

13<br />

23<br />

22<br />

21<br />

20<br />

AFC<br />

Vi(vid)<br />

Vo(vid)<br />

Vo QSS<br />

TAGC <strong>19</strong> tuner AGC output<br />

n.c.<br />

14<br />

<strong>19</strong><br />

TAGC<br />

V o QSS 20 single reference QSS output voltage<br />

n.c.<br />

15<br />

18<br />

n.c.<br />

V o(vid) 21 composite video output voltage<br />

n.c.<br />

16<br />

17<br />

MUTE<br />

V i(vid) 22 video buffer input voltage<br />

AFC 23 AFC output<br />

MHA047<br />

VCO1 24 VCO1 reference circuit for 2f PC<br />

VCO2 25 VCO2 reference circuit for 2f PC<br />

C ref 26 1 ⁄ 2 V P reference capacitor<br />

GND 27 ground<br />

C VAGC 28 VIF AGC capacitor<br />

V P 29 supply voltage<br />

INSWI 30 VIF input switch<br />

V i SIF1 31 SIF differential input signal voltage 1<br />

V i SIF2 32 SIF differential input signal voltage 2<br />

Fig.2 Pin configuration.


TDA9830<br />

TV sound AM-demodulator and<br />

audio source switch<br />

FEATURES<br />

• Adjustment free wideband synchronous AM demodulator<br />

• Audio source-mute switch (low noise)<br />

• Audio level according EN50049<br />

• 5 to 8 V power supply or 12 V alternative<br />

• Low power consumption.<br />

GENERAL DESCRIPTION<br />

The TDA9830, a monolithic integrated circuit, is designed for AM-sound demodulation<br />

used in L- and L’-standard.<br />

The IC provides an audio source selector and also mute switch.<br />

FUNCTIONAL DESCRIPTION<br />

Sound IF input<br />

The sound IF amplifier consists of three AC-coupled differential amplifier stages each with<br />

approximately 20 dB gain. At the output of each stage is a multiplier for gain controlling<br />

(→ current distribution gain control). The overall control range is approximately -6 to +60<br />

dB and the frequency response (-3 dB) of the IF amplifier is approximately 6 to 70 MHz.<br />

The steepness of gain control is approximately 10 mV/dB.<br />

IF AGC<br />

The automatic gain control voltage to maintain the AM demodulator output signal at a<br />

constant level is generated by a mean level detector. This AGC-detector charges and<br />

discharges the capacitor at pin 3 controlled by the output signal of the AM-demodulator<br />

compared to an internal reference voltage. The maximum charge/discharge current is<br />

approximately 5 mA. This value in combination with the value of the AGC capacitor and<br />

the AGC steepness determines the lower cut-off audio frequency and the THD-figure at<br />

low modulation frequency of the whole AM-demodulator. Therefore a large time constant<br />

has to be chosen which leads to slow AGC reaction at IF level change. To speed up the<br />

AGC in case of IF signal jump from low to high level, there is an additional comparator built<br />

in, which can provide additional discharge current from the AGC capacitor up to 5 mA in a<br />

case of overloading the AM demodulator by the internal IF signal.<br />

AM-demodulator<br />

The IF amplifier output signal is fed to a limiting amplifier (two stages) and to a multiplier<br />

circuit. However the limiter output signal (which is not any more AM modulated) is also fed<br />

to the multiplier, which provides AM demodulation (in phase demodulation). After lowpass<br />

filtering (fg ≈ 400 kHz) for carrier rejection and buffering, the demodulator output signal is<br />

present at pin 6. The AM demodulator operates over a wide frequency range, so that in


combination with the frequency response of the IF amplifier applications in a frequency<br />

range from approximately 6 MHz up to 70 MHz are possible.<br />

Audio switch<br />

This circuit is an operational amplifier with three input stages and internal feedback<br />

network determining gain (0 dB) and frequency response (fg ≈ 700 kHz). Two of the input<br />

stages are connected to pin 7 and pin 9, the third input stage to an internal reference<br />

voltage. Controlled by the switching pins 10 and 12, one of the three input stages can be<br />

activated and a choice made between two different AF signals or mute state. The selected<br />

signal is present at pin 8. The decoupling capacitors at the input pins are needed, because<br />

the internally generated bias voltage for the input stages must not be influenced by the<br />

application in order to avoid DC-plop in case of switching.<br />

The AM demodulator output is designed to provide almost the same DC voltage as the<br />

input bias voltage of the audio switch. But there may be spread between both voltages.<br />

Therefore it is possible to connect pin 6 directly to pin 7 (without a decoupling capacitor),<br />

but in this event the DC-plop for switching can increase up to 100 mV.<br />

Reference circuit<br />

This circuit is a band gap stabilizer in combination with a voltage regulation amplifier,<br />

which provides an internal reference voltage of about 3.6 V nearly independent from<br />

supply voltage and temperature. This reference voltage is filtered by the capacitor at pin 4<br />

in order to reduce noise. It is used as a reference to generate all important voltages and<br />

currents of the circuit. For application in 12 V power supply concepts, there is an internal<br />

voltage divider in combination with a Darlington transistor in order to reduce the supply<br />

voltage for all IC function blocks to approximately 6 V.<br />

This is necessary because of use of modern high frequency IC technology, where most of<br />

the used integrated components are only allowed to operate at maximum 9 V supply<br />

voltage.


A1<br />

INTERCARRIER INPUT<br />

MONO<br />

INPUT<br />

12 7 6 8 11 10 9 5<br />

IIC<br />

SCL<br />

SDA<br />

10<br />

12<br />

4<br />

5<br />

6V<br />

INPUT<br />

SWITCH<br />

AGC<br />

ADC<br />

IIC<br />

3IIC ADDRES.<br />

6 7 8<br />

VSSA1<br />

29 31 32 33 34 35 36 37 38 39<br />

47 48<br />

TDA9870A<br />

FM DEM<br />

(AM DEM)<br />

IDENT<br />

F<strong>19</strong><br />

STEREO A2<br />

MODULE<br />

ANALOGUE CROSS BAR SWITCH<br />

I / O<br />

PORT<br />

EXT. IN<br />

SCART OUT<br />

2 1 4 3<br />

DEMATR<br />

DEEMPH<br />

PEAK<br />

DETECT.<br />

LEVEL<br />

ADJ.<br />

VCXO<br />

CLOCK<br />

DAC<br />

DAC<br />

CHANNEL<br />

SELECTION<br />

IIS<br />

IIS<br />

ENC / DEC.<br />

2° IIC ADDRESS 18 <strong>19</strong><br />

17 14 20 9 11 13 15 16 21 22 23 24 25 26 27<br />

6 V<br />

A3<br />

SCART SOUND OUT<br />

49 50 59 64<br />

51 52 62 63<br />

IIS<br />

F<strong>19</strong>STA2 .DRV<br />

E.G 5/11/99<br />

LINE OUT<br />

AUDIO<br />

PROCESSING<br />

L.S .<br />

AVL, VOL<br />

CONTOUR, BASS<br />

TREB, PSEU<br />

BASSCORR<br />

BEEPER<br />

H.P.<br />

VOL, BEEP.<br />

BASS, TREB.<br />

VDDA3 VDDD2<br />

VSSD2 49<br />

VSSA2 43<br />

VSSA3 56<br />

VSSA4 50<br />

TEST<br />

DAC<br />

DAC<br />

28<br />

30<br />

57<br />

58<br />

60<br />

61<br />

TR10<br />

6 V<br />

26V<br />

TR9<br />

TR12<br />

TR11<br />

IIC<br />

7 6<br />

HEADPHONES<br />

IC 4 AMPLIFIER<br />

TDA2822M<br />

2 4<br />

KIA7812<br />

1<br />

2 3 12 V<br />

IC 5<br />

A2<br />

1<br />

3<br />

1<br />

2<br />

3<br />

4<br />

7<br />

10<br />

8<br />

9<br />

5<br />

6


IF IN<br />

F<strong>19</strong>NICAM.DRV<br />

E.G 5/11/99<br />

7 5 12 6 8 11 10 9<br />

TR6<br />

EF<br />

12 V<br />

TR1<br />

EF<br />

IIC<br />

R5<br />

6V<br />

R6<br />

SCL<br />

SDA<br />

TR5<br />

EF<br />

D1<br />

TDA9875A<br />

10<br />

12<br />

1<br />

PLK<br />

2<br />

4<br />

5<br />

6V<br />

INPUT<br />

SWITCH<br />

AGC<br />

ADC<br />

NICAM<br />

DATA<br />

IIC<br />

3 IIC ADDR.<br />

6 7 8<br />

TR2<br />

TR4<br />

R7<br />

12V<br />

STEREO INTERCARRIER ONLY<br />

R6<br />

D2<br />

L /L'<br />

29 31 32 33 34<br />

QPSK<br />

DEM.<br />

FM DEM<br />

(AM DEM)<br />

IDENT<br />

ANALOGUE CROSS BAR SWITCH<br />

I / O<br />

PORT<br />

NICAM<br />

DEC.<br />

DEMATR<br />

DEEMPH<br />

PEAK<br />

DETECT.<br />

35 36 37 38 39<br />

47 48<br />

LEVEL<br />

ADJ.<br />

LEVEL<br />

ADJ.<br />

VCXO<br />

CLOCK<br />

DAC<br />

DAC<br />

CHANNEL<br />

SELECTION<br />

IIS<br />

IIS<br />

ENC / DEC.<br />

2° IIC ADDRESS 18 <strong>19</strong><br />

22 23<br />

17 14 20 9 11 13 15 16 21<br />

24 25 26 27<br />

TR3<br />

2<br />

1<br />

FOS2<br />

FOS 1<br />

3<br />

EXT. IN<br />

TR8<br />

8V<br />

2 1 4 3<br />

1<br />

2<br />

4<br />

5<br />

31<br />

32<br />

30 VIF SWT. 9<br />

IF AMPL.<br />

&<br />

VIDEO<br />

SWITCH<br />

STD<br />

6 V<br />

IIS<br />

28 3 6 <strong>19</strong><br />

TUNER & VIF AGC<br />

SIF<br />

AMPL.<br />

FPLL<br />

TDA 9811 29 27<br />

IC 1<br />

5 V<br />

A1<br />

A3<br />

SCART SOUND OUT<br />

49 50 59 64<br />

51 52 62 63<br />

VDDA3 VDDD2<br />

VSSD2 49<br />

L/L'<br />

R20<br />

11<br />

FM MIXER<br />

& AM DEM.<br />

20<br />

AUDIO<br />

PROCESSING<br />

L.S .<br />

AVL, VOL<br />

CONTOUR, BASS<br />

TREB, PSEU<br />

BASSCORR<br />

BEEPER<br />

H.P.<br />

VOL, BEEP.<br />

BASS, TREB.<br />

TR7<br />

VCO<br />

L1<br />

24 25<br />

VIDEO<br />

DEMOD.<br />

23<br />

AF AMPL.<br />

& SWT.<br />

8 V<br />

AFC<br />

12<br />

VSSA2 43<br />

VSSA3 56<br />

VSSA4 50<br />

TEST<br />

DAC<br />

DAC<br />

21<br />

10<br />

22<br />

17<br />

MUTE<br />

28<br />

30<br />

57<br />

58<br />

60<br />

61<br />

TR10<br />

6 V<br />

TR9<br />

TR12<br />

TR11<br />

7 6<br />

HEADPHONES<br />

AMPLIFIER<br />

IC 4 TDA2822M<br />

2 4<br />

12 V<br />

3<br />

KIA7812<br />

1 2<br />

26 V<br />

26V<br />

IC 5<br />

FROM<br />

PIM 7<br />

A2<br />

IIC<br />

A2<br />

F<strong>19</strong><br />

NICAM<br />

MODULE<br />

1<br />

3<br />

1<br />

2<br />

3<br />

4<br />

7<br />

10<br />

8<br />

9<br />

5<br />

6


STEREO MODULE CONNECTOR<br />

3 4<br />

7<br />

1 2 8 9<br />

IC 400 TDA1521A<br />

9 8 7 6 5 4 3 2 1<br />

1<br />

FROM PIN 11<br />

TUNER (I.F.)<br />

3<br />

2<br />

6<br />

<strong>19</strong><br />

4<br />

FROM PIN 6 IC 100<br />

AV1 / AV2<br />

SWITCH<br />

20<br />

TR110<br />

FROM PIN8<br />

IC 100<br />

SCART/CINCH<br />

SWITCH<br />

SCART 1<br />

18<br />

17<br />

16<br />

15<br />

10<br />

2<br />

12<br />

11<br />

1<br />

13<br />

14<br />

15<br />

14<br />

12<br />

13<br />

AUDIO<br />

CINCH IN<br />

8<br />

11<br />

F<strong>19</strong>ASSPH.DRW<br />

E.G. 29/12799<br />

FROM PIN 7 IC 100<br />

TV/AV SWITCH<br />

TO AV2<br />

SCART 2<br />

IC201 (2/3 OF LA7955)<br />

6 2 1 3<br />

IC200 (2/3) HEF 4053<br />

F<strong>19</strong> AUDIO STEREO SIGNAL PATH


TDA4605<br />

Control IC for Switched-Mode Power Supplies<br />

using MOS-Transistors<br />

Features<br />

• Fold-back characteristic provides overload protection for external components<br />

• Burst operation under short-circuit conditions<br />

• Loop error protection<br />

• Switch-off if line voltage is too low (undervoltage switch-off)<br />

• Line voltage compensation of overload point<br />

• Soft-start for quiet start-up<br />

• Chip-over temperature protection (thermal shutdown)<br />

• On-chip parasitic transformer oscillation suppression circuitry<br />

Functional desciption<br />

The IC TDA 4605-1 controls the MOS-power transistor and performs all necessary<br />

regulation and monitoring functions in free running flyback converters. Since good load<br />

regulation over a wide load range is attained, this IC is applicable tor consumer and<br />

industrial power supplies.<br />

The serial circuit of power transistor and primary winding of the flyback transformer is<br />

connected to the input voltage. During the switch - on period of the transistor, energy is<br />

stored in the transformer and during the switch - off period it is fed to the load via the<br />

secondary winding. By varying switch-ontime of the power transistor, the IC controls each<br />

portion of energy transferred to the secondary side such that the output voltage remains<br />

nearly independent ot load variations.<br />

The required control information is taken from the input voltage during the switch-on period<br />

and from a regulation winding during the switch-off period.<br />

In the different load ranges the switched-mode power supply (SMPS) behaves as follow:<br />

TDA4605 SMPS CONTRO I.C. Pagina 1 di 6<br />

e.g.tda4605R.doc


No load operation:<br />

The power supply unit oscillates at its resonant frequency typ. 100 kHz to 200 kHz.<br />

Depending upon<br />

the transformator windings the output voltage can be slightly above nominal value.<br />

Nominal operation:<br />

The switching frequency declines with increasing load and decreasing AC-voltage. The<br />

duty factor primarly depends on the AC-voltage. The output voltage is load-dependent<br />

only.<br />

Overload point:<br />

Maximal output power is available at this point ot the output characteristic.<br />

Overload:<br />

The energy transferred per operation cycle is limited at the top. Therefore the output<br />

voltage declines by secondary overloading..Semiconductor Group 35<br />

TDA 4605 Pin Definitions and Functions<br />

Pin No. Function<br />

1 Regulating Voltage: Information input concerning secondary voltage. By<br />

comparing the regulating voltage - obtained from the regulating winding ot the transformer<br />

- with the internal reference voltage, the output impulse width on pin 5is adapted to the<br />

load ot the secondary side (normal, overload, short-circuit, no load).<br />

2 Primary Current Simulation: Information input regarding the primary current.<br />

The primary current rise in the primary winding is simulated at pin 2 as a voltagerise by<br />

means ot external RC-element. When a value is reached that is derivedfrom the regulating<br />

voltage at pin 1, the output impulse at pin 5 is terminated. TheRC-element serves to set<br />

the maximum power at the overload point set.<br />

3 Input for Primary Voltage Monitoring: In the normal operation V 3 is moving<br />

between the thresholds V 3H and V 3L (V 3H > V 3 > V 3L ). V 3 < V 3L : SMPS is<br />

switched OFF (line voltage too low). V 3 > V 3H : Compensation of the overload point<br />

regulation (controlled by pin 2) starts at V 3H : V 3L = 1.7.<br />

TDA4605 SMPS CONTRO I.C. Pagina 2 di 6<br />

e.g.tda4605R.doc


4 Ground<br />

5 Output: Push-pull-output provides 1 A for rapid charge and discharge of the<br />

gate capacitance ot the power MOS-transistor.<br />

5 Supply Voltage Input: A stable internal reference voltage V REF is derived from<br />

the supply voltage also the switching thresholds V 6A , V 6E , V 6 max and V 6 min for the<br />

supply voltage detector. If V 6 > V 6E then V REF is switched on and swiched off when V<br />

6 < V 6A . In addition the logic is only enable for V 6 min < V 6 < V 6 max .<br />

7 Soft-Start: Input for soft-start. Start-up will begin with short pulses by connecting a<br />

capacitor from pin 7 to ground.<br />

8 Zero Detector: Input tor the oscillation feedback. After starting oscillation, every<br />

zero transit of the feedback voltage (falling edge) triggers an output impulse at<br />

pin 5. The trigger threshold is at + 50 mV typical..Semiconductor Group 36<br />

TDA 4605 Application Circuit<br />

Application circuit shows a flyback converter for video recorders with a power rating of 50<br />

W. The circuit is designed as a wide-range power supply tor AC-line voltages ot 90 to 270<br />

V. The AC-input voltage is rectified by bridge rectifier GR1 and smoothed by C 1 . The<br />

NTC limits the rush in current.In the period before the switch-on threshold is reached the<br />

IC is supplied via resistor R 1 ; during the start-up phase it uses the energy stored in C 2 ,<br />

under steady-state conditions the IC receives its supply voltage from transformer winding n<br />

1 via diode D1. The switching transistor T1 is a BUZ 90.<br />

The parallel-connected capacitor C 3 and the inductance ot primary winding 112 determine<br />

the system resonance frequency. The R 2 - C 4 - D2 circuitry limits overshoot peaks, and<br />

R 3 protects the gate of T1 against static charges.<br />

While T1 conducts, the current rise in the primary winding depends on the winding’s<br />

inductance and the V C1 voltage. A voltage reproduction ot the current rise is tabbed using<br />

the R 4 - C 5 network and forwarded into pin 2 ot the IC. The RC-time constant ot R 4 , R 5<br />

must be dimensioned correctly in order to prevent driving the transformer core into<br />

saturation.<br />

The R 10 /R 11 divider ratio provides the line voltage threshold controlling the<br />

undervoltage control circuit in the IC. The voltage present at pin 3 also determines the<br />

overload. Detection of overload together with the current characteristic at pin 2 controls the<br />

on period ot T1. This keeps the cut-off point stable even with higher AC-line voltages.<br />

TDA4605 SMPS CONTRO I.C. Pagina 3 di 6<br />

e.g.tda4605R.doc


Pin 3 The down-divide primary voltage applied there stabilizes the overload point. In<br />

addition the logic is disabled in the event of low voltage by comparison with the internal<br />

stable voltage V V in the primary voltage monitor block.<br />

Pin 4 Ground<br />

Pin 5 In the output stage the output signals produced by the logic are shifted to a leved<br />

suitable for MOS-power transistors.<br />

Pin 6 From the supply voltage V 6 are derived a stable internal reference V REF and the<br />

switching threshold V 6A , V 6E , V 6 max and V 6 min for the supply voltage monitor. All<br />

reference values (V R , V 2B , V ST ) are derived from V REF . If V 6 > V VE the V REF is<br />

switched on and switched off when V 6 < V 6A . In addition, the logic is released only for V<br />

6 min < V 6 < V 6 max .<br />

Pin 7 The output of the overload amplifier is connected to pin 7. A load on this output<br />

causes a reductio in maximal impulse duration. This function can be used to implement a<br />

soft start, when pin 7 is connected to ground by a capacitor<br />

Pin 8 The zero detector controlling the logic block recognizes the transformer being<br />

discharged by positive to negative zero crossing of pin 8 voltage and enables the logic for<br />

a new pulse. Parasitic oscillations occurring at the end of a pulse cannot lead to a new<br />

pulse (double-pulsing), because an internal circuit inhibits the zero detector for a finite time<br />

t UL after the end of each pulse.<br />

Start-Up Behaviour<br />

The start-up behaviour of the application circuit per sheet 48 is represented on sheet 50<br />

for a line voltage barely above the lower acceptable limit voltage value (without soft-start).<br />

After applying the line voltage at the time t 0 to the tollowing voltages built up:<br />

– V 6 corresponding to the half-wave charge current over R 1<br />

– V 2 to V 2 max (typically 6.6 V)<br />

– V 3 to the value determined by the divider R 10 /R 11 .<br />

The current drawn by the IC in this case is less than 1.6 mA. If V 6 reaches the threshold V<br />

6E (time point t 1 ), the IC switches on the internal reference voltage. The currentdraw<br />

max. rises to 12 mA.<br />

The primary current- voltage reproducer regulates V 2 down to V 2E and the starting<br />

impulse generator generates the starting impulses from time point t 5 to t 6 . The feedback<br />

to pin 8 starts the next impulse and so on. All impulses including the starting impulse are<br />

TDA4605 SMPS CONTRO I.C. Pagina 5 di 6<br />

e.g.tda4605R.doc


controlled in width by regulating voltage of pin 1. When switching on this corresponds to a<br />

short-circuit event, i.e. V 1 = 0.<br />

Hence the IC starts up with "short-circuit impulses" to assume a width depending on the<br />

regulating voltage feedback (the IC operates in the overload range). The maximum pulse<br />

width is reached at time point t 2 (V 2 = V 2 max ). The IC operates at the overload point.<br />

Thereafter the peak values ot V 2 decrease rapidly, as the IC is operating within the<br />

regulation range. The regulating loop has built up. If voltage V 6 falls below the switch-off<br />

threshold V 6 min before the reversal point is reached, the starting attempt is aborted (pin<br />

5 is switched to low). As the IC remains switched on, V 6 further decreases to V 6 . The IC<br />

switches off; V 6 can rise again (time point 14) and a new start-up attempt begins at time<br />

point t 1 . If the rectified alternating line voltage (primary voltage) collapses during load, V<br />

3 can fall below V 3A , as is happening at time point t 3 (switch-on attempt when voltage is<br />

too low). The primary voltage monitor then clamps V 3 to V 3S until the IC switches off (V<br />

6 < V 6A ). Then a new start-up attempt begins at time point t<br />

Regulation, Overload and No-Load Behaviour<br />

When the IC has started up, it is operating in the regulation range. The potential at pin 1<br />

typically is 400 mV. If the output is loaded, the regulation amplifier allows broader impulses<br />

(V 5 = H). The peak voltage value at pin 2 increases up to V 2S max . If the secondary<br />

load is further increased, the overload amplifier begins to regulate the pulse width<br />

downward. This point is referred to as the overload point of the power supply. As the IC<br />

supply voltage V 6 is directly proportional to the secondary voltage, it goes down in<br />

accordance with the overload regulation behaviour. If V 6 falls below the value V 6 min ,<br />

the IC goes into burst operation. As the time constant of the half-wave charge-up is<br />

relatively large, the short-circuit power remains small. The overload amplifier cuts back<br />

to the pulse width t pk . This pulse width must remain possible, in order to permit the IC to<br />

start-up without problems from the virtual short circuit, which every switching on with V 1 =<br />

0 represents. If the secondary side is unloaded, the loading impulses (V 5 = H) become<br />

shorter. The frequency increases up to the resonance frequency of the system. If the load<br />

is further reduced, the secondary voltages and V 6 increase. When V 6 = V 6 max , the<br />

logic is blocked. The IC converts to burst operation. This renders the circuit absolutely safe<br />

under no-load conditions.<br />

TDA4605 SMPS CONTRO I.C. Pagina 6 di 6<br />

e.g.tda4605R.doc


Regulation of the switched-mode power supply is via pin 1. The control voltage of winding<br />

n 1 during the off-period of T1 is rectified by D3, smoothed by C 6 and stepped down at an<br />

adjustable ratio by R 5 , R 6 and R 7 . The R 6 - C 7 network suppresses parasitic<br />

overshoots (transformer oscillation).<br />

The peak voltage at pin 2, and thus the primary peak current, is adjusted by the IC so that<br />

the voltage applied across the control winding, and hence the output voltages, are at the<br />

desired level.<br />

When the transformer has supplied its energy to the load, the control voltage passes<br />

through zero.<br />

The IC detects the zero crossing via series resistors R 9 connected to pin 8. But zero<br />

crossings are also produced by transformer oscillation after T1 has turned off if output is<br />

short-circuited. Thereforethe IC ignores zero crossings occurring within a specitied period<br />

of time after T1 turn-off.<br />

The capacitor C 8 connected to pin 7 causes the power supply to be started with shorter<br />

pulses to keep the operating ftrequency outside the audible range during start-up.<br />

On the secondary side, tive output voltages are produced across winding n 3 to n 7<br />

rectified by D4 to D8 and smoothed by C 9 to C 13 . Resistors R 12 , R 14 and R <strong>19</strong> to R<br />

21 are used as bleeder resistors.<br />

Fusable resistors R 15 to R 18 protect the rectifiers against short circuits in the output<br />

circuits, which are designed to supply only small loads..<br />

TDA 4605 Block Diagram<br />

Pin 1 The regulating voltage forwarded to this pin is compared with a stable internal<br />

reference voltage V R in the regulating and overload amplifier. The output of this stage<br />

is ted to the stop comparator.<br />

Pin 2 A voltage proportional to the drain current ot the switching transistor is generated<br />

there by theexternal RC-combination in conjunction with the primary current transducer.<br />

The output of this transducer is controlled by the logic and referenced to the internal stable<br />

voltage V 2B . If the voltage V 2 exceeds the output voltage of the regulating amplifier, the<br />

logic is reset by the stop comparator and consequently the output ot pin 5 is switched to<br />

low potential. Further inputs tor the logic stage are the output for the start impulse<br />

generator with the stable reference potential V ST and the supply voltage monitor.<br />

TDA4605 SMPS CONTRO I.C. Pagina 4 di 6<br />

e.g.tda4605R.doc


MAINS<br />

INPUT<br />

NON MAINS ISOLATED SECTOR<br />

F <strong>19</strong><br />

S.M.P.S.<br />

(CONFIGURATION WITHOUT<br />

ZERO POWER STAND BY MODULE)<br />

line output stage<br />

START-UP<br />

R1<br />

DRIVE<br />

OUTPUT<br />

PULSE<br />

5<br />

6<br />

D13<br />

SOFTSTART<br />

4 3 2<br />

7 8<br />

SMPS CONTROL<br />

IC1 TDA 4605<br />

PRIMARY<br />

VOLTAGE & CURRENT<br />

SENSING<br />

D6<br />

1<br />

TR 1<br />

STH7N80FI<br />

ZERO CROSSING<br />

DETECTOR<br />

R14<br />

D8<br />

SUPPLY VOLTAGE<br />

ADJUSTMENT<br />

OVER LOAD<br />

PROTECTION<br />

15<br />

3<br />

11<br />

9<br />

T 1<br />

8<br />

2<br />

4<br />

10<br />

6 / 16<br />

12<br />

148 V (110°)<br />

128 V<br />

5<br />

2<br />

1<br />

FROM PIN <strong>19</strong>OFF<br />

IC 100<br />

SAA5297A ON<br />

TR 2<br />

4<br />

8<br />

9<br />

TR3<br />

TR 4<br />

8,5v<br />

TR5<br />

26 V<br />

sound<br />

power<br />

line driver<br />

26 V<br />

12 V<br />

signal<br />

processing<br />

stand by<br />

5 V<br />

5 V<br />

F<strong>19</strong>SMPS.DRW<br />

E.G. 7/11/99<br />

TR6


15<br />

3<br />

2<br />

4<br />

10<br />

148 V (110°)<br />

128 V<br />

TR3<br />

TR 4<br />

26 V<br />

sound<br />

power<br />

line driver<br />

26 V<br />

line output stage<br />

F <strong>19</strong><br />

LOW POWER<br />

STAND-BY<br />

CONFIGURATION<br />

11<br />

8<br />

IC10<br />

5<br />

8<br />

2 TDA8183<br />

1 4 9<br />

12 V<br />

signal<br />

processing<br />

5 V<br />

stand by<br />

9<br />

T 1<br />

6 / 16<br />

12<br />

8,5v<br />

ON<br />

OFF<br />

5 V<br />

FROM PIN <strong>19</strong><br />

IC 100<br />

SAA5297A<br />

TR 2<br />

MAINS TO MAIN BOARD<br />

1<br />

T1<br />

9<br />

IC2 IL410<br />

TR2 BT808<br />

FROM<br />

MAINS<br />

SWITCH<br />

7<br />

1<br />

IC 1<br />

L7805CV<br />

2<br />

3<br />

X1<br />

A12<br />

ON-OFF<br />

5<br />

STAND-BY MODULE<br />

X2<br />

X3<br />

5 V ST-BY<br />

F<strong>19</strong>LPSBC.DRW<br />

E.G. 14 /11/99


F<strong>19</strong><br />

<strong>SERVICE</strong> MODE


For the description of the use of the TV make use of the Instruction Manual<br />

Service mode<br />

As already mentioned in the summary the remote control can be used to set all<br />

parameter and to adjust the TV set without to open the back cover.<br />

There are two ways to enter the "<strong>SERVICE</strong> MODE" that are to use the LOCAL<br />

KEYBOARD or to have a precial prepared REMOTE CONTROL.<br />

FIRST METHOD. (If the special remote control is available use the button following the<br />

indication of the Table 1<br />

Table 1 List of command of the "<strong>SERVICE</strong> REMOTE CONTROL"<br />

BUTTON RC5 Sub Decimal Coce<br />

System<br />

0 0 0 Vertical Slope<br />

Function<br />

1 0 1 Vertical Amplitude<br />

2 0 2 Vertical Shift<br />

3 0 3 Vertical S Correctio<br />

4 0 4 Horizontal Shift<br />

5 0 5 HorizontalAmplitude<br />

6 0 6 E-W parabola<br />

7 0 7 E-W Corner<br />

8 0 8 E-W Trapezium<br />

9 0 9 AGC<br />

Pr + 0 32 Up Carousel of all Service Parameter<br />

Pr - 0 33 Down Carousel of all Service Parameter<br />

Vol + 0 16 Adjust Parameter Value (UP)<br />

Vol - 0 17 Adjust Parameter Value (Down)<br />

TV 0 63 Leave <strong>SERVICE</strong> MODE" without to store<br />

MEM 0 50 Leave <strong>SERVICE</strong> MODE with store<br />

MENU 0 53 Wred<br />

<strong>SERVICE</strong> 7 58 <strong>SERVICE</strong> MODE ENTER<br />

E.G.Data creazione 31/10/99 15.38 3 / 7 f<strong>19</strong>intro


Table 2 Parameter and value to be adjusted in "<strong>SERVICE</strong> MODE"<br />

PARAMETER VALUE DESCRIPTION<br />

init ctvfor v0.6 on/ off Default Initialization<br />

vg2test on/off Cut -off adjustment<br />

txtbri 0--63 Adjust TXT brightness<br />

txtcon 0--63 Adjust TXT Contrast<br />

884c04 Bit (FSU) Increase blue stretch and the dynamic skin<br />

884c03 Bit (FSU) Adj. acl (automatic colour limiter - and cathode drive level.<br />

88c02 Bit (FSU) Adj.(black stretch), blue stretch, and the blue back<br />

optionb1 Bit (FSU) Select TV standard and TXT character set<br />

optionb2 Bit (FSU) Scart type selections (<br />

optionb3 Bit (FSU) (*) Hotel mode setting<br />

nicamuperror 0--63 Nicam sensitivity (upper limit)<br />

nicamlowerror 0--63 Nicam sensitivity (Lower limit).<br />

nicamcon Bit (FSU) Tda9875 CONTROL<br />

pipcontrast 0--15 PIP Contrast control<br />

wblue 0--63 Blue channel gain<br />

wgreen 0--63 “Green channel gain<br />

wred 0--63 “Red channel gain<br />

ydelaypal 0--63 Luma chroma delay<br />

ewtrapeze 0--63 E-W- Trapezium adjustment<br />

ewcorner 0--63 E-W- Corner Adjustment<br />

ewparab 0--63 E-W- Parabola Adjustment<br />

ewwidth 0--63 Horizontal Amplitude<br />

h-shift 0--63 Horizontal shift<br />

s-corr 0--63 Vertical S-Correction<br />

v-shift 0--63 Shift Vertical<br />

v-ampl 0--63 Vertical Amplitude<br />

v-slope 0--63 Slope Vertical<br />

agc 0--63 AGC adjustment<br />

if xx afc 2/3 0--63 (FSU) Factory set up<br />

LEGENDA: (FSU)= FACTORY SET UP<br />

(*) REDUCE OF A QUANITY 4 TO GET HOTEL MODE<br />

WARNING!! Do not change value for those parameter that are highlighted please<br />

E.G.Data creazione 31/10/99 15.38 5 / 7 f<strong>19</strong>intro


Note 1<br />

If during the installation of the TV set the AUTOSTORE" method is used, it is<br />

fundamental, before to start the function, to select the name of the country as the criteria of<br />

listing the broadcasters names is fixed by EBU table that are related to the country itself. It<br />

is possible to find more channels of the same broadcaster on the Arial. In this case the<br />

system will place first the signal having TXT with the strongest signal level than the others<br />

and finally, with the found sequence the weakest one without TXT.<br />

Note 2<br />

To get HOTEL MODE it is necessary to enter "<strong>SERVICE</strong> MODE" and to change the<br />

parameter "optionb3". Read the original value e subtract 4 (decimal). In HOTEL MODE all<br />

tuning systems are not possible, the volume is pre fixed and the MENU from the LOCAL<br />

KEY BOARD is not accessible.<br />

Note 3<br />

For fast programming (in case of installation of several TV set in Shops or Hotels a<br />

"Black Box" is available on request. The procedure for a quick program is as follows:<br />

1. Install and tune all channel storing it in the program sequence you want<br />

2. Switch off the Set with the remote control and leave it in Stand-by mode<br />

3. Switch on the "Black Box" and connect it to Scart<br />

4. Press the button corresponding to the chassis to be programmed and at the same time<br />

press the button "Read" for a while. (corresponding LED will be on.<br />

5. When the LED "Write" became off (after few seconds) disconnect the "Black Box"<br />

6. Insert the Black Box in the new TV set (in stand by condition)<br />

7. Press F<strong>19</strong> and "Write" buttons at same time. Corresponding "Write" LED will light<br />

8. After few seconds when the "Write" LED will switch-off the procedure is finished .<br />

9. Repeat points from 6 to 8 to program others TV set<br />

WARNING!!!!! The above procedure can be applied<br />

only to TV set specially prepared for this functions<br />

E.G.Data creazione 31/10/99 15.38 6 / 7 f<strong>19</strong>intro


Table 4 List of languages that can be reproduced as a function of the TXT characters set<br />

setting with the optionb1 (bit number 6)<br />

WEST EUROPE CHARACTER SET<br />

LANGUAGES<br />

EAST EUROPE CHARACTER SET<br />

LANGUAGES<br />

ENGLISH<br />

POLISH<br />

GERMAN<br />

GERMAN<br />

SWEDISH<br />

ESTONIA<br />

ITALIAN<br />

SERB-CROAT<br />

FRENCH<br />

CZECH<br />

SPANISH<br />

RUMEN<br />

TURKISH<br />

Just to give an example how to set the option byte 1, 2, and 3 we can start from<br />

a TV set for BG standard, with hyperband tuner to be sold in a country using West<br />

European character set.<br />

Locking at the table 3 Optionb1 we have the following condition:<br />

BIT<br />

OPTIONB1<br />

NUMBER 0 1 VALUE WEIGHT<br />

0 BG 1 1<br />

1 L/L' 0<br />

2 I 0<br />

3 DK 0<br />

4 X 0<br />

5 X 0<br />

6 E.E.TXT W.E. TXT 1 64<br />

7 CATV 1 128<br />

Adding the value of the<br />

last column we get <strong>19</strong>3<br />

in decimal form and C!<br />

in hexadecimal.<br />

This means that we<br />

have to choose this<br />

value (C1) for the<br />

optionb1 in service<br />

mode<br />

If we want to change from West Europe character set to East Europe, bit 6<br />

became 0 that is the new value is 129 (128 plus 1)that in hexadecimal format is 41<br />

REMEMBER TO INSERT COUNTRY TABLE<br />

E.G.Data creazione 31/10/99 15.38 7 / 7 f<strong>19</strong>intro


THE SECOND METHOD to enter service mode is to use the LOCAL KEY BOARD<br />

as describe here below<br />

1. Starting from TV off press VOLUME + on the LOCAL KEYBOARD and in the<br />

mean time switch on the TV with the mains switch<br />

2. Within three second switch on the TV using the "SWITCH-OFF" button on the<br />

Remote Control<br />

3. A small windows with black background and yellow characters will appear in the<br />

middle of the screen.<br />

PARAMETER VALUE<br />

4. Using the Remote control, program + / - (top bottom) will change the<br />

"PARAMETER" and the VOLUME + / - (left / right) will change the value<br />

5. Each parameter can be stored, leaving the service mode, by using the MEM<br />

(yellow) button on the remote control<br />

6. To leave "<strong>SERVICE</strong> MODE" without to store the new value use the TV button.<br />

7. It is not necessary to store each value one by one this means that you can<br />

change all value you need and finally leave the <strong>SERVICE</strong> MODE pressing the<br />

YELLOW button MEM.<br />

In the Table 3 we can find all parameter and related value to be seated. Some<br />

parameter have to adjusted with a simple on-off value, others are just factory option and<br />

more others must be adjusted with value that are expressed in hexadecimal form ranging<br />

from 0 to FF (that is from 0 to 63 in decimal form ).<br />

Table 3 represent the value to be assigned to three parameter to properly set options:<br />

Table 3 Option bye (1, 2 and 3) value and related meaning<br />

BIT OPTIONB1 OPTIONB2 OPTIONB3<br />

WEIGHT 0 1 0 1 0 1<br />

0 BG 2° SCART FSU<br />

1 L/L' MUST BE 1 BACKGROUND<br />

2 I CINCH HOTEL<br />

3 DK SVHS NTSC M<br />

4 X RGB UV1316<br />

5 X X V. GUARD<br />

6 E.E.TXT W.E.TXT X<br />

7 CATV X<br />

E.G.Data creazione 31/10/99 15.38 4 / 7 f<strong>19</strong>intro


PICTURE IN PICTURE<br />

MODULE


SDA 9288X<br />

PICTURE IN PICTURE<br />

1 General Description<br />

The Picture-in-Picture Processor SDA 9288X A141 generates a picture of reduced size of<br />

a video signal (inset channel) for the purpose of combining it with another video signal<br />

(parent channel). The easy implementation of the IC in an existing system needs only a<br />

few additional external components. There is a great variety of application facilities<br />

professional and consumer products (TV sets, supervising monitors, multi-media, …)<br />

Data Sheet<br />

• 212 luminance and 53 chrominance pixels per inset line for picture size 1/9<br />

• 6-bit amplitude resolution for each incoming signal component<br />

• Field and frame mode display<br />

• Horizontal and vertical filtering<br />

• Special antialias filtering for the luminance signal<br />

16:9 compatibility<br />

• Operation in 4:3 and 16:9 sets<br />

• 4:3 inset signals on 16:9 displays or v.v. with picture size 1/9 and 1/16, respectively<br />

Analog inputs<br />

• Y, + (B-Y), + (R-Y) or Y, -(B-Y), -(R-Y)<br />

Analog outputs<br />

• Y, + (B-Y), + (R-Y) or Y, – (B-Y), – (R-Y) or RGB<br />

• 3 RGB matrices: EBU, NTSC (Japan), NTSC (USA)<br />

Free programmable position of inset picture<br />

• Steps of 1 pixel and 1 line<br />

• All PIP and POP positions are possible<br />

2 picture sizes<br />

• 1/9 or 1/16 of normal size<br />

High resolution display<br />

13.5 MHz/27 MHz display clock frequency<br />

Freeze picture<br />

I 2 C Bus control<br />

SDA 9288X P.I.P. Pagina 1 di 4 e.g. sda9288xR.doc


Threefold PIP/POP facility<br />

• Three different I 2 C-addresses (pin-programmable)<br />

System Description<br />

AD Conversion, Inset Synchronization<br />

The inset video signal is fed to the SDA 9288X A141 as analog luminance and<br />

chrominance components 1) . The polarity of the chrominance signals is programmable.<br />

After clamping the video components are AD-converted with an amplitude resolution of 6<br />

bit. The conversion is done using a 13.5 MHz clock for the luminance signal and a 3.375<br />

MHz clock for the chrominance signals.<br />

For the adaption to different application the clamp timing for the analog inputs can be<br />

chosen (CLPS; CLPFIX). Setting this bits to ‘1’ can be useful for non-standard input<br />

signals.<br />

For inset synchronization it is possible to feed either a special 3-level signal via pin HVI<br />

(detection of horizontal and vertical pulses) or separate signals via pins SCI for horizontal<br />

and VI for vertical synchronization. SCI is the horizontal synchron signal of the inset<br />

channel. If the burst gate pulse of the sandcastle is used it must be adapted to TTL<br />

compatible levels by a simple external circuit. Centering of the displayed picture area is<br />

possible by a programmable delay for the horizontal synchronization signal (HSIDEL).<br />

The inset horizontal synchronization signals are sampled with 27 MHz. This 27 MHz clock<br />

and the AD converter clocks are derived from the parent horizontal synchronization pulse<br />

or from the quartz frequency converted by a factor of 4/3.<br />

Delay differences between luminance and chrominance signals at the input of the IC<br />

caused by chroma decoding are compensated by a programmable luminance delay line<br />

(YDEL) of about – 290 ns … 740 ns (at decimation input<br />

By analyzing the synchronization pulses the line standard of the inset signal source is<br />

detected and interference noise on the vertical sync signal is removed. For applications<br />

with fixed line standard (only 625 lines or 525 lines) the automatic detection can be<br />

switched off.<br />

The phase of the vertical sync pulse is programmable (VSIDEL; VSPDEL). By this way a<br />

correct detection of the field number is possible, an important condition for frame mode<br />

display.<br />

Input Signal Processing<br />

SDA 9288X P.I.P. Pagina 2 di 4 e.g. sda9288xR.doc


This stage performs the decimation of the inset signal by horizontal and vertical filtering<br />

and sub-sampling. A special antialias filter improves the frequency response of the<br />

luminance channel. It is optimized for the use of the horizontal decimation factor 3:1.<br />

A window signal, derived from the sync pulses and the detected line standard, defines the<br />

part of the active video area used for decimation. For HSIDEL = ‘0’ the decimation window<br />

is opened about 104 clock periods (13.5 MHz) after the horizontal synchronization pulse.<br />

For the 625 lines standard the 36th video line is the first decimated line, for the 525 lines<br />

standard decimation starts in the 26th video line.<br />

The realized chrominance filtering allows omitting the color decoder delay line for PAL and<br />

SECAM demodulation if the color decoder supplies the same output voltages independent<br />

of the kind of operation. In case of SECAM signals an amplification of the chrominance<br />

signals by a factor of 2 is necessary because just every second line a signal is present.<br />

This chrominance amplification is programmable via pin SYS or I 2 C Bus (AMSEC). The<br />

horizontal and vertical decimation factors are free programmable (DECHOR, DECVER).<br />

Using different decimations horizontal and vertical 16:9 applications become realizable:<br />

DECHOR = ‘1’, DECVER = ‘0’: picture size 1/9 for 4:3 inset signals on 16:9 displays<br />

DECHOR = ‘0’, DECVER = ‘1’: picture size 1/16 for 16:9 inset signals on 4:3 displays<br />

PIP Field Memory<br />

The on-chip memory stores one decimated field of the inset picture. Its capacity is 169 812<br />

bits. The picture size depends on the horizontal and vertical decimation factors.<br />

In field mode display just every second inset field is written into the memory, in frame<br />

mode display the memory is continuously written. Data are written with the lower inset<br />

clock frequency depending on the horizontal decimation factor (4.5 MHz or 3.375 MHz).<br />

Normally the read frequency is 13.5 MHz and 27 MHz for scan conversion systems.<br />

For progressive scan conversion systems and HDTV displays a line doubling mode is<br />

available (LINEDBL). Every line of the inset picture is read twice. Memory writing can be<br />

stopped by program (FREEZE), a freeze picture display results (one field).<br />

Having no scan conversion and the same line numbers in inset and parent channel (625<br />

lines or 525 lines both) frame mode display is possible. The result is a higher vertical and<br />

time resolution because of displaying every incoming field. For this purpose the standards<br />

are internally analysed and activating of frame mode display is blocked automatically when<br />

the described restrictions are not fulfilled.<br />

As in the inset channel a field number detection is carried out for the parent channel.<br />

SDA 9288X P.I.P. Pagina 3 di 4 e.g. sda9288xR.doc


Depending on the phase between inset and parent signals a correction of the display<br />

raster for the read out data is performed by omitting or inserting lines when the read<br />

address counter outruns the write address counter.<br />

The display position of the inset picture is free programmable (POSHOR, POSVER).<br />

The first possible picture position (without frame) is 54 clock periods (13.5 MHz or 27 MHz)<br />

after the horizontal and 4 lines after the vertical synchronization pulses. Starting at this<br />

position the picture can be moved over the whole display area. Even POP-positions<br />

(Picture Outside Picture) at 16:9 applications are possible.<br />

Horizontal Decimation PIP PIXELS per Line<br />

Having different line standards in inset and parent channels we have a so called mixed<br />

mode display. It causes deformations in the aspect ratio of the inset picture. A special<br />

mixed mode display is available for the picture size 1/9 (MIXDIS):<br />

Synchronization of memory reading with the parent channel is achieved by processing<br />

the parent horizontal and vertical synchronization signals in the same way as described<br />

for the inset channel. The synchronization signals are fed to the IC at pin HP/SCP for<br />

horizontal synchronization and pin VP for vertical synchronization. In the same way as<br />

described for the inset channel the burst gate of the sandcastle signal can be used for<br />

horizontal synchronization. In scan conversion systems also the inputs HPD/SCI and<br />

VPD/VI are available if the input HVI is activated for inset synchronization.<br />

2.4 Output Signal Processing<br />

At the memory output the chrominance components are demultiplexed and linearly<br />

interpolated to the luminance sample rate. Different output formats are available:<br />

luminance signal Y with inverted or non-inverted chrominance signals (B-Y), (R-Y) or RGB.<br />

For the RGB conversion 3 matrices are integrated: Matrix selection is done by pin SYS or I<br />

2 C Bus. The matrices are designed for the following input voltages (100 % white, 75 %<br />

color saturation):<br />

SDA 9288X P.I.P. Pagina 4 di 4 e.g. sda9288xR.doc


TDA8310A<br />

PAL/NTSC colour processor<br />

for PIP applications<br />

FEATURES<br />

• Video switch with 2 CVBS inputs. One input can beswitched between CVBS and Y/C and the circuit can<br />

automatically detect whether the incoming signal is CVBS or Y/C<br />

• Integrated chrominance trap and bandpass filters (automatically calibrated)<br />

• Integrated luminance delay line<br />

• Automatic PAL/NTSC decoder which can decode all standards available in the world<br />

• Easy interfacing with the TDA8395 (SECAM decoder) for multistandard applications<br />

• Horizontal PLL with an alignment-free horizontal oscillator<br />

• Vertical count-down circuit<br />

• RGB/YUV and fast blanking switch with 3-state output and active clamping<br />

• Low dissipation (560 mW)<br />

• Small amount of peripheral components compared with competition Ics<br />

GENERAL DESCRIPTION<br />

The TDA8310A is an alignment-free PAL/NTSC colour processor for Picture-in-Picture (PIP) applications.<br />

The main difference between the TDA8310 and the TDA8310A is that the vision IF amplifier has been omitted<br />

in the TDA8310A. Therefore, the circuit contains an input signal selector, a PAL/NTSC colour decoder, horizontal<br />

and vertical synchronization and an RGB/YUV switch.<br />

The input signal selector has 2 CVBS inputs. One of the inputs can be switched between CVBS and Y/C and the<br />

circuit can automatically detect whether the incoming signal is CVBS or Y/C. The output signals for the PIP<br />

processor are:<br />

• Luminance signal<br />

• Colour difference signals (U and V)<br />

• Horizontal and vertical synchronization pulses.<br />

• The RGB/YUV switch can select between two RGB or YUV sources, e.g. between the PIP processor and the<br />

SCART input signal.<br />

• The supply voltage for the IC is 8 V. It is available in a 52-pin SDIP package.<br />

FUNCTIONAL DESCRIPTION<br />

CVBS switch<br />

The circuit contains a 2 input CVBS switch and one of the inputs can be switched between CVBS and Y/C.<br />

The circuit contains an identification circuit which can automatically switch between the CVBS and Y/C signals.<br />

It is also possible to force the switch to CVBS or Y/C.<br />

TDA8310A CHROMA DECODER FOR PIP Pagina 1 di 2 e.g. TDA8310A.doc


Synchronization circuit<br />

The sync separator is preceded by a voltage controlled amplifier which adjusts the sync pulse amplitude to a fixed<br />

level. The sync pulses are fed to the slicing stage (separator) which operates at 50% of the amplitude.<br />

The separated sync pulses are fed to the first phase detector and to the coincidence detector. The coincidence<br />

detector is used to detect whether the line oscillator is synchronized and for transmitter identification. The first<br />

PLL has a very high static steepness this ensures that the phase of the picture is independent of the line<br />

frequency.<br />

The line oscillator operates at twice the line frequency. The oscillator network is internal. Because of the spread of<br />

internal components an automatic adjustment circuit has been added to the IC.<br />

The circuit compares the oscillator frequency with that of the crystal oscillator in the colour decoder. This results in<br />

a free-running frequency which deviates less than 2% from the typical value.<br />

The horizontal output pulse is derived from the horizontal oscillator via a pulse shaper. The pulse width of the<br />

output pulse is 5.4 ms, the front edge of this pulse coincides with the front edge of the sync pulse at the input.<br />

The vertical output pulse is generated by a count-down circuit. The pulse width is approximately 380 ms. Both the<br />

horizontal and vertical output pulses will always be available at the outputs even when no input signal is<br />

available. In addition to the horizontal and vertical sync pulse outputs<br />

the IC has a sandcastle pulse output which contains burst key and blanking pulses.<br />

Integrated video filters<br />

The circuit contains a chrominance bandpass and trap circuit. The filters are realised by gyrator circuits that are<br />

automatically tuned by comparing the tuning frequency with the crystal frequency of the decoder. When a Y/C<br />

signal is supplied to the input the chrominance trap is automatically switched off by the Y/C detection circuit<br />

however, it is also possible to force the filters in the CVBS or Y/C position.<br />

The luminance delay line is also realised by gyrator circuits.<br />

Colour decoder<br />

The colour decoder contains an alignment-free crystal oscillator, a colour killer circuit and colour difference<br />

demodulators. The 90° phase shift for the reference signal is achieved internally.<br />

The colour decoder is very flexible. Together with the SECAM decoder (TDA8395) an automatic multistandard<br />

decoder can be designed but it is also possible to use it for one standard when only one crystal is connected to the<br />

IC.<br />

The decoder can be forced to one of the standards via the ‘forced mode’ pins. The crystal pins which are not used<br />

must be connected to the positive supply line via a 8.2 κΩ resistor. It is also possible to connect the non-used pins<br />

with one resistor to the positive supply line. In this event the resistor must have a value of 8.2 κΩ divided by the<br />

number of pins.<br />

The chrominance output signal of the video switch is externally available and must be used as an input signal<br />

for the SECAM decoder.<br />

RGB/YUV switch<br />

The RGB/YUV switch is for switching between two RGB or YUV video sources. The outputs of the switch can be<br />

set to high-impedance state so that other switches can be used in parallel.<br />

The switch is controlled via pins 13 and 52.<br />

TDA8310A CHROMA DECODER FOR PIP Pagina 2 di 2 e.g. TDA8310A.doc


th<br />

INTB<br />

PH1LF<br />

V P1<br />

HOUT<br />

VOUT<br />

SAND<br />

V P2<br />

30<br />

37<br />

COINCIDENCE/<br />

NOISE<br />

DETECTOR<br />

22, 29<br />

i.c.<br />

33, 34<br />

n.c.<br />

DEC FT<br />

15<br />

CHROMINANCE<br />

BANDPASS<br />

32<br />

CVBS SW<br />

PHASE<br />

DETECTOR<br />

SYNC<br />

SEPARATOR<br />

DEC BG<br />

35 21<br />

CHROMINANCE<br />

TRAP<br />

DEC DIG<br />

<strong>19</strong> 41<br />

VCO<br />

+<br />

CONTROL<br />

VERTICAL<br />

SYNC<br />

SEPARATOR<br />

FILTER<br />

TUNING<br />

REF<br />

PULSE<br />

SHAPER<br />

39<br />

HORIZONTAL/<br />

VERTICAL<br />

DIVIDER<br />

36<br />

TDA8310A<br />

40<br />

SANDCASTLE<br />

GENERATOR<br />

RGB/YUV<br />

SWITCH<br />

10<br />

11<br />

12<br />

13<br />

14<br />

8<br />

7<br />

6<br />

5<br />

1<br />

2<br />

3<br />

52<br />

4<br />

28<br />

R1<br />

G1<br />

B1<br />

BLANK1<br />

CLAMP<br />

R<br />

G<br />

B<br />

BLANK<br />

R2<br />

G2<br />

B2<br />

BLANK2<br />

IDENT<br />

HUE<br />

AUTOMATIC<br />

Y/C<br />

DETECTOR<br />

INPUT<br />

SELECTOR<br />

PAL/NTSC<br />

DECODER<br />

LUMINANCE<br />

DELAY LINE<br />

49<br />

Y<br />

31<br />

20<br />

17<br />

9<br />

16<br />

47<br />

48<br />

46 45<br />

PLL<br />

XTAL4<br />

44<br />

XTAL3<br />

43<br />

XTAL2<br />

42<br />

XTAL1<br />

27 26<br />

25<br />

24<br />

23<br />

50 51<br />

18 38<br />

MGD128<br />

CVBS EXT CHROMA I SECAM<br />

GND2 CVBS INT SYST SW CHROMA O<br />

R/W COLOUR2 LOGIC2<br />

COLOUR1 LOGIC1 B Y<br />

R Y<br />

GND1<br />

GND3


PINNING<br />

SYMBOL PIN DESCRIPTION<br />

R2 1 RED input 2 (PIP)<br />

G2 2 GREEN input 2 (PIP)<br />

B2 3 BLUE input 2 (PIP)<br />

IDENT 4 colour standard identification output<br />

BLANK 5 blanking output<br />

B 6 BLUE output<br />

G 7 GREEN output<br />

R 8 RED output<br />

SYST SW 9 CVBS/system switch<br />

R1 10 RED input 1<br />

G1 11 GREEN input 1<br />

B1 12 BLUE input 1<br />

BLANK1 13 blanking input 1<br />

CLAMP 14 clamping pulse input<br />

DEC FT 15 decoupling filter tuning<br />

CHROMA I 16 chrominance input<br />

CVBS EXT 17 external CVBS/Y input<br />

GND1 18 ground 1 (0 V)<br />

V P1 <strong>19</strong> supply voltage 1 (+8 V)<br />

CVBS INT 20 internal CVBS input<br />

DEC DIG 21 decoupling digital supply rail<br />

i.c. 22 internally connected (test purposes)<br />

LOGIC2 23 crystal logic 2 input/output<br />

LOGIC1 24 crystal logic 1 input/output<br />

COLOUR2 25 colour system logic 2 input/output<br />

COLOUR1 26 colour system logic 1 input/output<br />

R/W 27 read/write selection input<br />

SYMBOL PIN DESCRIPTION<br />

HUE 28 HUE control input<br />

i.c. 29 internally connected (test purposes)<br />

INTB 30 internal bias<br />

GND2 31 ground 2 (0 V)<br />

CVBS SW 32 CVBS positive/negative modulation<br />

control switch input<br />

n.c. 33 not connected<br />

n.c. 34 not connected<br />

DEC BG 35 bandgap decoupling<br />

VOUT 36 vertical sync output pulse<br />

PH1LF 37 phase 1 loop filter<br />

GND3 38 ground 3 (0 V)<br />

HOUT 39 horizontal sync output pulse<br />

SAND 40 sandcastle pulse output<br />

V P2 41 supply voltage 2 (+8 V)<br />

XTAL1 42 4.4336 MHz crystal<br />

XTAL2 43 3.5820 MHz crystal for PAL-N<br />

XTAL3 44 3.5756 MHz crystal for PAL-M<br />

XTAL4 45 3.5795 MHz crystal for NTSC<br />

PLL 46 PLL colour filter<br />

CHROMA O 47 chrominance output for TDA8395<br />

SECAM 48 SECAM reference output<br />

Y 49 Y output<br />

B−Y 50 B−Y output<br />

R−Y 51 R−Y output<br />

BLANK2 52 blanking/insertion input 2 (PIP)


TDA8395<br />

SECAM DECODER<br />

FEATURES<br />

• Fully integrated filters<br />

• Alignment free<br />

• For use with baseband delay<br />

GENERAL DESCRIPTION<br />

The TDA8395 is a self-calibrating, fully integrated SECAM decoder. The IC should<br />

preferably be used in conjunction with the PAL/NTSC decoder TDA8362 or TDA8366 and<br />

with the switched capacitor baseband delay circuit TDA4660. The IC incorporates HF and<br />

LF filters, a demodulator and an identification circuit (luminance is not processed in this<br />

IC). The IC needs no adjustments and very few external components are required. A<br />

highly stable reference frequency is required for calibration and a two-level sandcastle<br />

pulse for blanking and burst gating.<br />

FUNCTIONAL DESCRIPTION<br />

The TDA8395 is a self-calibrating SECAM decoder designed for use with a baseband<br />

delay circuit.<br />

During frame retrace a 4.4336<strong>19</strong> MHz reference frequencyis used to calibrate the filters<br />

and the demodulator. Thereference frequency should be very stable during this period.<br />

The Cloche filter is a gyrator-capacitor type filter theresonance frequency of which is<br />

controlled during the calibration period and offset during scan; this ensures thecorrect<br />

frequency during calibration.<br />

The demodulator is a Phase-Locked Loop (PLL) type demodulator which uses the<br />

frequency reference and the bandgap reference to force the PLL to the required<br />

demodulation characteristic.<br />

The low frequency de-emphasis is matched to the PLL and is controlled by the tuning<br />

voltage of the PLL.<br />

Secam secoder TDA8395 Pagina 1 di 2 e.g.TDA8395R


Fig.1 Block diagram.<br />

PINNING<br />

Fig.2 Pin configuration<br />

SYMBOL PIN DESCRIPTION<br />

f ref/ IDENT 1 reference frequency<br />

input/identification input<br />

TEST 2 test output<br />

V P 3 positive supply voltage<br />

n.c. 4 not connected<br />

n.c. 5 not connected<br />

GND 6 ground<br />

CLOCHE ref 7 Cloche reference filter<br />

PLL ref 8 PLL reference<br />

−(R−Y) 9 −(R−Y) output<br />

−(B−Y) 10 −(B−Y) output<br />

n.c. 11 not connected<br />

n.c. 12 not connected<br />

n.c. 13 not connected<br />

n.c. 14 not connected<br />

SAND 15 sandcastle pulse input<br />

CVBS 16 video (chrominance) input


A digital identification circuit scans the incoming signal for SECAM (only line-identification<br />

is implemented). The identification circuit needs to communicate with theTDA8362 to<br />

guarantee that the output signal from the decoder is only available when no PAL signal<br />

has been identified. If a SECAM signal is decoded a request for colour-on is transmitted to<br />

pin 1 (current is sunk). If the signal request is granted (i.e. pin 1 is HIGH therefore no<br />

PAL) the colour difference outputs (-(Β-Y) and -(Ρ-Y)) from the TDA8362 are high<br />

impedance and the output signals from the TDA8395 are switched ON. If no SECAM<br />

signal is decoded during a two-frame period the demodulator will be initialized before<br />

another attempt is made also during a two-frame period. The CD outputs will be blanked or<br />

high-impedance depending on the logic level at pin 1.<br />

A two-level sandcastle pulse generates the required blanking periods and, also, clocks the<br />

digital identification pulse on the falling edge of the burst gate pulse. To enable The<br />

calibration period to be defined the vertical retrace is discriminated from the horizontal<br />

retrace, this is achieved by measuring the width of the blanking period.<br />

Secam secoder TDA8395 Pagina 2 di 2 e.g.TDA8395R


TEA6415C<br />

BUS-CONTROLLED VIDEO MATRIX SWITCH<br />

DESCRIPTION<br />

• 20MHz BANDWIDTH<br />

• CASCADABLE WITH ANOTHER TEA6415C (INTERNAL ADDRESS CAN BE<br />

CHANGED BY PIN 7VOLTAGE)<br />

• INPUTS (CVBS, RGB, MAC, CHROMA, ...)<br />

• POSSIBILITY OF MAC OR CHROMA SIGNAL<br />

• FOR EACH INPUT BY SWITCHING-OFF THE<br />

• CLAMP WITH AN EXTERNAL RESISTOR BRIDGE<br />

• BUS CONTROLLED<br />

• 6.5dB GAIN BETWEEN ANY INPUT AND OUT-PUT<br />

• -55dB CROSSTALK AT 5MHz<br />

• FULLY ESD PROTECTED<br />

GENERALDESCRIPTION<br />

The mainfunctionof the IC is to switch 8 video input sources on 6 outputs.<br />

Each output can be switched on only one of each input. On each input an alignment of the<br />

lowest level of the signal is made (bottom of synch. top for CVBS or black level for RGB<br />

signals).<br />

Each nominal gain between any input and output is 6.5dB. For D2MAC or Chroma signal<br />

the align-ment is switched off by forcing, with an external resistor bridge, 5 VDC on the<br />

input. Each input can be used as a normal input or as a MAC or Chroma input (with<br />

external resistor bridge). All the switch-ing possibilities are changed through the BUS.<br />

Driving 75Ω load needs an external transistor. It is possible to have the same input<br />

connected to several outputs.<br />

The starting configuration upon power on (power supply : 0 to 10V) is undetermined. In<br />

this case, 6 words of 16 bits are necessary to determine one configuration. In other case, 1<br />

word of 16 bits is necessary to determine one configura-tion<br />

TEA6415C video matrix switch Pagina 1 di 1 e.g. TEA6415C.doc


TDA4665<br />

Baseband delay line<br />

FEATURES<br />

• Two comb filters, using the switched-capacitor technique, for one line delay time (64 ms)<br />

• Adjustment-free application<br />

• No crosstalk between SECAM colour carriers (diaphoty)<br />

• Handles negative or positive colour-difference input signals<br />

• Clamping of AC-coupled input signals (±(Ρ-Y) and ±(Β-Y))<br />

• VCO without external components<br />

• 3 MHz internal clock signal derived from a 6 MHz CCO, line-locked by the sandcastle<br />

pulse (64 ms line)<br />

• Sample-and-hold circuits and low-pass filters to suppress the 3 MHz clock signal<br />

• Addition of delayed and non-delayed output signals<br />

• Output buffer amplifiers<br />

• Comb filtering functions for NTSC colour-difference signals to suppress cross-colour<br />

GENERAL DESCRIPTION<br />

The TDA4665 is an integrated baseband delay line circuit with one line delay. It is suitable<br />

for decoders with colour-difference signal outputs ±(Ρ-Y) and ±(Β-Y).<br />

TDA4665 Crhroma Delay line Pagina 1 di 3 e.g.TDA4665.doc


handbook, full pagewidth<br />

±(R−Y)<br />

colour-difference<br />

input signals<br />

16<br />

SIGNAL<br />

CLAMPING<br />

pre-amplifiers<br />

LINE<br />

MEMORY<br />

SAMPLE-<br />

AND-HOLD<br />

LP<br />

addition<br />

stages<br />

output<br />

buffers<br />

11<br />

±(R−Y)<br />

colour-difference<br />

output signals<br />

±(B−Y)<br />

V P1<br />

sandcastle<br />

pulse input<br />

14<br />

9<br />

5<br />

SIGNAL<br />

CLAMPING<br />

analog supply<br />

SANDCASTLE<br />

DETECTOR<br />

FREQUENCY<br />

PHASE<br />

DETECTOR<br />

LINE<br />

MEMORY<br />

DIVIDER<br />

BY <strong>19</strong>2<br />

SAMPLE-<br />

AND-HOLD<br />

3 MHz shifting clock<br />

LP<br />

TDA4665<br />

12<br />

2<br />

6<br />

13<br />

15<br />

±(B−Y)<br />

n.c.<br />

n.c.<br />

n.c.<br />

n.c.<br />

LP<br />

6 MHz<br />

CCO<br />

DIVIDER<br />

BY 2<br />

7<br />

i.c.<br />

10<br />

digital supply<br />

1<br />

3<br />

4, 8<br />

GND1<br />

V P2<br />

GND2<br />

MED848


SAA55xx<br />

Standard TV microcontrollers with On-Screen Display (OSD)<br />

1 FEATURES<br />

• Single-chip microcontroller with integrated On-Screen Display (OSD)<br />

• Versions available with integrated data capture<br />

• One Time Programmable (OTP) memory for both program Read Only Memory (ROM)<br />

and character sets<br />

• Single power supply: 3.0 to 3.6 V<br />

• 5 V tolerant digital inputs and I/O<br />

• 29 I/O lines via individual addressable controls<br />

• Programmable I/O for push-pull, open-drain and quasi-bidirectional<br />

• Two port lines with 8 mA sink (at


S<br />

1.531.01S<br />

R5<br />

390<br />

C1<br />

470N<br />

100<br />

+6V<br />

R4<br />

4,7<br />

C8<br />

10<br />

R1<br />

100<br />

R2<br />

100<br />

C2<br />

100N<br />

C3<br />

100N<br />

C4<br />

L1<br />

100µH<br />

C6<br />

470N<br />

R3<br />

10K<br />

C7<br />

1µ<br />

16V<br />

QZ1<br />

24,576MHZ<br />

1 PCLK<br />

2 NICAM data<br />

3 I2C addr1<br />

4 SCL<br />

5 SDA<br />

6 VSSA1<br />

7 VDEC1<br />

8 IREF<br />

9 Port 1<br />

10 SIF2<br />

11 VREF1<br />

12 SIF1<br />

13 I2C addr 2<br />

14 VSSD1<br />

15 VDDD1<br />

16 RESET CAP<br />

17 VSSD4<br />

18 XTAL IN<br />

VDDD264<br />

Line outR 63<br />

Line outL 62<br />

Main outL 61<br />

Main outR 60<br />

VDDA3 59<br />

AUX outL 58<br />

AUX outR 57<br />

VSSA3 56<br />

PCAPL 55<br />

PCAPR54<br />

VREF3 53<br />

Sc2 outL 52<br />

Sc2 outR 51<br />

VSSA4 50<br />

VSSD2 49<br />

Sc1 outL 48<br />

Sc1 outR 47<br />

C11<br />

470N<br />

C21<br />

47µ<br />

16V<br />

L2<br />

100µH<br />

C<strong>19</strong><br />

10N<br />

C20<br />

10N<br />

R6<br />

820<br />

C18<br />

470µ<br />

10V<br />

+6V<br />

L3<br />

100µH<br />

C12<br />

2µ2<br />

16V<br />

R7<br />

12<br />

C22<br />

2µ2<br />

16V<br />

C23<br />

2µ2<br />

16V<br />

A3-A<br />

A3-B<br />

A3-C<br />

1<br />

C13<br />

2µ2<br />

16V<br />

+6V<br />

2<br />

R25<br />

10K<br />

3<br />

C15<br />

2µ2<br />

16V<br />

C14<br />

2µ2<br />

16V<br />

C25<br />

2µ2<br />

16V<br />

R<strong>19</strong><br />

10K<br />

R8<br />

10K<br />

C24<br />

2µ2<br />

16V<br />

R26<br />

47K<br />

R27<br />

47K<br />

R9<br />

10K<br />

C16<br />

2µ2<br />

16V<br />

C17<br />

2µ2<br />

16V<br />

R20<br />

47K<br />

R21<br />

47K<br />

R12<br />

47K<br />

+6V<br />

R10<br />

47K<br />

R28<br />

1K<br />

+6V<br />

R13<br />

47K<br />

TR4<br />

BC848<br />

R29<br />

1K<br />

R11<br />

47K<br />

R22<br />

1K<br />

TR1<br />

BC848<br />

R14<br />

1K<br />

TR3<br />

BC848<br />

C27<br />

2µ2<br />

16V<br />

C28<br />

2µ2<br />

16V<br />

TR2<br />

BC848<br />

R15<br />

1K<br />

R30<br />

1K<br />

+26V<br />

R16<br />

470<br />

R17<br />

1K2<br />

R18<br />

1K2<br />

R23<br />

1K2<br />

R24<br />

1K2<br />

C26<br />

470µ<br />

35V<br />

Industrie Formenti Italia s.p.a.<br />

Stabilimento di Sessa Aurunca (CE)<br />

Stereo-Nicam i.c. per Telaio F<strong>19</strong><br />

06/07/<strong>19</strong>99 531.01S<br />

531.00S<br />

Di Maio<br />

Cod. Schema:<br />

Sost.schema:<br />

Descr.<br />

Data:<br />

Scala:<br />

Disegnato: Approvato:<br />

C9<br />

10<br />

<strong>19</strong> XTAL OUT<br />

20 PORT2<br />

VREF2 46<br />

I.C. 45<br />

C31<br />

47µ<br />

16V<br />

C29<br />

2N2<br />

C30<br />

2N2<br />

R31<br />

10K<br />

R32<br />

10K<br />

21 SYSCLK<br />

22 SCK<br />

23 WS<br />

I.C. 44<br />

VSSA2 43<br />

I.C. 42<br />

C38<br />

100µ<br />

16V<br />

R33<br />

1K8<br />

C39<br />

100µ<br />

16V<br />

R34<br />

1K8<br />

24 SDO2<br />

25 SDO1<br />

I.C. 41<br />

VREF(N) 40<br />

5 6 7 8<br />

IC3 TDA2822M<br />

4 3 2 1<br />

IC2<br />

KIA7812<br />

7<br />

5<br />

C5<br />

1000µ<br />

10V<br />

6<br />

+6V<br />

8<br />

12<br />

11<br />

10<br />

9<br />

C10<br />

470N<br />

26 SOI2<br />

VREF(P) 39<br />

27 SDI1<br />

VDEC2 38<br />

28 TEST1<br />

Sc2 InL 37<br />

29 MONO IN Sc2 InR 36<br />

30 TEST2<br />

VSSD3 35<br />

31 Ex InR<br />

Sc1 InL 34<br />

32 Ex InL<br />

Sc1 InR 33<br />

IC1 TDA 9870A<br />

R35<br />

270<br />

C32 C33<br />

470N 47µ<br />

16V<br />

C34<br />

330N<br />

R36<br />

15K<br />

R37<br />

15K<br />

C35<br />

330N<br />

2<br />

C36<br />

2µ2<br />

16V<br />

1 4<br />

C37<br />

2µ2<br />

16V<br />

3<br />

3 2 1<br />

C42<br />

C40<br />

1000µ<br />

1000µ<br />

16V<br />

16V<br />

C41<br />

1000µ<br />

16V<br />

R38<br />

R39<br />

4,7<br />

4,7<br />

C43 C44<br />

100N 100N<br />

+26V<br />

10 4 7 3 6<br />

+26V<br />

C45<br />

2µ2<br />

16V<br />

R40<br />

2K2<br />

5 8<br />

9<br />

C46<br />

2µ2<br />

16V<br />

R41<br />

2K2<br />

1<br />

2<br />

A1-G<br />

A1-E<br />

A1-F<br />

A1-H<br />

A1-L<br />

A1-K<br />

A1-J<br />

A1-I<br />

A1-B<br />

A1-A<br />

A1-D<br />

A1-C<br />

A2-J<br />

A2-D<br />

A2-G<br />

A2-C<br />

A2-F<br />

A2-E<br />

A2-H<br />

A2-I<br />

A2-A<br />

A2-B<br />

SC1/<br />

SC2<br />

CINCH<br />

OUT<br />

SC<br />

CUFFIA<br />

AP<br />

BB


531.01S


Industrie Formenti Italia s.p.a.<br />

Stabilimento di Sessa Aurunca (CE)<br />

Disegnato: Approvato:<br />

Descr.<br />

Sost.schema:<br />

Cod. Schema:<br />

Data:<br />

Scala:<br />

+26V<br />

+12V<br />

+6V<br />

+26V<br />

+26V<br />

+12V<br />

+12V<br />

+6V<br />

+6V<br />

+12V<br />

+6V<br />

+12V<br />

+8V<br />

+6V<br />

+8V<br />

+12V<br />

+6V<br />

C58<br />

2µ2<br />

16V<br />

R5<br />

2K7<br />

R18<br />

1K<br />

R31<br />

2K7<br />

R16<br />

120<br />

R62<br />

10K<br />

C20<br />

2µ2<br />

16V<br />

C59<br />

2µ2<br />

16V<br />

C62<br />

1000µ<br />

16V<br />

C63<br />

1000µ<br />

16V<br />

C67<br />

100µ<br />

16V<br />

R59<br />

15K<br />

C30<br />

100<br />

R60<br />

15K<br />

C57<br />

2µ2<br />

16V<br />

C66<br />

100µ<br />

16V<br />

C43<br />

10N<br />

C50<br />

47µ<br />

16V<br />

C51<br />

470N<br />

R58<br />

270<br />

C52<br />

330N<br />

C53<br />

330N<br />

R61<br />

10K<br />

C47<br />

47µ<br />

16V<br />

R38<br />

47K<br />

C11<br />

100N<br />

R64<br />

1K<br />

C39<br />

2µ2<br />

16V<br />

L8<br />

6.8µH<br />

R10<br />

22<br />

C41<br />

2µ2<br />

16V<br />

C68<br />

1000µ<br />

16V<br />

1<br />

2<br />

3<br />

4<br />

5 6 7 8<br />

IC4<br />

TDA2822M<br />

R22<br />

47K<br />

C42<br />

2µ2<br />

16V<br />

C23<br />

100N<br />

C33<br />

100N<br />

C65<br />

2N2<br />

C<strong>19</strong><br />

100N<br />

1<br />

2<br />

3<br />

IC5<br />

KIA7812<br />

R39<br />

47K<br />

TR7<br />

BC848<br />

C64<br />

2N2<br />

R63<br />

1K<br />

R9<br />

47K<br />

C35<br />

100N<br />

R46<br />

47K<br />

R35<br />

47K<br />

R50<br />

1K<br />

TR12<br />

BC848<br />

R49<br />

47K<br />

TR11<br />

BC848<br />

R47<br />

1K<br />

R54<br />

1K2<br />

R55<br />

1K2<br />

C56<br />

2µ2<br />

16V<br />

R41<br />

47K<br />

R40<br />

47K<br />

R20<br />

22K<br />

R53<br />

1K2<br />

R70<br />

4,7<br />

R69<br />

4,7<br />

R57<br />

10K<br />

R56<br />

10K<br />

C49<br />

2µ2<br />

16V<br />

C48<br />

2µ2<br />

16V<br />

R23<br />

47K<br />

C55<br />

2µ2<br />

16V<br />

C45<br />

47µ<br />

16V<br />

L1<br />

77,8<br />

MHZ<br />

C54<br />

2µ2<br />

16V<br />

C34<br />

10<br />

7<br />

A1-G<br />

C14<br />

1N<br />

R4<br />

22K<br />

C3<br />

2µ2<br />

16V<br />

R71<br />

1K<br />

R28<br />

47K<br />

C4<br />

2µ2<br />

16V<br />

C18<br />

100N<br />

TR6<br />

BC848<br />

R<strong>19</strong><br />

1K<br />

C6<br />

10N<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

<strong>19</strong><br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

IC1<br />

TDA 9811<br />

TR8<br />

BC848<br />

C21<br />

100N<br />

R25<br />

12K<br />

R21<br />

1K<br />

C25<br />

100N<br />

R27<br />

47K<br />

R26<br />

10K<br />

C24<br />

100N<br />

C22<br />

100N<br />

C73<br />

10n<br />

1 3 2<br />

IC2<br />

L78M08CS<br />

C26<br />

1µ<br />

16V<br />

R24<br />

100<br />

C1<br />

1µ<br />

16V<br />

C2<br />

100N<br />

R3<br />

22K<br />

9<br />

A1-I<br />

C44<br />

10N<br />

5<br />

A1-E<br />

12<br />

A1-L<br />

8<br />

A1-H<br />

C60<br />

2µ2<br />

16V<br />

C61<br />

2µ2<br />

16V<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

<strong>19</strong><br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32 33<br />

34<br />

35<br />

36<br />

37<br />

38<br />

39<br />

40<br />

41<br />

42<br />

43<br />

44<br />

45<br />

46<br />

47<br />

48<br />

49<br />

50<br />

51<br />

52<br />

53<br />

54<br />

55<br />

56<br />

57<br />

58<br />

59<br />

60<br />

61<br />

62<br />

63<br />

64<br />

IC3 TDA 9875<br />

C36<br />

10<br />

QZ1<br />

24,576MHZ<br />

C8<br />

1N<br />

C28<br />

100N<br />

C29<br />

100N<br />

10<br />

A1-J<br />

5<br />

A2-E<br />

8<br />

A2-H<br />

9<br />

A2-I<br />

2<br />

A1-B<br />

1<br />

A1-A<br />

4<br />

A1-D<br />

3<br />

A1-C<br />

6<br />

A2-F<br />

7<br />

A2-G<br />

3<br />

A2-C<br />

1<br />

A2-A<br />

2<br />

A2-B<br />

4<br />

A2-D<br />

10<br />

A2-J<br />

11<br />

A1-K<br />

R45<br />

47K<br />

R48<br />

47K<br />

R52<br />

1K2<br />

R51<br />

470<br />

R43<br />

1K<br />

TR10<br />

BC848<br />

R42<br />

1K<br />

TR9<br />

BC848<br />

L3<br />

100µH<br />

R65<br />

10K<br />

R66<br />

10K<br />

R68<br />

1K8<br />

R67<br />

1K8<br />

C46<br />

470µ<br />

35V<br />

C32<br />

1µ<br />

16V<br />

C31<br />

470N<br />

R34<br />

390<br />

C12<br />

1000µ<br />

16V<br />

TR5<br />

BF 959<br />

R17<br />

3K9<br />

R13<br />

150<br />

R12<br />

1K<br />

TR4<br />

BF 959<br />

R15<br />

120<br />

R14<br />

47<br />

C13<br />

1N<br />

L2<br />

1µH<br />

R11<br />

100<br />

FOS1<br />

K9453<br />

R7<br />

4K7<br />

C10<br />

100N<br />

R8<br />

47K<br />

TR3<br />

BC848<br />

C9<br />

100N<br />

TR2<br />

BC848<br />

R6<br />

4K7<br />

C7<br />

1N<br />

C15<br />

470µ<br />

10V<br />

L4<br />

100µH<br />

R44<br />

12<br />

R72<br />

2K2<br />

R73<br />

2K2<br />

C37<br />

470N<br />

1<br />

A3-A<br />

2<br />

A3-B<br />

3<br />

A3-C<br />

C38<br />

2µ2<br />

16V<br />

C70<br />

2µ2<br />

16V<br />

C71<br />

2µ2<br />

16V<br />

R36<br />

270<br />

C17<br />

470N<br />

C5<br />

1000µ<br />

10V<br />

C69<br />

470µ<br />

16V<br />

6<br />

A1-F<br />

R37<br />

820<br />

R2<br />

22K<br />

L7<br />

100µH<br />

R74<br />

18<br />

R1<br />

220<br />

R77<br />

1K2<br />

C72<br />

220µ<br />

16V<br />

R78<br />

100<br />

R75<br />

270<br />

F1<br />

TPS<br />

6,5<br />

TR1<br />

BC848<br />

R76<br />

1K5<br />

L5<br />

100µH<br />

R33<br />

4,7<br />

R32<br />

10K<br />

C27<br />

470N<br />

R79<br />

10K<br />

R29<br />

100<br />

R30<br />

100<br />

D1<br />

LL103<br />

BA682<br />

BA782<br />

BA783<br />

D2<br />

LL103<br />

BA682<br />

BA782<br />

BA783<br />

FOS2<br />

K3953M<br />

C40<br />

1000µ<br />

10V<br />

BB<br />

2<br />

5<br />

4<br />

2<br />

1<br />

3<br />

3<br />

5<br />

4<br />

1<br />

VIF1<br />

VIF2<br />

Cbl<br />

VIF3<br />

VIF4<br />

AP<br />

TAdj<br />

Tpll<br />

CsAgc<br />

STD<br />

CVBS<br />

LSW<br />

NC<br />

NC<br />

NC<br />

NC<br />

NC<br />

SIF2<br />

SIF1<br />

INSW<br />

Vp<br />

CvAgc<br />

GND<br />

CUFFIA<br />

SC1/<br />

SC2<br />

CINCH<br />

VREF1<br />

SIF2<br />

Port 1<br />

IREF<br />

SIF1<br />

VSSA1<br />

I2C addr1<br />

NICAM data<br />

PCLK<br />

SCL<br />

SDA<br />

I2C addr 2<br />

VSSD1<br />

VDDD1<br />

RESET CAP<br />

Cref<br />

05/07/2000<br />

VoAf<br />

MUTE<br />

TAGC<br />

VoQss<br />

Sc2 outR<br />

Vo<br />

Vi<br />

Sc2 outL<br />

AFC<br />

VCO1<br />

XTAL IN<br />

VCO2<br />

S<br />

PORT2<br />

SYSCLK<br />

SCK<br />

WS<br />

SDO1<br />

SDO2<br />

SDI1<br />

SOI2<br />

TEST1<br />

MONO IN<br />

TEST2<br />

Ex InR<br />

Ex InL<br />

Sc1 InR<br />

Sc1 InL<br />

Sc2 InR<br />

Sc2 InL<br />

I.C.<br />

I.C.<br />

I.C.<br />

I.C.<br />

VSSA2<br />

VREF2<br />

Sc1 outR<br />

Sc1 outL<br />

VREF(N)<br />

VREF(P)<br />

VDEC2<br />

VSSD3<br />

VSSD2<br />

VSSA4<br />

XTAL OUT<br />

VSSD4<br />

VDEC1<br />

PCAPL<br />

VDDD2<br />

Line outR<br />

Line outL<br />

Main outL<br />

Main outR<br />

VDDA3<br />

AUX outL<br />

AUX outR<br />

VSSA3<br />

PCAPR<br />

VREF3<br />

OUT<br />

SC<br />

511.04S<br />

511.05S<br />

Di Maio<br />

1.511.05S<br />

Stereo-Nicam per Telaio F<strong>19</strong>


C62<br />

IC5<br />

C50<br />

J3<br />

C49<br />

IC4<br />

C67<br />

FOS1<br />

C66<br />

L8<br />

C68<br />

C38<br />

C72<br />

C53<br />

C52<br />

J10<br />

C51<br />

J6<br />

C48<br />

C54<br />

C63<br />

J9<br />

C40<br />

IC1<br />

A1<br />

A2<br />

R28<br />

C47<br />

L1<br />

FOS2<br />

IC3<br />

L7<br />

J8<br />

F1<br />

C32<br />

C15<br />

IC2<br />

QZ1<br />

J4<br />

TR5<br />

C17<br />

TR4<br />

L2<br />

C45<br />

C55<br />

R20<br />

C4<br />

C3<br />

R33<br />

C71<br />

L4<br />

L3<br />

C58<br />

C59<br />

C60<br />

C61<br />

R59<br />

R60<br />

J2<br />

R30<br />

R29<br />

R37<br />

R44<br />

C46<br />

L5<br />

C12<br />

C5<br />

J5<br />

C39<br />

C70<br />

J7<br />

C20<br />

C1<br />

R74<br />

C69<br />

A3<br />

C56<br />

C42<br />

C57<br />

C41<br />

C26<br />

1.511.05S<br />

1 12<br />

1 10<br />

TOP SILK


BOT.ELEC.<br />

1.511.05S


I<br />

+<br />

+<br />

1 2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

SOLO PER SINTESI DI TENSIONE<br />

SOLO PER SINTESI DI FREQUENZA<br />

SOLO PER MONO<br />

SOLO PER MONO BG<br />

SOLO PER MONO BG/L L"<br />

SOLO PER STEREO<br />

SOLO PER DOPPIA SCART<br />

SOLO CON SINGOLA SCART<br />

H<br />

G<br />

F<br />

E<br />

D<br />

C<br />

B<br />

A<br />

J115<br />

+5V<br />

R102<br />

J113<br />

D100<br />

15K<br />

+5V<br />

1N4148<br />

R137<br />

R138<br />

15K 15K<br />

+12V<br />

21<br />

Status<br />

COPY<br />

AV1 9<br />

R141 5K6<br />

R183<br />

7 SC1toSC2<br />

STEREO NICAM<br />

10K<br />

C259<br />

R142<br />

R103<br />

SWITCH<br />

AV<br />

15K<br />

R140 5K6<br />

10µ<br />

C112 10K<br />

6 SC1/SC2<br />

A8<br />

8<br />

16V<br />

100n<br />

R258 560<br />

PWM<br />

RIGHT IN<br />

D101<br />

+5V<br />

+12V +12V<br />

2<br />

10µ<br />

1N4148<br />

Status<br />

C261 16V<br />

LEFT IN<br />

AV2<br />

+5V<br />

10<br />

8 5 6 10<br />

4 3 2 1<br />

10 7<br />

9<br />

12 5 11<br />

R133R132<br />

J116<br />

7 9<br />

8 6 3 4<br />

1 2<br />

6<br />

C249<br />

12K 12K<br />

R273<br />

R244 J25<br />

R257 560<br />

47K<br />

VIDEO IN<br />

R143<br />

ADC<br />

J30<br />

10µ<br />

R139<br />

+12V<br />

20<br />

10K<br />

15K<br />

16V<br />

J145<br />

J38<br />

150<br />

J8<br />

SWITCH<br />

TR110<br />

JS13<br />

+12VC113<br />

8<br />

+12V<br />

J53<br />

J29 J33<br />

TR211<br />

5<br />

R168<br />

BC848<br />

CINCH/SC<br />

BC848<br />

100n +5V<br />

9<br />

47K<br />

C279<br />

R271<br />

C274 C275<br />

R248<br />

13<br />

C496 9 8 7 6 5 4 3 2 1 C484<br />

100n<br />

C280<br />

R185<br />

2µ2<br />

+8V5<br />

R272<br />

IC201<br />

150<br />

1n 1n<br />

100<br />

17<br />

10K<br />

PORT 3<br />

2µ2<br />

560<br />

C246<br />

100n<br />

100V<br />

J31 +12V +12V +12V +12V<br />

+12V<br />

J22<br />

JS7<br />

LA7955<br />

+12V<br />

18<br />

R177<br />

100V<br />

10µ<br />

15K<br />

R169<br />

L401<br />

C289<br />

IC203<br />

C245<br />

14<br />

100n<br />

16V<br />

J118<br />

+5V<br />

J91<br />

J89<br />

100K<br />

47MH<br />

L7806CV<br />

4 8<br />

R291<br />

C290<br />

R314 R274<br />

10µ<br />

C248<br />

IC400<br />

12<br />

1<br />

1 A15-A<br />

A400-A<br />

47<br />

560 12K<br />

R179 3° SYS<br />

330n J62<br />

16V<br />

10<br />

TDA1521A<br />

R297<br />

R298<br />

R299 R300<br />

1<br />

5 10µ<br />

LEFT<br />

R277<br />

TR111<br />

R424 R425<br />

2<br />

1<br />

3<br />

2<br />

A400-B<br />

2 A15-B<br />

C454<br />

TDA2613<br />

4K7<br />

2K7 2K7<br />

16V 47K<br />

12<br />

BC 548B<br />

47K<br />

R166<br />

C495 82 82<br />

J75<br />

C247<br />

3<br />

9<br />

1n<br />

100 L207<br />

F204<br />

R287<br />

TR212<br />

15K<br />

1n<br />

10µ<br />

R184<br />

SWITCH<br />

R290 1µH<br />

L9454M<br />

100<br />

BC848<br />

C401<br />

C404 C405 D205<br />

16V<br />

R278<br />

100K<br />

3<br />

1n 1n<br />

1<br />

1 4<br />

7<br />

R233<br />

L/L"<br />

J142<br />

J138<br />

2K7<br />

J146<br />

VIDEO OUT<br />

220µ<br />

12K<br />

<strong>19</strong><br />

Status<br />

C283 C282<br />

30<br />

25V<br />

100µ 100n<br />

TR213<br />

16 15 14 13 12 11 10 9<br />

<strong>19</strong><br />

20<br />

R167<br />

L481<br />

47<br />

PIP<br />

PORT 2<br />

BF 959<br />

BA 682<br />

R288<br />

JS450<br />

47µH<br />

16V<br />

IC102 TDA 9830<br />

+5V<br />

J101<br />

8<br />

R296 C285 D206<br />

150<br />

C256<br />

7<br />

2 5<br />

18<br />

16<br />

R256<br />

LEFT OUT<br />

15K<br />

JS105<br />

R491 82<br />

1 2 3 4 5 6 7 8<br />

10µ<br />

C400 J102<br />

J139<br />

3<br />

Status<br />

C255<br />

1K<br />

4<br />

J114 R174 J52<br />

C451<br />

16V<br />

+5V<br />

2<br />

C281<br />

3<br />

17<br />

R279<br />

560<br />

CTI<br />

100n<br />

1n BA 682<br />

10µ C272<br />

Status<br />

2200µ<br />

1n<br />

R293<br />

R310<br />

330<br />

R146<br />

JS490<br />

3<br />

H1<br />

TR214<br />

11<br />

+12V<br />

4<br />

BF 959<br />

12<br />

11 16V 1n<br />

Cuffia<br />

15K<br />

R450 35V<br />

J24<br />

JS104<br />

TR218<br />

+5V<br />

J87 +27,8V<br />

8,2<br />

J140<br />

4<br />

150<br />

15K<br />

0<br />

47K<br />

BC848<br />

5<br />

13<br />

15<br />

R255<br />

RIGHT OUT<br />

R490 82<br />

R294<br />

R306<br />

C288<br />

1<br />

JS102<br />

Status<br />

R312<br />

1K5<br />

JS525 JS526<br />

R286<br />

+5V<br />

R128<br />

330n<br />

5<br />

J90<br />

JS451 L480<br />

47<br />

J72<br />

J9<br />

14<br />

C273<br />

560<br />

0<br />

Formato<br />

R402<br />

2K7<br />

TR217<br />

120<br />

C254<br />

+5V<br />

47µH<br />

BC 548B<br />

1n<br />

8,2<br />

10µ<br />

C450<br />

+5V<br />

J100<br />

C295<br />

C257<br />

2 10 6<br />

15K<br />

C402<br />

L400<br />

JS201<br />

J2<br />

16V<br />

BLUE<br />

JS100 22n<br />

2200µ<br />

100n<br />

C286 C287<br />

C291<br />

10µ<br />

TR103<br />

32<br />

0<br />

47MH<br />

4µ7 4µ7<br />

C278<br />

35V<br />

4 A400-D<br />

10µ<br />

16V<br />

SC2<br />

BC848<br />

100N<br />

R131<br />

RIGHT<br />

R289 R292 R295 C284<br />

16V 16V<br />

16V<br />

JS202<br />

+12V<br />

C413<br />

3<br />

J4<br />

A400-C<br />

15K<br />

1K 120<br />

120 1n<br />

R308<br />

DSC<br />

22n<br />

C250<br />

R150<br />

2<br />

C482 C481 C483<br />

4K7<br />

R307<br />

1000µ<br />

270<br />

X13<br />

2200µ 2200µ 68n<br />

+12V R304<br />

R285<br />

C406 C407<br />

1K<br />

16V<br />

R157<br />

+5V<br />

35V 35V<br />

1n 1n<br />

1K<br />

R311<br />

47K<br />

120<br />

R235 C251<br />

R<strong>19</strong>0<br />

TR2<strong>19</strong><br />

1K5 100N C299<br />

C298<br />

BC848<br />

+5V<br />

+27,8V<br />

+12V J21<br />

330<br />

8K2<br />

TR215<br />

R531<br />

10µ<br />

10µ<br />

C506<br />

R313<br />

BC 548B<br />

4K7<br />

16V<br />

16V<br />

R172<br />

J45<br />

2K7 100<br />

TR500<br />

C575<br />

100K<br />

R302<br />

TR216<br />

JS9<br />

220µ<br />

BC 548B<br />

BC 550C<br />

R575<br />

TR102<br />

GREEN 33<br />

Voltage<br />

25V<br />

C296<br />

47K<br />

4K7<br />

BC848<br />

1 Tuning<br />

100n<br />

JS8<br />

R509<br />

R507<br />

R530<br />

R576<br />

C292<br />

R186<br />

220K<br />

4K7<br />

5K6<br />

4K7<br />

10µ<br />

270<br />

29<br />

J95<br />

+12V<br />

J6<br />

CORB<br />

D<br />

1,5Vpp<br />

R305<br />

16V<br />

R158<br />

J13<br />

+12V<br />

R508<br />

1K<br />

R189 1K<br />

C265<br />

+5V<br />

1K2<br />

J47<br />

IC200<br />

S<br />

R525<br />

330<br />

100µ<br />

P<br />

R303<br />

47<br />

R262<br />

+5V +12V<br />

15<br />

R301<br />

16V<br />

J15<br />

HEF4053<br />

AUDIO out<br />

VOL.<br />

L<br />

TR575<br />

0,5Vpp 18K<br />

47K<br />

47K<br />

TR101<br />

RED 34<br />

A<br />

BC848<br />

J17 10<br />

C240<br />

BC848<br />

Y<br />

R165 R161<br />

R526<br />

10µ<br />

15K<br />

AFC<br />

330<br />

10K<br />

PLL<br />

15<br />

2<br />

C577<br />

16V<br />

R577<br />

SWITCH<br />

SW.<br />

1<br />

J27<br />

R187<br />

1µ<br />

ADD SCL SDA<br />

+33V AGC +5V +5V IF2 IF1<br />

4K7<br />

+<br />

EXT.S.in<br />

CH3<br />

R159<br />

15<br />

2<br />

J<strong>19</strong> JS203<br />

270<br />

TR525<br />

R162<br />

SW TV/AV<br />

TR107<br />

VOLUME<br />

AUDIO<br />

1K<br />

R200<br />

BC848<br />

+12V<br />

BC848<br />

PLL IF 5<br />

IC200-B<br />

C263<br />

AFC<br />

RIGHT IN<br />

R188<br />

47K R160<br />

1n<br />

S.T.<br />

11<br />

J23<br />

390<br />

R264<br />

C239<br />

330<br />

100K<br />

C214<br />

UHF VHIGH VLOW<br />

TUN<br />

AGC<br />

+5V IF2 IF1<br />

4<br />

47K R263<br />

10µ<br />

+5V<br />

100n<br />

55 De Emph.<br />

R528<br />

+5V<br />

14<br />

12<br />

R527<br />

47K<br />

16V<br />

TR501<br />

L201<br />

1K 100<br />

3<br />

13<br />

TEXT<br />

BC858<br />

BV53<br />

SOUND MUTE<br />

C264<br />

CH2<br />

INTERFACE<br />

3 4 5<br />

-106<br />

3n3<br />

R265<br />

D103<br />

R163<br />

2 9 1 6 7<br />

AUDIO<br />

35<br />

8<br />

10 11<br />

SOUND<br />

IC200-A<br />

J32<br />

BLNK<br />

47K<br />

C293<br />

1µH<br />

1 5 IF 49<br />

PRE AMP<br />

LEFT IN<br />

R503<br />

X7<br />

56<br />

9<br />

S.DEC<br />

1n<br />

+MUTE<br />

5<br />

1N4148<br />

0<br />

4K7<br />

VIDEO IF<br />

R173<br />

14<br />

J108<br />

R505<br />

C501<br />

+5V<br />

4<br />

J28<br />

UHF<br />

F203<br />

1K<br />

R502<br />

AMPLIFIER<br />

C233<br />

C237<br />

330n<br />

C551<br />

JS501<br />

K3953 2<br />

IF 48<br />

R240<br />

3<br />

33K<br />

C550<br />

4<br />

+ PLL DEMOD.<br />

10µ<br />

100<br />

TR209<br />

PAGE<br />

2K2<br />

C503<br />

470µ<br />

R<strong>19</strong>2<br />

20 VHF-H<br />

100n<br />

16V<br />

BC 548B<br />

J35<br />

J111<br />

J107<br />

680<br />

RAM<br />

+5V<br />

100n<br />

10V<br />

3<br />

J49<br />

100K<br />

IC200-C<br />

TR503<br />

R510<br />

JS500<br />

PLL FM<br />

F575<br />

C500<br />

14<br />

+12V 16<br />

390<br />

GND<br />

TELETEXT<br />

BC858<br />

DEMOD.<br />

R239<br />

H 2,5Vpp<br />

100n R501<br />

21<br />

J86<br />

12K<br />

+5V<br />

J44<br />

IC200-D<br />

ACQUISITION<br />

VHF-L<br />

J144<br />

ADJ.<br />

J122<br />

+8V<br />

C111<br />

R512<br />

C277 R269<br />

100n<br />

CVBS0 23<br />

560<br />

4K7<br />

R241<br />

100n 47K<br />

J5<br />

J40<br />

+8V<br />

6 7 8<br />

R208<br />

C244<br />

R513<br />

R267 R223<br />

10K<br />

100n<br />

DATA<br />

F576<br />

330<br />

C110<br />

2K7<br />

C576<br />

C216<br />

J63<br />

R242<br />

100n<br />

24<br />

C504<br />

54<br />

1<br />

J10<br />

CVBS1<br />

SLICER ACQUISITION<br />

JS502<br />

R224<br />

SIF<br />

47n<br />

TIMING<br />

R123 R121 R122<br />

2K2<br />

12K<br />

Tuner AGC<br />

LIMITER<br />

R209 390 R227<br />

TR203<br />

100n<br />

D104<br />

AGC FOR<br />

680<br />

BC 548B<br />

15K 15K 15K<br />

+5V TR502<br />

C231<br />

680<br />

C232<br />

68<br />

CH1<br />

R1<strong>19</strong><br />

C502<br />

R261<br />

C242<br />

+5VSTBY<br />

53 IF + TUNER<br />

L206<br />

1K<br />

R114<br />

BC858<br />

47µ<br />

1µ<br />

F201<br />

VIDEO IN<br />

330N<br />

100n<br />

+5V<br />

26<br />

X5<br />

J41<br />

IF AGC<br />

R578<br />

J109<br />

R268<br />

820<br />

Iref<br />

18K<br />

3,3µH 4,5-6,5<br />

R506 16V 1N4148<br />

16V<br />

VIDEO<br />

390<br />

75<br />

PORT 0<br />

VIDEO<br />

C236<br />

R229<br />

24K<br />

R511<br />

10K<br />

C230<br />

AMPLIFIER<br />

+8V<br />

25<br />

J3<br />

TR210 100<br />

1K<br />

C109<br />

S.FILTER<br />

4K7<br />

C505<br />

2µ2<br />

TOP<br />

MUTE<br />

J20<br />

BC848<br />

H 2Vpp<br />

R504<br />

100n<br />

9<br />

J110<br />

100n<br />

16V<br />

Bandgap<br />

D102<br />

POL<br />

R212<br />

1<br />

+12V<br />

C206<br />

F200<br />

21<br />

1N4148<br />

R309<br />

75<br />

R118<br />

KEY1-A 2K2<br />

2µ2<br />

5,5<br />

J148<br />

36<br />

18<br />

J126<br />

VIDEO<br />

R145<br />

H.Sync<br />

KEY2<br />

2<br />

C203<br />

ANA-<br />

MUTE<br />

16V<br />

C235<br />

R231<br />

4K7<br />

100N<br />

R551 R552<br />

10µ<br />

75<br />

22K<br />

100<br />

3<br />

L205<br />

100 100<br />

GND<br />

H 2,5Vpp 16V<br />

+8V<br />

C238<br />

KEY1-B<br />

6,8µH<br />

R144<br />

4 SEL<br />

44<br />

1000µ<br />

18<br />

22K<br />

CONTROL DAC<br />

R201<br />

FRAME<br />

27<br />

17<br />

6 VIDEO out<br />

R228<br />

16V<br />

DISPLAY<br />

KEY1 J125 R117<br />

5<br />

C267 D203<br />

1x8 BITs<br />

TR201 J42<br />

H 2,5Vpp<br />

AV<br />

+5V<br />

8<br />

TIMING<br />

10µ ZTK<br />

14x6 BITs<br />

1K<br />

TR200<br />

TR204<br />

KEY1-C<br />

BC858<br />

1K<br />

100<br />

6 ANA+<br />

100V 33B<br />

1x4 BITs<br />

R259<br />

BC848<br />

BC848<br />

R230 47<br />

VIDEO OUT<br />

D108 H 5,6Vpp<br />

R116<br />

2K7<br />

16<br />

<strong>19</strong><br />

KEY0 J124<br />

7<br />

12 Supply<br />

TR202<br />

1N4148<br />

R206<br />

C294 10µ<br />

37<br />

+8V<br />

J39<br />

R107<br />

V.Sync<br />

KEY1-D<br />

BC848<br />

R252 560<br />

R202 100<br />

1K<br />

R232<br />

16V<br />

RIGHT OUT<br />

100<br />

8 P-<br />

SCL 7<br />

J43 C213<br />

1<br />

1K<br />

1K<br />

I2C BUS<br />

IDENT<br />

C207<br />

10µ<br />

9<br />

1000µ<br />

R205 C201<br />

R214<br />

C258<br />

R254 560<br />

J133<br />

R203 100<br />

TRANSCEIVER<br />

100n<br />

H 1Vpp<br />

16V<br />

RIGHT IN<br />

KEY1-E<br />

SDA 8<br />

10V<br />

330<br />

18<br />

75<br />

10<br />

2<br />

R210<br />

Xout<br />

P+<br />

42<br />

13 CVBS int<br />

10µ<br />

1K<br />

C297<br />

R251 560<br />

J14<br />

16V<br />

LEFT OUT<br />

3<br />

Xin<br />

R213<br />

41<br />

J16<br />

VIDEO CVBS<br />

38 CVBS1 out<br />

C208<br />

10µ<br />

150<br />

C260<br />

J7<br />

R253 560<br />

V 5Vpp<br />

OSCILLATOR<br />

R115<br />

IDENT SWITCH<br />

C300<br />

47n<br />

16V<br />

LEFT IN<br />

<strong>19</strong> ON/OFF<br />

6<br />

QZ100<br />

SAT<br />

82<br />

12MHZ<br />

40<br />

17<br />

J61<br />

Xgnd<br />

CVBS input<br />

1K<br />

H 1,4Vpp<br />

+3V3<br />

H 1Vpp H 1,4Vpp<br />

VIDEO IN<br />

J120<br />

20<br />

R171 R170 +5V<br />

C204 100n<br />

R105<br />

C103 C102 J121<br />

I2C<br />

5K6 5K6<br />

Yin 27<br />

11 SVHS-Y<br />

J18<br />

4<br />

18 18<br />

1<br />

J123<br />

+5VSTBY<br />

CD MATRIX<br />

5<br />

R154<br />

+8V<br />

B-Y in<br />

J127VDDP<br />

44<br />

J99<br />

31<br />

SAT CONTROL<br />

9<br />

15K<br />

JS4<br />

BLUE STRETCH<br />

C268 C269<br />

R249 C270 C271<br />

50<br />

13<br />

D105 R176<br />

C101<br />

MSDA R100 100<br />

J141<br />

ZPD<br />

DATA<br />

SKIN TINT CORR<br />

SVHS-C<br />

C212 2n2<br />

470n<br />

32<br />

14<br />

10K<br />

43<br />

10<br />

J34<br />

1n<br />

1n<br />

100 1n 1n<br />

80C51<br />

R-Y in<br />

2V4<br />

RESET<br />

MICRO-<br />

17<br />

ADDRESS<br />

R178<br />

D106<br />

CONTROLLER<br />

49 MSCL R101 100<br />

TR220<br />

Yout 28<br />

C209 22n<br />

R282 220<br />

23 Rin<br />

R<br />

RED IN<br />

1N4148<br />

BC848<br />

LUMA DELAY<br />

D107<br />

100<br />

15<br />

R153<br />

R<strong>19</strong>1 10K<br />

1N4148<br />

52<br />

J76<br />

PEAKING<br />

SW 16/9<br />

TR108<br />

JS2<br />

R-Y out 30<br />

CORING<br />

24 Gin<br />

C210 22n G<br />

R283 220<br />

GREEN IN<br />

4K7<br />

BC 548B<br />

+12V<br />

R260<br />

BLACK STRETCH<br />

11<br />

330<br />

JS3<br />

B-Y out<br />

SW<br />

+5V<br />

29<br />

RGB MATRIX<br />

VSSP<br />

+5V +12V<br />

25 Bin<br />

C211 22n<br />

R284 220<br />

38<br />

B<br />

J60<br />

BLUE IN<br />

ROM<br />

RGB1 INPUT<br />

7<br />

16K TO 128K<br />

J97<br />

1<br />

R156<br />

CVBS -Y/C<br />

D201<br />

R106<br />

FBlank<br />

39<br />

R164<br />

10K<br />

J64<br />

26<br />

FB<br />

VDDC<br />

SWITCH<br />

BLNK<br />

+3V3<br />

2<br />

J77<br />

16<br />

1<br />

15K<br />

R147<br />

BAT 81<br />

45<br />

J98<br />

3<br />

C243 C262<br />

SW AM/FM<br />

BASE BAND REF<br />

+8V5<br />

470 470<br />

47K<br />

4<br />

12 11 10 9 8 7 6 5 4 3 2 1<br />

DELAY LINE<br />

PIP<br />

J78<br />

CHROMA TRAP<br />

C104 C105<br />

SRAM<br />

TR105<br />

+12V<br />

+<br />

100µ 100n<br />

256 Bytes<br />

47 INTO J117J136<br />

IR IRR100<br />

BC 548B<br />

5<br />

+12V<br />

R245 R246 R247 R250<br />

SC1<br />

BANDPASS<br />

10V<br />

100 100 100 75<br />

R104<br />

Vcc<br />

6<br />

A10<br />

TO RGB<br />

R155<br />

C253<br />

100K +12V<br />

J50<br />

1000µ<br />

1<br />

R113<br />

4K7<br />

31<br />

GND<br />

CTI - 16:9<br />

1<br />

VDDA<br />

PORT 1<br />

R2<strong>19</strong><br />

16V<br />

+3V3<br />

+5VSTBY<br />

12 11 4 3 5 2 8 7 6 9 10 1<br />

VCC<br />

1<br />

+5VSTBY<br />

+8V<br />

37<br />

BLACK-<br />

BL.Curr. R281 10K<br />

DRAM<br />

J135<br />

C221 3N3<br />

FILTER<br />

18<br />

C106<br />

R181<br />

A7<br />

2 2<br />

4,7<br />

CURRENT<br />

C150<br />

3K TO 28K<br />

LED1<br />

R236 R226 R225<br />

TUNING<br />

100µ<br />

10K<br />

36<br />

A11<br />

REF<br />

STABILISER<br />

D200<br />

100n<br />

J149 R151<br />

J54<br />

470K 470K 470K C220<br />

Colour PLL<br />

3<br />

10V<br />

QZ202<br />

C276<br />

ZPD<br />

3<br />

+5V<br />

R182<br />

100n R207<br />

100<br />

470<br />

3,58205<br />

D109<br />

J137<br />

C223 C222<br />

33<br />

<strong>19</strong><br />

PIP<br />

COL.AUT.<br />

12K<br />

Chroma Ref<br />

Blue<br />

R215<br />

8V2<br />

4<br />

R148<br />

TR206<br />

51<br />

4<br />

SW.XTAL 1N4148<br />

100n 100µ BFS <strong>19</strong><br />

100K<br />

10V R238<br />

SecPllDec 16<br />

100<br />

5 5<br />

47K<br />

TR208<br />

C215<br />

PAL/NTSC<br />

RGB CONTROL Green<br />

R216<br />

TR109<br />

20<br />

SCL1 R126 5K6<br />

BC 548B 47K<br />

220n<br />

46<br />

BC 548B<br />

R237<br />

XTAL 4,43<br />

SECAM<br />

+<br />

+5VSTBY<br />

+5VSTBY<br />

6 6<br />

TS<br />

R180<br />

IC600 STV 5112<br />

VSSC<br />

QZ201 C205 18 -3,58<br />

DECODER<br />

OUTPUT<br />

100<br />

13<br />

100K<br />

A5<br />

35<br />

C218 J36<br />

4,43<br />

WHITE P.<br />

R217<br />

R39<br />

R127 5K6<br />

47K<br />

1K<br />

48<br />

21 Red<br />

SDA1<br />

22n<br />

TR8<br />

5<br />

J65<br />

A9<br />

C2<strong>19</strong> 18<br />

R40<br />

BC<br />

28<br />

C100<br />

34<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

VPE<br />

R211<br />

XTAL 3,57<br />

SYNC SEP.<br />

100<br />

4<br />

15<br />

1<br />

560<br />

547B<br />

68n<br />

JS200<br />

+<br />

H 100Vpp<br />

+5VSTBY<br />

1st LOOP<br />

TR7<br />

+3V3<br />

VSSA 22<br />

3<br />

47K<br />

QZ200<br />

22 Beam Current<br />

C217 TR205<br />

C602 22<br />

BC<br />

J1<strong>19</strong><br />

J51<br />

3,57954<br />

HUE<br />

CONTR. BRIG.<br />

2<br />

22n BFS <strong>19</strong><br />

547B<br />

MHZ<br />

RED 6 6<br />

R613<br />

8 1<br />

R152<br />

1 ONLY FOR<br />

VCO +<br />

H 2Vpp<br />

TIMER/<br />

Vsawtooth 51<br />

H 2Vpp<br />

H 2Vpp<br />

A601-F R601 680<br />

IC100<br />

AUTOMATIC<br />

C252<br />

CONTROL<br />

C234 J46<br />

H 70Vpp<br />

68K<br />

D5<br />

C107<br />

Ctrs<br />

0<br />

100n<br />

2n2<br />

ZPD<br />

7 2<br />

2<br />

100µ<br />

52<br />

2V7<br />

SAA5553M3<br />

TESTING<br />

V Iref<br />

C603 82<br />

10V<br />

V 3Vpp<br />

H 100Vpp<br />

R175<br />

V 1,8Vpp<br />

R270<br />

VERTICAL H/V<br />

R243<br />

D202<br />

6 3<br />

GREEN 5<br />

R614<br />

39K 2% VdriveA<br />

+5VSTBY<br />

47 GEOMETRY DIVIDER<br />

5<br />

A601-E R602 680<br />

15K<br />

4K7<br />

C266 BA 157<br />

68K<br />

5 4<br />

VdriveB 46<br />

2µ2<br />

100V<br />

C604 27<br />

IC101<br />

R220<br />

230V<br />

2 1<br />

ST24C04CB<br />

VERT. SYNC<br />

43 Phi-1 15K<br />

BLUE 4<br />

R615<br />

R276 J37<br />

50<br />

4<br />

3<br />

EHT<br />

SEPARATOR<br />

J73<br />

A601-D R603 680<br />

H 100Vpp<br />

+8V<br />

68K<br />

C229 C228<br />

100K<br />

R275<br />

R43<br />

D21 R36<br />

3<br />

GND 3<br />

1n 1n<br />

33K<br />

~<br />

A601-C<br />

AvlCap<br />

10K<br />

C80<br />

47K<br />

R37<br />

BA 157<br />

R34<br />

R604 R605 R606<br />

D602<br />

R280<br />

EW-drive 45<br />

10µ<br />

12K<br />

CUT<br />

1K 1K 1K<br />

EW-<br />

47K<br />

1N4148 R628 100<br />

+8V<br />

100V<br />

OFF 2<br />

R600<br />

GEOMETRY<br />

C227 C226<br />

JS12<br />

MOUNTED<br />

2<br />

10K<br />

R221<br />

100<br />

4n7 1µ<br />

A601-B<br />

D28 R38<br />

1K<br />

D600<br />

D601<br />

JS1 OR JS6<br />

16V<br />

R59<br />

C615<br />

C225 Phi-2 42<br />

+12V 1 1<br />

1N4148<br />

1N4148<br />

C6 C7<br />

100<br />

J84 2n2<br />

39 Digi DEC<br />

2n2 150µ R30 R31<br />

T1<br />

D9<br />

39K<br />

BA 157 47K<br />

A601-A<br />

C614<br />

3<br />

2nd LOOP<br />

C81<br />

D611<br />

400V 400V 330K 330K<br />

JS1<br />

BYV95C<br />

C60 68<br />

D607 R629<br />

D605<br />

2n2<br />

C50<br />

680n<br />

A4<br />

BAV103<br />

2<br />

15 2 +148V<br />

+<br />

ZPD 82<br />

1N4148<br />

1KV<br />

+148V/128V<br />

HOR. OUT<br />

C12<br />

47n<br />

200V 1 1<br />

9V1<br />

A1<br />

JS6<br />

C<strong>19</strong> C20<br />

Sand. 41<br />

R612<br />

1<br />

R2 33n<br />

D610<br />

C613<br />

4 +128V<br />

IC204<br />

100n 100µ<br />

R54<br />

C224<br />

C601 C600<br />

1K<br />

68K 630V<br />

BAV103<br />

220<br />

250V 250V<br />

+28V STBY<br />

40<br />

1<br />

H. out<br />

100n<br />

100n 47µ<br />

R616<br />

C18<br />

TDA 8844<br />

2 2<br />

16V<br />

D609<br />

330<br />

J93<br />

+8V<br />

11<br />

27K<br />

R611<br />

B<br />

A6<br />

BAV103<br />

C612<br />

1K8<br />

D10<br />

500V<br />

+27,8V<br />

R88<br />

1K<br />

D604<br />

H 500Vpp D7<br />

R16 BYV95C<br />

J79<br />

R87 6V3 3 3<br />

220<br />

2<br />

0<br />

TASTO1<br />

TR4<br />

1N4148 R617<br />

BYV95C L4<br />

TIP 115<br />

R65<br />

H 27Vpp<br />

R610<br />

3<br />

6<br />

H 8Vpp<br />

0,1<br />

0,39<br />

C611<br />

1K8<br />

G<br />

0,1<br />

R<strong>19</strong> R20<br />

1K<br />

1K<br />

D603<br />

1 2 3<br />

C25<br />

J88<br />

110<br />

220<br />

R3<br />

C24<br />

4K7 4K7<br />

1N4148<br />

R618 3<br />

H 10Vpp<br />

2200µ<br />

FUS1 X2<br />

4K7<br />

100n<br />

8<br />

TR1<br />

35V<br />

IC202<br />

R<br />

T2AH<br />

C2<br />

C14<br />

C21<br />

R25<br />

1K8<br />

C3<br />

STH7N90FI<br />

2K2 L78M08CS<br />

EAT<br />

D606<br />

250V<br />

4n7<br />

470<br />

10<br />

330<br />

11<br />

4n7<br />

1N4148<br />

500V<br />

R33 R4<br />

2000V<br />

500V<br />

500V<br />

IC10 TDA 8138<br />

1 2 3 +8V<br />

10 9 5 7 1<br />

R620 120K<br />

R621<br />

4,7 47<br />

TR3<br />

H 120Vpp<br />

R1<br />

D6<br />

R5<br />

R17<br />

BC848<br />

J48<br />

+8V<br />

L2 L3<br />

D1 D2<br />

11 8<br />

1 2 3 4 5 6 7 8 9<br />

J82<br />

12<br />

10M<br />

J74<br />

C53 68n<br />

J147<br />

J83<br />

R93<br />

R91 R90<br />

R622<br />

R6<strong>19</strong><br />

47MH<br />

1N4007 1N4007<br />

100<br />

TR600<br />

150K<br />

1N4148<br />

4,7<br />

3<br />

560<br />

R626<br />

L5<br />

0,1<br />

1K8<br />

C10<br />

R6<br />

C241<br />

4K7<br />

150K 150K<br />

R81<br />

BF 422<br />

X12<br />

C8<br />

C78<br />

L22<br />

C9 L1<br />

220n<br />

47<br />

1000µ<br />

R92<br />

1K2<br />

C610<br />

47µ D13<br />

R7<br />

D11<br />

R23<br />

D20<br />

+8V<br />

+28V STBY<br />

BV52-105<br />

680N 47MH<br />

R24<br />

X8 10V<br />

J71<br />

150n 22K<br />

2n2<br />

BV53-117<br />

25V BA157<br />

BYV95C<br />

10K<br />

D53<br />

BV52-109<br />

G2<br />

400V<br />

D3<br />

D4<br />

2K2<br />

100V<br />

R623<br />

C607<br />

1KV<br />

2*47MH<br />

1N4148<br />

C606<br />

R624<br />

C608<br />

10K<br />

560<br />

C605<br />

2µ2<br />

EAT<br />

1N4007 1N4007<br />

+12V<br />

R51<br />

1N4148<br />

R75<br />

C79<br />

D27<br />

2µ2<br />

100n<br />

12<br />

C28<br />

J12<br />

C62<br />

+8V<br />

T2<br />

R83<br />

FOC<br />

100n<br />

250V<br />

C26<br />

TR11<br />

56 R76 R77 R94<br />

L21<br />

TR16 R82 15K<br />

100n<br />

BA 157 L23<br />

250V<br />

1M<br />

250V<br />

1000µ<br />

6n8<br />

D50<br />

R79<br />

250V<br />

C4<br />

C5<br />

5 6 7 8<br />

J55<br />

100n<br />

J134<br />

BC858<br />

820 820 820<br />

BU 508D 15K<br />

400V<br />

C609<br />

R18<br />

16V<br />

J96<br />

33K<br />

1N4148<br />

D608<br />

R627<br />

4n7<br />

4n7<br />

IC1 TDA 4605<br />

C30<br />

1<br />

9<br />

R625<br />

10µ<br />

X1<br />

C15<br />

0,1 C22 330<br />

1,5<br />

100µH<br />

18K<br />

1N4004<br />

470K<br />

DEGAUSS<br />

500V<br />

500V<br />

1000µ<br />

R50<br />

5,6 µH<br />

C74<br />

100V<br />

4 3 2 1<br />

A12 J105<br />

C32<br />

4n7<br />

500V<br />

R71 D204<br />

C65<br />

C73<br />

25V<br />

1<br />

3<br />

BV53-130<br />

10µ<br />

2<br />

100 H1Vpp<br />

16<br />

J106<br />

2K2 1N4148<br />

470µ<br />

D26<br />

1µ J68<br />

10<br />

BA 157<br />

250V<br />

C23 330<br />

3K3<br />

35V<br />

D23 R80<br />

250V<br />

J26<br />

D8<br />

C72<br />

C77<br />

1 2 3 A600-C<br />

X10<br />

500V<br />

2<br />

R66<br />

J1<br />

1<br />

R8<br />

C51<br />

1µ<br />

150n<br />

A2<br />

1<br />

3 2 1<br />

R32 1N4148 9<br />

6<br />

10K<br />

V 5Vpp<br />

2200µ<br />

+12V<br />

47<br />

J59<br />

1<br />

R84<br />

BA 157<br />

350V<br />

G2<br />

C1<br />

100K<br />

16V<br />

25V<br />

L24<br />

39<br />

390K<br />

3<br />

J66<br />

J70<br />

FOC<br />

A3<br />

BV53<br />

10n<br />

PTC1<br />

R9<br />

R12 R13<br />

R15 4M7<br />

J131<br />

C54<br />

C66<br />

4<br />

J104<br />

7<br />

1 2 3<br />

-120<br />

250V<br />

JS10 X3<br />

J132 X4<br />

22n<br />

4n7<br />

D12<br />

+5VSTBY<br />

4<br />

8<br />

TR207<br />

R64<br />

BC 338-40 H 40Vpp<br />

2<br />

560K<br />

820 3K9 R14<br />

BYW95A<br />

0,1<br />

R89<br />

C59<br />

R56<br />

H 12Vpp<br />

2K2<br />

C27<br />

100µ C82<br />

D24 H 1200Vpp<br />

C75<br />

0,1<br />

J92<br />

1,8<br />

C17<br />

R26<br />

1000µ<br />

5<br />

J85<br />

25V 100µ<br />

R60<br />

BY228<br />

J94<br />

C29<br />

R29<br />

V 11Vpp<br />

C68<br />

+148V/128V 5n6<br />

LIVE AREA<br />

6<br />

2n2<br />

4K7<br />

10V<br />

25V<br />

TR15<br />

1000µ<br />

220<br />

10n<br />

C70<br />

400V<br />

R10 C11 R11<br />

C16<br />

400V<br />

BC 639<br />

C71<br />

16V<br />

R28<br />

4K7 TR6<br />

6<br />

C67<br />

V 12Vpp<br />

2n2 1µ<br />

R85 10<br />

4K7 4n7 220<br />

1µ<br />

2µ2<br />

1,5KV<br />

COMPONENTI SOTTO RETE<br />

BC 638<br />

C56<br />

1,6KV 100V<br />

R86<br />

63V<br />

R73<br />

100V<br />

R67<br />

R70 L20<br />

J103<br />

2<br />

A3<br />

10n<br />

47K<br />

5W<br />

0,1<br />

220<br />

7<br />

C76<br />

JS11<br />

R266 R61<br />

TR5<br />

R68<br />

R57<br />

D22 R78<br />

L26<br />

+5V<br />

1 3<br />

680n<br />

H 8Vpp 220 10K<br />

82K<br />

0,1 10MH<br />

BC 548B<br />

C31<br />

390<br />

4,7<br />

BA 157 10K<br />

1,2mH<br />

250V<br />

Non inserire con modulo zero power<br />

R27<br />

8<br />

J67<br />

5<br />

C55 C52<br />

1000µ J112<br />

1K<br />

220n 470µ<br />

10V J128 X14X6<br />

A3<br />

J69 J57<br />

C69<br />

D25<br />

R35<br />

Solo con modulo zero power<br />

50V<br />

9<br />

3 1<br />

T3 12K<br />

22n<br />

BA 157<br />

D52<br />

C61<br />

R21<br />

R53 3<br />

400V<br />

L25<br />

BA<br />

100n<br />

TR2<br />

IC5<br />

TR12<br />

610µH * *<br />

157<br />

270<br />

R69<br />

250V<br />

BC 548B<br />

TDA 8351<br />

82K BUK474<br />

J56<br />

Industrie Formenti Italia s.p.a.<br />

R22 47K<br />

C58<br />

R58<br />

VERT.<br />

200A<br />

J130<br />

* MOUNTED L25<br />

47K<br />

22<br />

22n<br />

H 60Vpp<br />

YOKE<br />

OR L26<br />

R55 H 150Vpp<br />

Stabilimento di Sessa Aurunca (CE)<br />

V 1Vpp<br />

0,1<br />

V 45Vpp<br />

C57<br />

Descr. TELAIO BASE F<strong>19</strong><br />

220n<br />

+8V5<br />

A3<br />

R42 75<br />

D51<br />

Data: 12/09/2000 Cod. Schema:<br />

4<br />

497.07B<br />

Scala:<br />

Sost.schema: 497.06B<br />

R41 75<br />

BA 157<br />

1<br />

2<br />

A14-B<br />

A14-A<br />

3<br />

+26V<br />

A13-G<br />

L. AP OUT<br />

A13-I<br />

4<br />

A13-H<br />

R. AP OUT<br />

A13-E<br />

EX.L. OUT<br />

A13-F<br />

EX.R. OUT<br />

A13-J<br />

GND<br />

A13-D<br />

GND<br />

-<br />

-<br />

5<br />

A13-C<br />

+12V<br />

SDA<br />

A13-B<br />

A13-A<br />

SCL<br />

SW TV/AV<br />

IF1<br />

6<br />

7<br />

AM/FM IN<br />

8<br />

+6V<br />

L.SC OUT<br />

R.SC OUT<br />

INTER.<br />

GND<br />

+12V<br />

LSCin<br />

RSCin<br />

9 10<br />

A600-A<br />

A600-B<br />

11<br />

Disegnato:<br />

DI MAIO<br />

Approvato:<br />

12<br />

H<br />

G<br />

F<br />

E<br />

D<br />

C<br />

B<br />

A


D602<br />

D107<br />

R8<br />

C291<br />

D28<br />

R617<br />

L480<br />

C246<br />

R527<br />

J30<br />

R625<br />

R32<br />

C4<br />

C15<br />

R21<br />

C216<br />

J24<br />

C245<br />

D605<br />

R603<br />

R618<br />

C299<br />

J83<br />

JS11<br />

C401<br />

C52<br />

L22<br />

R100<br />

C267<br />

C76<br />

D7<br />

C208<br />

D601<br />

R87<br />

D20<br />

D11<br />

D10<br />

J72<br />

C614<br />

R13<br />

L400<br />

R15<br />

C107<br />

C451<br />

C247<br />

L481<br />

D604<br />

C402<br />

X2<br />

R513<br />

C406<br />

C404<br />

C222<br />

R230<br />

A6<br />

DIS1<br />

C101<br />

R200<br />

R606<br />

J36<br />

R9<br />

D106<br />

R7<br />

R623<br />

C32<br />

C256<br />

J42<br />

L1<br />

L2<br />

L206<br />

L21<br />

R5<br />

C265<br />

D202<br />

D1<br />

R151<br />

C8<br />

C<strong>19</strong><br />

L4<br />

C2<br />

R311<br />

R268<br />

D24<br />

K1<br />

C14<br />

A5<br />

D204<br />

C9<br />

R85<br />

D51<br />

IRR100<br />

IC600<br />

TR108<br />

L24<br />

R2<strong>19</strong><br />

C11<br />

K3<br />

R224<br />

R90<br />

R605<br />

D3<br />

C71<br />

C206<br />

C5<br />

L207<br />

C232<br />

R153<br />

K2<br />

A15<br />

C255<br />

R613<br />

R11<br />

R33<br />

C607<br />

L3<br />

C261<br />

R244<br />

C250<br />

R104<br />

R602<br />

C254<br />

R116<br />

IC200<br />

F576<br />

D4<br />

R117<br />

R118<br />

F575<br />

C260<br />

C1<br />

R4<br />

A2<br />

A11<br />

R233<br />

C259<br />

A10<br />

C240<br />

IC204<br />

C18<br />

C20<br />

J147<br />

C604<br />

R3<br />

TR8<br />

R159<br />

TR16<br />

C238<br />

D9<br />

TR7<br />

D2<br />

K4<br />

SC2<br />

SC1<br />

J110<br />

A7<br />

R25<br />

A601<br />

R601<br />

T1<br />

TR4<br />

C57<br />

X1<br />

PTC1<br />

A1<br />

R94<br />

R142<br />

R76<br />

C58<br />

K5<br />

D201<br />

F200<br />

F201<br />

R18<br />

QZ202<br />

C226<br />

QZ201<br />

F203<br />

D101<br />

D100<br />

C606<br />

C253<br />

QZ200<br />

X13<br />

IC100<br />

QZ100<br />

C239<br />

C28<br />

R626<br />

R614<br />

C605<br />

D600<br />

C252<br />

C481<br />

C577<br />

F204<br />

A8<br />

IC102<br />

C230<br />

L201<br />

C213<br />

J50<br />

TR214<br />

TR213<br />

C283<br />

C248<br />

R122<br />

R144<br />

C298<br />

IC201<br />

R102<br />

C55<br />

D13<br />

IC101<br />

C106<br />

C31<br />

R167<br />

IC202<br />

A13<br />

C233<br />

C286<br />

TR217<br />

TR216<br />

R501<br />

TR215<br />

C292<br />

R114<br />

R50<br />

TR111<br />

TR6<br />

TR5<br />

TR500<br />

C241<br />

TR208<br />

R89<br />

R101<br />

TR109<br />

C501<br />

D104<br />

C231<br />

C287<br />

R26<br />

A12<br />

C3<br />

C56<br />

R58<br />

C12<br />

C104<br />

R106<br />

R505<br />

C551<br />

R504<br />

C407<br />

A400<br />

C405<br />

L401<br />

R121<br />

T3<br />

TR12<br />

IC5<br />

IC10<br />

IC203<br />

IC400<br />

TUNER<br />

KEY1<br />

R123<br />

CH2<br />

CH3<br />

CH1<br />

LED1<br />

C258<br />

TR1<br />

R105<br />

C297<br />

C257<br />

C294<br />

IC1<br />

R10<br />

D103<br />

D105<br />

H1<br />

JS12<br />

TR2<br />

C249<br />

C74<br />

A4<br />

L26<br />

C51<br />

D52<br />

L25<br />

C75<br />

R64<br />

D27<br />

R88<br />

D21<br />

R84<br />

R20<br />

R<strong>19</strong><br />

D12<br />

C23<br />

C29<br />

R57<br />

R56<br />

R70<br />

C54<br />

R91<br />

R82<br />

C72<br />

C73<br />

C79<br />

R83<br />

D26<br />

C68<br />

L20<br />

R86<br />

R55<br />

D25<br />

C70<br />

C69<br />

R79<br />

D23<br />

R80<br />

A3<br />

L5<br />

D6<br />

R1<br />

FUS1<br />

R2<br />

R31<br />

R30<br />

C7<br />

R6<br />

C16<br />

D8<br />

R12<br />

C78<br />

R77<br />

R17<br />

C22<br />

C21<br />

C30<br />

R92<br />

C61<br />

C65<br />

TR15<br />

T2<br />

D22<br />

R75<br />

C25<br />

C24<br />

R81<br />

J41<br />

TR203<br />

C484<br />

C496<br />

J43<br />

J44<br />

JS10<br />

J<strong>19</strong><br />

J92<br />

C482<br />

J18<br />

J37<br />

J122<br />

JS7<br />

J128<br />

J130<br />

J25<br />

J35<br />

J93<br />

J70<br />

J140<br />

J139<br />

J138<br />

J5<br />

J102<br />

J133<br />

J17<br />

J94<br />

J16<br />

R152<br />

J26<br />

J14<br />

J81<br />

J65<br />

J1<br />

J3<br />

J71<br />

J22<br />

J109<br />

D203<br />

J132<br />

J134<br />

J48<br />

J116<br />

J53<br />

J101<br />

J144<br />

J60<br />

J100<br />

J6<br />

J20<br />

J8<br />

J68<br />

J10<br />

J117<br />

J39<br />

J28<br />

J56<br />

J12<br />

J63<br />

J120<br />

R24<br />

J115<br />

J113<br />

J55<br />

J32<br />

J27<br />

J46<br />

J112<br />

J38<br />

J45<br />

J54<br />

J4<br />

J124<br />

J125<br />

J2<br />

J106<br />

J74<br />

J31<br />

J23<br />

J136<br />

J118<br />

J135<br />

J137<br />

J1<strong>19</strong><br />

J75<br />

J126<br />

J79<br />

J82<br />

J64<br />

J57<br />

J90<br />

J141<br />

J143<br />

J21<br />

J62<br />

J34<br />

J7<br />

J9<br />

J52<br />

JS1<br />

R188<br />

R189<br />

R<strong>19</strong>0<br />

TASTO1<br />

R14<br />

C10<br />

R156<br />

J87<br />

TR105<br />

J77<br />

R276<br />

J108<br />

J86<br />

J107<br />

C575<br />

J145<br />

J84<br />

J85<br />

J88<br />

J76<br />

R309<br />

J105<br />

R181<br />

J96<br />

J98<br />

J97<br />

J89<br />

J91<br />

C502<br />

R147<br />

J104<br />

J103<br />

D108<br />

R53<br />

R16<br />

TR207<br />

R71<br />

J66<br />

R266<br />

C67<br />

C66<br />

L23<br />

C27<br />

C59<br />

J67<br />

TR209<br />

C235<br />

R201<br />

J40<br />

L205<br />

J61<br />

C266<br />

J95<br />

JS502<br />

J51<br />

D200<br />

A9<br />

R240<br />

J78<br />

J47<br />

J49<br />

J69<br />

J73<br />

R145<br />

J59<br />

J148<br />

C50<br />

J146<br />

X3<br />

X5<br />

X14<br />

X6<br />

A14<br />

D50<br />

D53<br />

C80<br />

C81<br />

C77<br />

R425<br />

R424<br />

R490<br />

R491<br />

JS490<br />

JS450<br />

JS451<br />

J149<br />

D109<br />

C293<br />

X8<br />

C263<br />

JP2<br />

JP1<br />

JP4<br />

JP3<br />

JP5<br />

R6<strong>19</strong><br />

TR600<br />

C608<br />

R620<br />

CRT<br />

A600<br />

R624<br />

R622<br />

C609<br />

C610<br />

D608<br />

R621<br />

D606<br />

C601<br />

R604<br />

D607<br />

R615<br />

C602<br />

C603<br />

D603<br />

R628<br />

X10<br />

R627<br />

X12<br />

R616<br />

C600<br />

R600<br />

R629<br />

C17<br />

C6<br />

JS13<br />

R113<br />

D102<br />

R243<br />

J127<br />

D5<br />

J131<br />

X4<br />

J121<br />

C82<br />

LA7955<br />

LIVE AREA<br />

F<strong>19</strong><br />

T2AH<br />

00 01 02 03 04 05<br />

MICROCONTROLLER<br />

SDA<br />

GND<br />

11Vpp<br />

GND<br />

R<br />

L<br />

GND<br />

GND<br />

+12V<br />

GND<br />

GND<br />

GND<br />

GND<br />

230Vac<br />

GND<br />

2,5Vpp<br />

45Vpp<br />

1200Vpp<br />

GIALLO<br />

SCL<br />

GND<br />

+8V5<br />

+12V<br />

GND<br />

VIDEO<br />

IN<br />

SEL<br />

BIANCO<br />

+5V<br />

GND<br />

ANA+<br />

GND<br />

+128V<br />

GND<br />

+5V STBY<br />

LEFT<br />

IN<br />

GND<br />

P+ P-<br />

GND<br />

G F M A M G L A S O N D<br />

ANA-<br />

GND<br />

GND<br />

+8V5<br />

+12V<br />

GND<br />

GND<br />

+12V<br />

+12V<br />

GND<br />

+12V<br />

+12V<br />

+148V<br />

+5V<br />

+5V<br />

GND<br />

GND<br />

DSC<br />

+5V<br />

+5V<br />

+5V STBY<br />

+8V5<br />

497.07B<br />

GND<br />

GND<br />

GND<br />

DEGAUSS<br />

GND<br />

GND<br />

GND<br />

GND<br />

RGB<br />

GND<br />

G2<br />

NVM<br />

+12V<br />

GND<br />

AGC<br />

JS6<br />

GND<br />

GND<br />

5,6Vpp<br />

+5V STBY<br />

SCL<br />

SDA<br />

3<br />

1<br />

1<br />

3<br />

1<br />

2<br />

3<br />

4<br />

1Vpp<br />

60Vpp<br />

27Vpp<br />

150Vpp<br />

2,5Vpp<br />

+5V<br />

12Vpp<br />

120Vpp<br />

1Vpp<br />

40Vpp<br />

8Vpp<br />

497.06B<br />

RIGHT<br />

IN<br />

ROSSO<br />

1,8Vpp<br />

3Vpp<br />

1Vpp<br />

10Vpp<br />

500Vpp<br />

5Vpp<br />

2,5Vpp<br />

2,5Vpp<br />

HEF4053<br />

0,5Vpp<br />

12Vpp<br />

+5V<br />

STBY<br />

+5V<br />

+12V


497.07B

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!