25.06.2014 Views

Neuro Atlas

Neuro Atlas

Neuro Atlas

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Atlas</strong> of<br />

<strong>Neuro</strong>anatomy and<br />

<strong>Neuro</strong>physiology<br />

Selections from the Netter Collection of Medical Illustrations<br />

Illustrations by<br />

Frank H. Netter, MD<br />

John A. Craig, MD<br />

James Perkins, MS, MFA<br />

Text by<br />

John T. Hansen, PhD<br />

Bruce M. Koeppen, MD, PhD


<strong>Atlas</strong> of <strong>Neuro</strong>anatomy and <strong>Neuro</strong>physiology<br />

Selections from the Netter Collection of Medical Illustrations<br />

Copyright ©2004 Icon Custom Communications. All rights reserved.<br />

The contents of this book may not be reproduced in any form without written<br />

authorization from Icon Custom Communications. Requests for permission<br />

should be addressed to Permissions Department, Icon Custom Communications,<br />

295 North St., Teterboro NJ 07608, or can be made at www. Netterart.com.<br />

NOTICE<br />

Every effort has been taken to confirm the accuracy of the information presented.<br />

Novartis, the publisher or the authors cannot be held responsible for errors or for<br />

any consequences arising from the use of the information contained herein, and<br />

make no warranty, expressed or implied, with respect to the contents of the publication.<br />

Printed in U.S.A.


Foreword<br />

Frank Netter: The Physician, The Artist, The Art<br />

This selection of the art of Dr. Frank H. Netter on neuroanatomy and neurophysiology is drawn<br />

from the <strong>Atlas</strong> of Human Anatomy and Netter’s <strong>Atlas</strong> of Human Physiology. Viewing these pictures<br />

again prompts reflection on Dr. Netter’s work and his roles as physician and artist.<br />

Frank H. Netter was born in 1906 in New York City. He pursued his artistic muse at the Sorbonne,<br />

the Art Student’s League, and the National Academy of Design before entering medical school at<br />

New York University, where he received his M.D. degree in 1931. During his student years, Dr.<br />

Netter’s notebook sketches attracted the attention of the medical faculty and other physicians, allowing<br />

him to augment his income by illustrating articles and textbooks. He continued illustrating as a<br />

sideline after establishing a surgical practice in 1933, but ultimately opted to give up his practice in<br />

favor of a full-time commitment to art. After service in the United States Army during the Second<br />

World War, Dr. Netter began his long collaboration with the CIBA Pharmaceutical Company (now<br />

Novartis Pharmaceuticals). This 45-year partnership resulted in the production of the extraordinary<br />

collection of medical art so familiar to physicians and other medical professionals worldwide.<br />

When Dr. Netter’s work is discussed, attention is focused primarily on Netter the artist and only<br />

secondarily on Netter the physician. As a student of Dr. Netter’s work for more than forty years, I can<br />

say that the true strength of a Netter illustration was always established well before brush was laid to<br />

paper. In that respect each plate is more of an intellectual than an artistic or aesthetic exercise. It is<br />

easy to appreciate the aesthetic qualities of Dr. Netter’s work, but to overlook its intellectual qualities<br />

is to miss the real strength and intent of the art. This intellectual process requires thorough understanding<br />

of the topic, as Dr. Netter wrote: “Strange as it may seem, the hardest part of making a medical<br />

picture is not the drawing at all. It is the planning, the conception, the determination of point of<br />

view and the approach which will best clarify the subject which takes the most effort.”<br />

Years before the inception of “the integrated curriculum,” Netter the physician realized that a<br />

good medical illustration can include clinical information and physiologic functions as well as anatomy.<br />

In pursuit of this principle Dr. Netter often integrates pertinent basic and clinical science elements<br />

in his anatomic interpretations. Although he was chided for this heresy by a prominent<br />

European anatomy professor, many generations of students training to be physicians rather than<br />

anatomists have appreciated Dr. Netter’s concept.<br />

The integration of physiology and clinical medicine with anatomy has led Dr. Netter to another,<br />

more subtle, choice in his art. Many texts and atlases published during the period of Dr. Netter’s<br />

career depict anatomy clearly based on cadaver specimens with renderings of shrunken and shriveled<br />

tissues and organs. Netter the physician chose to render “live” versions of these structures—not<br />

shriveled, colorless, formaldehyde-soaked tissues, but plump, robust organs, glowing with color!<br />

The value of Dr. Netter’s approach is clearly demonstrated by the plates in this selection.<br />

John A. Craig, MD<br />

Austin, Texas


This volume brings together two distinct but related aspects of the work of Frank<br />

H. Netter, MD, and associated artists. Netter is best known as the creator of the<br />

<strong>Atlas</strong> of Human Anatomy, a comprehensive textbook of gross anatomy that has<br />

become the standard atlas for students of the subject. But Netter’s work included<br />

far more than anatomical art. In the pages of Clinical Symposia, a series of monographs<br />

published over a period of more than 50 years, and in The Netter Collection<br />

of Medical Illustrations, this premier medical artist created superb illustrations of<br />

biological and physiological processes, disease pathology, clinical presentations,<br />

and medical procedures.<br />

As a service to the medical community, Novartis Pharma has commissioned this<br />

special edition of Netter’s work, which includes his beautiful and instructive illustrations<br />

of nervous system anatomy as well as his depictions of neurophysiological<br />

concepts and functions. We hope that readers will find Dr. Netter’s renderings of<br />

neurological form and function interesting and useful.


Part 1 <strong>Neuro</strong>anatomy<br />

Cerebrum—Medial Views . . . . . . . . . . . . . . . . . 2<br />

Cerebrum—Inferior View. . . . . . . . . . . . . . . . . . 3<br />

Basal Nuclei (Ganglia). . . . . . . . . . . . . . . . . . . . 4<br />

Thalamus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5<br />

Cerebellum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6<br />

Brainstem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7<br />

Fourth Ventricle and Cerebellum . . . . . . . . . . . 8<br />

Accessory Nerve (XI) . . . . . . . . . . . . . . . . . . . . 9<br />

Arteries to Brain and Meninges . . . . . . . . . . . 10<br />

Arteries to Brain: Schema . . . . . . . . . . . . . . . . 11<br />

Arteries of Brain: Inferior Views . . . . . . . . . . . 12<br />

Cerebral Arterial Circle (Willis) . . . . . . . . . . . 13<br />

Arteries of Brain: Frontal View and Section . . 14<br />

Arteries of Brain:<br />

Lateral and Medial Views. . . . . . . . . . . . . . . 15<br />

Arteries of Posterior Cranial Fossa . . . . . . . . . 16<br />

Veins of Posterior Cranial Fossa . . . . . . . . . . . 17<br />

Deep Veins of Brain. . . . . . . . . . . . . . . . . . . . . 18<br />

Subependymal Veins of Brain . . . . . . . . . . . . . 19<br />

Hypothalamus and Hypophysis . . . . . . . . . . . 20<br />

Arteries and Veins<br />

of Hypothalamus and Hypophysis . . . . . . . . 21<br />

Relation of Spinal Nerve Roots to Vertebrae . . . 22<br />

Autonomic Nervous System:<br />

General Topography. . . . . . . . . . . . . . . . . . . 23<br />

Spinal Nerve Origin: Cross Sections. . . . . . . . 24<br />

Olfactory Nerve (I): Schema . . . . . . . . . . . . . . 25<br />

Optic Nerve (II)<br />

(Visual Pathway): Schema . . . . . . . . . . . . . . 26<br />

Oculomotor (III), Trochlear (IV)<br />

and Abducent (VI) Nerves: Schema. . . . . . . 27<br />

Trigeminal Nerve (V): Schema . . . . . . . . . . . . 28<br />

Facial Nerve (VII): Schema . . . . . . . . . . . . . . . 29<br />

Vestibulocochlear Nerve (VIII): Schema. . . . . 30<br />

Glossopharyngeal Nerve (IX): Schema . . . . . . 31<br />

Vagus Nerve (X): Schema . . . . . . . . . . . . . . . . 32<br />

Accessory Nerve (XI): Schema . . . . . . . . . . . . 33<br />

Hypoglossal Nerve (XII): Schema . . . . . . . . . . 34<br />

Nerves of Heart . . . . . . . . . . . . . . . . . . . . . . . . 35<br />

Autonomic Nerves<br />

and Ganglia of Abdomen. . . . . . . . . . . . . . . 36<br />

Nerves of Stomach and Duodenum . . . . . . . . 37<br />

Nerves of Stomach<br />

and Duodenum (continued) . . . . . . . . . . . . 38<br />

Nerves of Small Intestine . . . . . . . . . . . . . . . . 39<br />

Nerves of Large Intestine . . . . . . . . . . . . . . . . 40<br />

Nerves of Kidneys,<br />

Ureters and Urinary Bladder . . . . . . . . . . . . 41<br />

Nerves of Pelvic Viscera: Male . . . . . . . . . . . . 42<br />

Nerves of Pelvic Viscera: Female . . . . . . . . . . 43<br />

Median Nerve . . . . . . . . . . . . . . . . . . . . . . . . . 44<br />

Ulnar Nerve . . . . . . . . . . . . . . . . . . . . . . . . . . . 45<br />

Radial Nerve in Arm<br />

and Nerves of Posterior Shoulder . . . . . . . . 46<br />

Radial Nerve in Forearm . . . . . . . . . . . . . . . . . 47<br />

Sciatic Nerve and Posterior<br />

Cutaneous Nerve of Thigh . . . . . . . . . . . . . . 48<br />

Tibial Nerve . . . . . . . . . . . . . . . . . . . . . . . . . . . 49<br />

Common Fibular (Peroneal) Nerve. . . . . . . . . 50


NEUROANATOMY<br />

Cerebrum: Medial Views<br />

Sagittal section of<br />

Cingulate gyrus<br />

brain in situ<br />

Cingulate sulcus<br />

Medial frontal gyrus<br />

Sulcus of corpus callosum<br />

Fornix<br />

Septum pellucidum<br />

Interventricular<br />

foramen (Monro)<br />

Interthalamic<br />

adhesion<br />

Thalamus and<br />

3rd ventricle<br />

Subcallosal<br />

(parolfactory)<br />

area<br />

Anterior<br />

commissure<br />

Subcallosal<br />

gyrus<br />

Hypothalamic<br />

sulcus<br />

Lamina<br />

terminalis<br />

Supraoptic<br />

recess<br />

Optic chiasm<br />

Tuber cinereum<br />

Hypophysis (pituitary gland)<br />

Mammillary body<br />

Cerebral peduncle<br />

Pons<br />

Medial surface of cerebral<br />

hemisphere: brainstem excised<br />

Cingulate gyrus<br />

Mammillothalamic<br />

fasciculus<br />

Mammillary body<br />

Uncus<br />

Optic nerve (II)<br />

Olfactory tract<br />

Collateral sulcus<br />

Rhinal sulcus<br />

Medial occipitotemporal gyrus<br />

Occipitotemporal sulcus<br />

Lateral occipitotemporal gyrus<br />

Paracentral sulcus<br />

Central sulcus (Rolando)<br />

Paracentral lobule<br />

Marginal sulcus<br />

Corpus callosum<br />

Precuneus<br />

Superior sagittal sinus<br />

Choroid plexus<br />

of 3rd ventricle<br />

Stria medullaris<br />

of thalamus<br />

Parietooccipital<br />

sulcus<br />

Cuneus<br />

Habenular<br />

commissure<br />

Cerebral aqueduct<br />

(Sylvius)<br />

Pineal body<br />

Posterior<br />

commissure<br />

Calcarine<br />

sulcus<br />

Straight sinus<br />

in tentorium<br />

cerebelli<br />

Great cerebral vein<br />

(Galen)<br />

Superior colliculus<br />

Inferior colliculus<br />

Tectal (quadrigeminal) plate<br />

Cerebellum<br />

Superior medullary velum<br />

4th ventricle and choroid plexus<br />

Inferior medullary velum<br />

Medulla oblongata<br />

Genu<br />

Rostrum<br />

Trunk<br />

Splenium<br />

of<br />

corpus callosum<br />

Isthmus of cingulate gyrus<br />

Parietooccipital sulcus<br />

Cuneus<br />

Calcarine sulcus<br />

Lingual gyrus<br />

Crus<br />

Body<br />

Column<br />

of fornix<br />

Fimbria of hippocampus<br />

Dentate gyrus<br />

Parahippocampal gyrus<br />

2


Cerebrum: Inferior View<br />

NEUROANATOMY<br />

Sectioned brainstem<br />

Frontal pole of cerebrum<br />

Straight gyrus<br />

Olfactory sulcus<br />

Orbital sulci<br />

Longitudinal cerebral fissure<br />

Genu of corpus callosum<br />

Lamina terminalis<br />

Olfactory bulb<br />

Orbital gyri<br />

Temporal pole<br />

Lateral sulcus (Sylvius)<br />

Inferior temporal sulcus<br />

Inferior temporal gyrus<br />

Olfactory tract<br />

Optic chiasm<br />

Optic nerve (II) (cut)<br />

Hypophysis<br />

(pituitary gland)<br />

Anterior<br />

perforated substance<br />

Optic tract<br />

Tuber cinereum<br />

Inferior (inferolateral)<br />

margin<br />

of cerebrum<br />

Rhinal sulcus<br />

Uncus<br />

Inferior<br />

temporal gyrus<br />

Occipitotemporal<br />

sulcus<br />

Lateral occipitotemporal<br />

gyrus<br />

Collateral sulcus<br />

Parahippocampal gyrus<br />

Medial occipitotemporal gyrus<br />

Calcarine sulcus<br />

Isthmus of cingulate gyrus<br />

Apex of cuneus<br />

Occipital pole of cerebrum<br />

Longitudinal cerebral fissure<br />

Cerebral aqueduct<br />

Splenium of corpus callosum<br />

Mammillary body<br />

Posterior perforated<br />

substance (in<br />

interpeduncular<br />

fossa)<br />

Cerebral crus<br />

Lateral geniculate<br />

body<br />

Substantia nigra<br />

Medial geniculate<br />

body<br />

Red nucleus<br />

Pulvinar of thalamus<br />

Superior colliculus (of<br />

corpora quadrigemina)<br />

3


NEUROANATOMY<br />

Basal Nuclei (Ganglia)<br />

Horizontal sections<br />

through cerebrum<br />

A<br />

B<br />

Genu of corpus callosum<br />

Head of caudate nucleus<br />

Lateral ventricle<br />

Septum pellucidum<br />

Anterior limb<br />

Genu<br />

Posterior limb<br />

of internal<br />

capsule<br />

Column of fornix<br />

Insula<br />

(island of Reil)<br />

Interthalamic<br />

adhesion<br />

Putamen<br />

Globus pallidus<br />

3rd ventricle<br />

External capsule<br />

Lentiform<br />

nucleus<br />

Thalamus<br />

Claustrum<br />

Crus of fornix<br />

Retrolenticular part<br />

of internal capsule<br />

Choroid plexus<br />

of lateral ventricle<br />

Tail of caudate nucleus<br />

Splenium of<br />

corpus callosum<br />

Hippocampus and fimbria<br />

Occipital (posterior) horn<br />

of lateral ventricle<br />

Habenula<br />

Organization of<br />

basal nuclei (ganglia)<br />

A<br />

B<br />

Pineal body<br />

Caudate<br />

nucleus<br />

Putamen Globus<br />

pallidus<br />

Cleft for internal capsule<br />

Striatum<br />

Corpus<br />

striatum<br />

Basal nuclei<br />

(ganglia)<br />

Lentiform<br />

nucleus<br />

Caudate<br />

nucleus<br />

Levels of<br />

sections<br />

above<br />

Body<br />

Head<br />

A<br />

B<br />

Lentiform nucleus<br />

(globus pallidus medial<br />

to putamen)<br />

Amygdaloid body<br />

Thalamus<br />

Pulvinar<br />

Medial geniculate body<br />

Lateral geniculate body<br />

Tail of caudate nucleus<br />

Interrelationship of thalamus, lentiform nucleus, caudate<br />

nucleus and amygdaloid body (schema): left lateral view<br />

A<br />

B<br />

4


Thalamus<br />

NEUROANATOMY<br />

Interventricular foramen (Monro)<br />

Tela choroidea (cut edge)<br />

of 3rd ventricle<br />

3rd ventricle<br />

Choroid plexus<br />

Superior thalamostriate vein<br />

Pes hippocampi<br />

Temporal (inferior) horn<br />

of lateral ventricle<br />

Internal cerebral vein<br />

Dentate gyrus<br />

Collateral eminence<br />

Hippocampus<br />

Fimbria of hippocampus<br />

Posterior commissure<br />

Habenular commissure<br />

Pineal body<br />

Collateral trigone<br />

Calcar avis<br />

Occipital (posterior) horn<br />

of lateral ventricle<br />

Calcarine sulcus<br />

Corpus callosum (cut)<br />

Head of caudate nucleus<br />

Septum pellucidum<br />

Columns of fornix<br />

Anterior tubercle<br />

Stria terminalis<br />

Interthalamic adhesion<br />

Lamina affixa<br />

Stria medullaris<br />

Habenular trigone<br />

Pulvinar (retracted)<br />

Lateral geniculate body<br />

Medial geniculate body<br />

Brachium of superior colliculus<br />

Brachium of inferior colliculus<br />

Superior colliculus<br />

Inferior colliculus<br />

Cerebellum<br />

Internal<br />

medullary<br />

lamina<br />

MD<br />

M<br />

CM<br />

VPM<br />

LP<br />

VPL<br />

Pulvinar<br />

Intralaminar<br />

nuclei<br />

Reticular nucleus<br />

Interthalamic<br />

adhesion<br />

3rd ventricle<br />

Internal<br />

Median<br />

Medial<br />

LP<br />

VP<br />

Lamina<br />

LD<br />

medullary lamina<br />

VPL VPM VI<br />

Anterior<br />

VL<br />

VA<br />

3rd ventricle<br />

Median nuclei<br />

External<br />

medullary<br />

lamina<br />

Schematic section<br />

through thalamus<br />

(at level of broken<br />

line shown in figure<br />

at right)<br />

Thalamic nuclei<br />

CM Centromedian<br />

LD Lateral dorsal<br />

LP Lateral posterior<br />

M Medial<br />

MD Medial dorsal<br />

VA Ventral anterior<br />

VI Ventral intermedial<br />

VL Ventral lateral<br />

VP Ventral posterior<br />

VPL Ventral posterolateral<br />

VPM Ventral posteromedial<br />

Pulvinar<br />

Lateral geniculate body<br />

Medial geniculate body<br />

Schematic representation of thalamus<br />

(external medullary lamina and<br />

reticular nuclei removed)<br />

Lateral nuclei<br />

Medial nuclei<br />

Anterior nuclei<br />

5


NEUROANATOMY<br />

Cerebellum<br />

Superior<br />

vermis<br />

Anterior cerebellar notch<br />

Central lobule (II & III)<br />

Culmen (IV & V)<br />

Declive (VI)<br />

Folium (VII A)<br />

Posterior cerebellar notch<br />

Superior surface<br />

Anterior lobe<br />

Quadrangular lobule (H IV-V)<br />

Primary fissure<br />

Horizontal fissure<br />

Simple lobule (H VI)<br />

Posterior lobe<br />

Postlunate fissure<br />

Superior semilunar<br />

(anseriform) lobule (H VII A)<br />

Horizontal fissure<br />

Inferior semilunar<br />

(caudal) lobule (H VII B)<br />

Superior vermis<br />

Central lobule<br />

Lingula (I)<br />

Superior medullary velum<br />

Flocculus (H X)<br />

4th ventricle<br />

Inferior medullary velum<br />

Inferior<br />

vermis<br />

Nodule (X)<br />

Uvula (IX)<br />

Pyramid (VIII)<br />

Tuber (VII B)<br />

Posterior cerebellar notch<br />

Inferior surface<br />

Anterior lobe<br />

Wing of central lobule<br />

Superior<br />

Middle Cerebellar peduncles<br />

Inferior<br />

Flocculonodular lobe<br />

Posterolateral (dorsolateral)<br />

fissure<br />

Retrotonsillar fissure<br />

Posterior lobe<br />

Tonsil<br />

Biventer lobule (H VIII)<br />

Secondary (postpyramidal)<br />

fissure<br />

Horizontal fissure<br />

Inferior semilunar<br />

(caudal) lobule (H VII B)<br />

Decussation of<br />

superior cerebellar peduncles<br />

4th ventricle<br />

Superior medullary velum<br />

Cerebral crus<br />

Medial longitudinal fasciculus<br />

Nuclear layer of<br />

medulla oblongata<br />

Cerebellar<br />

nuclei<br />

Fastigial<br />

Globose<br />

Dentate<br />

Emboliform<br />

Superior cerebellar<br />

peduncle<br />

Lingula (I)<br />

Vermis<br />

Section in plane of superior cerebellar peduncle<br />

6


Brainstem<br />

NEUROANATOMY<br />

Posterolateral view<br />

Pulvinars of thalami<br />

Pineal body<br />

Superior colliculi<br />

Inferior colliculi<br />

Trochlear nerve (IV)<br />

Superior medullary velum<br />

Superior cerebellar peduncle<br />

Rhomboid fossa of<br />

4th ventricle<br />

Glossopharyngeal (IX) and<br />

vagus (X) nerves<br />

Cuneate tubercle<br />

Gracile tubercle<br />

Dorsal roots of<br />

1st spinal nerve (C1)<br />

Cuneate fasciculus<br />

Gracile fasciculus<br />

Thalamus (cut surface)<br />

Lateral geniculate body<br />

Optic tract<br />

Medial geniculate body<br />

Brachia of superior and inferior colliculi<br />

Cerebral crus<br />

Pons<br />

Trigeminal nerve (V)<br />

Middle cerebellar peduncle<br />

Vestibulocochlear nerve (VIII)<br />

Facial nerve (VII)<br />

Inferior cerebellar peduncle<br />

Hypoglossal nerve (XII)<br />

Accessory nerve (XI)<br />

Olfactory tract<br />

Anterior view<br />

Optic chiasm<br />

Optic tract<br />

Tuber cinereum<br />

Cerebral crus<br />

Lateral geniculate body<br />

Posterior perforated substance<br />

Pons<br />

Middle cerebellar peduncle<br />

Olive<br />

Pyramid<br />

Ventral roots of 1st spinal nerve (C1)<br />

Decussation of pyramids<br />

Anterior perforated substance<br />

Infundibulum (pituitary stalk)<br />

Mammillary bodies<br />

Temporal lobe (cut surface)<br />

Oculomotor nerve (III)<br />

Trochlear nerve (IV)<br />

Trigeminal nerve (V)<br />

Abducent nerve (VI)<br />

Facial nerve (VII) and<br />

intermediate nerve<br />

Vestibulocochlear nerve (VIII)<br />

Flocculus of cerebellum<br />

Choroid plexus of 4th<br />

ventricle<br />

Glossopharyngeal nerve (IX)<br />

Vagus nerve (X)<br />

Hypoglossal nerve (XII)<br />

Accessory nerve (XI)<br />

7


NEUROANATOMY<br />

Fourth Ventricle and Cerebellum<br />

Posterior view<br />

3rd ventricle<br />

Pulvinar of thalamus<br />

Pineal body<br />

Superior colliculus<br />

Inferior colliculus<br />

Trochlear nerve (IV)<br />

Superior medullary velum<br />

Superior<br />

Cerebellar peduncles Middle<br />

Inferior<br />

Lateral recess<br />

Superior fovea<br />

Sulcus limitans<br />

Inferior fovea<br />

Trigeminal tubercle<br />

Hypoglossal trigone<br />

Vagal trigone<br />

Obex<br />

Gracile fasciculus<br />

Habenular trigone<br />

Medial<br />

Geniculate bodies<br />

Lateral<br />

Dorsal median sulcus<br />

Superior cerebellar peduncle<br />

Locus ceruleus<br />

Medial eminence<br />

Facial colliculus<br />

Vestibular area<br />

Lateral funiculus<br />

Cuneate fasciculus<br />

Dentate nucleus<br />

of cerebellum<br />

Striae medullares<br />

Tenia of 4th ventricle<br />

Cuneate tubercle<br />

Gracile tubercle<br />

Dorsal median sulcus<br />

Median sagittal section<br />

Body of fornix<br />

Thalamus (in<br />

3rd ventricle)<br />

Interventricular<br />

foramen (Monro)<br />

Anterior commissure<br />

Lamina terminalis<br />

Hypothalamic sulcus<br />

Cerebral peduncle<br />

Cerebral aqueduct (Sylvius)<br />

Superior colliculus<br />

Tectal (quadrigeminal) plate<br />

Inferior colliculus<br />

Pons<br />

Medial longitudinal fasciculus<br />

4th ventricle<br />

Choroid plexus of 4th ventricle<br />

Medulla oblongata<br />

Median aperture (foramen of Magendie)<br />

Decussation of pyramids<br />

Central canal of spinal cord<br />

Interthalamic adhesion<br />

Posterior commissure<br />

Habenular commissure<br />

Pineal body<br />

Splenium of corpus callosum<br />

Great cerebral vein (Galen)<br />

Choroid plexus of 4th ventricle<br />

Tonsil of cerebellum<br />

Lingula (I)<br />

Central lobule (II-III)<br />

Culmen (IV-V)<br />

Declive (VI)<br />

Folium (VII A)<br />

Superior medullary velum<br />

Inferior medullary velum<br />

Tuber (VII B)<br />

Pyramid (VIII)<br />

Uvula (IX)<br />

Nodulus (X)<br />

Vermis of<br />

cerebellum<br />

Vermis of<br />

cerebellum<br />

8


Accessory Nerve (XI): Schema<br />

NEUROANATOMY<br />

Nucleus ambiguus<br />

Vagus nerve (X)<br />

Cranial root of accessory nerve (joins vagus nerve<br />

and via recurrent laryngeal nerve supplies muscles of<br />

larynx, except cricothyroid)*<br />

Spinal root of<br />

accessory nerve<br />

Jugular foramen<br />

Foramen<br />

magnum<br />

Superior ganglion<br />

of vagus nerve<br />

Accessory nerve (XI)*<br />

Inferior ganglion<br />

of vagus nerve<br />

C1 spinal nerve<br />

C2 spinal nerve<br />

Accessory nerve<br />

(to sternocleidomastoid<br />

and trapezius muscles)<br />

Sternocleidomastoid muscle (cut)<br />

C3 spinal nerve<br />

C4 spinal nerve<br />

Trapezius muscle<br />

*Recent evidence suggests that the accessory nerve lacks a cranial root and has no connection to the vagus nerve.<br />

Verification of this finding awaits further investigation.<br />

Efferent fibers<br />

Proprioceptive fibers<br />

9


NEUROANATOMY<br />

Arteries to Brain and Meninges<br />

Mastoid branch of<br />

left occipital artery<br />

Anterior inferior<br />

cerebellar artery<br />

Posterior inferior<br />

cerebellar artery<br />

Left middle meningeal artery<br />

Posterior cerebral artery<br />

Superior cerebellar artery<br />

Basilar artery<br />

Left labyrinthine<br />

(internal acoustic) artery<br />

Posterior meningeal<br />

branch of left ascending<br />

pharyngeal artery<br />

Left and right<br />

vertebral arteries<br />

(intracranial part)<br />

Posterior meningeal<br />

branch of vertebral<br />

artery<br />

Anterior meningeal<br />

branch of vertebral artery<br />

Posterior auricular artery<br />

Occipital artery<br />

Middle cerebral artery<br />

Anterior cerebral artery<br />

Anterior communicating artery<br />

Ophthalmic artery<br />

Posterior<br />

communicating<br />

artery<br />

Cavernous sinus<br />

Lingual artery<br />

Middle<br />

meningeal<br />

artery<br />

Maxillary<br />

artery<br />

Superficial<br />

temporal<br />

artery<br />

External<br />

carotid<br />

artery<br />

Facial artery<br />

Internal carotid artery<br />

Carotid sinus<br />

Carotid body<br />

Vertebral artery<br />

(cervical part)<br />

Transverse process of C6<br />

Deep cervical artery<br />

Supreme intercostal<br />

artery<br />

Costocervical trunk<br />

Subclavian artery<br />

Ascending pharyngeal artery<br />

Superior laryngeal artery<br />

Superior thyroid artery<br />

Common carotid artery<br />

Ascending cervical artery (cut)<br />

Inferior thyroid artery<br />

Thyrocervical trunk<br />

Brachiocephalic trunk<br />

Internal thoracic artery<br />

10


Arteries to Brain: Schema<br />

NEUROANATOMY<br />

Anterior cerebral artery<br />

Middle cerebral artery<br />

1<br />

Anterior communicating artery<br />

Ophthalmic artery<br />

Posterior communicating artery<br />

Caroticotympanic branch<br />

of internal carotid artery<br />

Posterior cerebral artery<br />

Superior cerebellar artery<br />

Anterior tympanic artery<br />

Middle meningeal artery<br />

Maxillary artery<br />

Basilar artery<br />

Anterior inferior<br />

cerebellar artery<br />

4<br />

3<br />

3<br />

3<br />

3<br />

4<br />

5<br />

5<br />

5<br />

5<br />

2<br />

1<br />

1<br />

1<br />

Supraorbital artery<br />

Supratrochlear artery<br />

Lacrimal artery<br />

Dorsal nasal artery<br />

Middle meningeal artery<br />

Angular artery<br />

Superficial temporal artery<br />

Posterior auricular artery<br />

Facial artery<br />

Occipital artery<br />

Lingual artery<br />

Ascending pharyngeal artery<br />

Posterior inferior<br />

cerebellar artery<br />

External carotid artery<br />

Internal carotid artery<br />

5<br />

5<br />

5<br />

Anterior spinal artery<br />

Spinal segmental<br />

medullary branches<br />

Vertebral artery<br />

Common carotid artery<br />

Superior thyroid artery<br />

Common carotid artery<br />

5<br />

Deep cervical artery<br />

Transverse cervical artery<br />

Vertebral artery<br />

Ascending cervical artery<br />

Suprascapular artery<br />

Supreme intercostal artery<br />

Costocervical trunk<br />

Inferior thyroid artery<br />

Thyrocervical trunk<br />

Subclavian artery<br />

Subclavian artery<br />

Internal thoracic artery<br />

Brachiocephalic trunk<br />

Aorta<br />

Arch<br />

Descending<br />

Ascending<br />

Anastomoses<br />

1 Right–Left<br />

2 Carotid–Vertebral<br />

3 Internal carotid–External carotid<br />

4 Subclavian–Carotid<br />

5 Subclavian–Vertebral<br />

11


NEUROANATOMY<br />

Arteries of Brain: Inferior Views<br />

Medial frontobasal (orbitofrontal) artery<br />

Anterior communicating artery<br />

Anterior cerebral artery<br />

Distal medial striate artery<br />

(recurrent artery of Heubner)<br />

Internal carotid artery<br />

Anterolateral central (lenticulostriate) arteries<br />

Middle cerebral artery<br />

Lateral frontobasal (orbitofrontal) artery<br />

Prefrontal artery<br />

Anterior choroidal artery<br />

Posterior communicating artery<br />

Posterior cerebral artery<br />

Superior cerebellar artery<br />

Basilar artery<br />

Pontine arteries<br />

Labyrinthine (internal acoustic) artery<br />

Anterior inferior cerebellar artery<br />

Vertebral artery<br />

Anterior spinal artery<br />

Posterior inferior cerebellar artery (PICA) (cut)<br />

Posterior spinal artery<br />

Distal medial striate artery<br />

(recurrent artery of Heubner)<br />

Anterior communicating artery<br />

Anterior cerebral artery<br />

Middle cerebral artery<br />

Posterior communicating artery<br />

Anterior choroidal artery<br />

Optic tract<br />

Posterior cerebral artery<br />

Cerebral crus<br />

Lateral geniculate body<br />

Posterior medial choroidal artery<br />

Posterior lateral choroidal artery<br />

Choroid plexus of lateral ventricle<br />

Medial geniculate body<br />

Pulvinar of thalamus<br />

Lateral ventricle<br />

Cerebral arterial<br />

circle (Willis)<br />

(broken line)<br />

12


Cerebral Arterial Circle (Willis)<br />

NEUROANATOMY<br />

Vessels dissected out: inferior view<br />

Anterior cerebral artery<br />

(A 2 segment)<br />

Anterior communicating artery<br />

Anterior cerebral artery<br />

(A 1 segment)<br />

Ophthalmic artery<br />

Internal carotid artery<br />

Distal medial striate artery<br />

(recurrent artery of Heubner)<br />

Anteromedial central (perforating)<br />

arteries<br />

Hypothalamic artery<br />

Anterolateral central<br />

(lenticulostriate) arteries<br />

Middle cerebral artery<br />

Posterior communicating artery<br />

Posterior cerebral artery<br />

(P 2 segment)<br />

(P 1 segment)<br />

Superior cerebellar artery<br />

Basilar artery<br />

Pontine arteries<br />

Anterior inferior cerebellar artery<br />

Superior hypophyseal artery<br />

Inferior hypophyseal artery<br />

Anterior choroidal artery<br />

Thalamotuberal<br />

(premammillary) artery<br />

Posteromedial central<br />

(perforating) arteries<br />

Thalamoperforating artery<br />

Posteromedial central<br />

(paramedian) arteries<br />

Labyrinthine (internal acoustic) artery<br />

Vertebral artery<br />

Vessels in situ: inferior view<br />

Anterior cerebral artery<br />

Hypothalamic artery<br />

Internal carotid artery<br />

Superior hypophyseal artery<br />

Middle cerebral artery<br />

Inferior hypophyseal artery<br />

Posterior communicating artery<br />

Efferent hypophyseal veins<br />

Posterior cerebral artery<br />

Anterior communicating artery<br />

Optic chiasm<br />

Cavernous sinus<br />

Infundibulum (pituitary stalk)<br />

and long hypophyseal portal veins<br />

Adenohypophysis (anterior<br />

lobe of pituitary gland)<br />

<strong>Neuro</strong>hypophysis (posterior<br />

lobe of pituitary gland)<br />

Posteromedial central<br />

(perforating) arteries<br />

Superior cerebellar artery<br />

Basilar artery<br />

13


NEUROANATOMY<br />

Arteries of Brain: Frontal View and Section<br />

Prefrontal artery<br />

Corpus callosum<br />

Anterolateral central<br />

(lenticulostriate) arteries<br />

Lateral frontobasal<br />

(orbitofrontal) artery<br />

Precentral (pre-rolandic)<br />

and central (rolandic)<br />

sulcal arteries<br />

Anterior parietal<br />

(postcentral sulcal)<br />

artery<br />

Posterior parietal<br />

artery<br />

Branch to<br />

angular gyrus<br />

Temporal branches<br />

(anterior, middle<br />

and posterior)<br />

Middle cerebral artery<br />

and branches<br />

(deep in lateral cerebral<br />

[sylvian] sulcus)<br />

Anterior communicating artery<br />

Posterior communicating artery<br />

Anterior inferior cerebellar artery<br />

Posterior spinal artery<br />

Corpus striatum<br />

(caudate and lentiform nuclei)<br />

Anterolateral central<br />

(lenticulostriate) arteries<br />

Insula (island of Reil)<br />

Limen of insula<br />

Precentral (pre-rolandic),<br />

central (rolandic) sulcal<br />

and parietal arteries<br />

Lateral cerebral (sylvian) sulcus<br />

Temporal branches of<br />

middle cerebral artery<br />

Temporal lobe<br />

Middle cerebral artery<br />

Internal carotid artery<br />

Paracentral artery<br />

Medial frontal branches<br />

Pericallosal artery<br />

Callosomarginal artery<br />

Polar frontal artery<br />

Anterior cerebral<br />

arteries<br />

Medial frontobasal<br />

(orbitofrontal) artery<br />

Distal medial striate<br />

artery (recurrent<br />

artery of Heubner)<br />

Internal carotid<br />

artery<br />

Anterior choroidal<br />

artery<br />

Posterior cerebral<br />

artery<br />

Superior cerebellar artery<br />

Basilar and pontine arteries<br />

Labyrinthine (internal<br />

acoustic) artery<br />

Vertebral artery<br />

Posterior inferior cerebellar artery<br />

Anterior spinal artery<br />

Falx cerebri<br />

Callosomarginal arteries<br />

and<br />

Pericallosal arteries<br />

(branches of anterior<br />

cerebral arteries)<br />

Trunk of corpus callosum<br />

Internal capsule<br />

Septum pellucidum<br />

Rostrum of corpus callosum<br />

Anterior cerebral arteries<br />

Distal medial striate artery<br />

(recurrent artery of Heubner)<br />

Anterior communicating artery<br />

Optic chiasm<br />

14


Arteries of Brain: Lateral and Medial Views<br />

NEUROANATOMY<br />

Precentral (pre-rolandic) sulcal artery<br />

Prefrontal sulcal<br />

artery<br />

Anterior parietal (postcentral sulcal) artery<br />

Central (rolandic) sulcal artery<br />

Posterior parietal artery<br />

Branch to angular gyrus<br />

Terminal branches<br />

of posterior<br />

cerebral artery<br />

Terminal branches of<br />

anterior cerebral<br />

artery<br />

Lateral frontobasal<br />

(orbitofrontal) artery<br />

Left middle<br />

cerebral artery<br />

Left anterior<br />

cerebral artery<br />

Anterior communicating artery<br />

Right anterior cerebral artery<br />

Left internal carotid artery<br />

Polar temporal artery<br />

Occipitotemporal<br />

branches<br />

Posterior temporal branch<br />

Middle temporal branch<br />

Superior and inferior terminal branches (trunks)<br />

Anterior temporal branch<br />

Medial<br />

frontal<br />

branches<br />

Callosomarginal<br />

artery<br />

Polar frontal artery<br />

Right anterior<br />

cerebral artery<br />

Posterior<br />

Intermediate<br />

Anterior<br />

Pericallosal artery<br />

Paracentral artery<br />

Cingular branches<br />

Right posterior cerebral artery<br />

Precuneal artery<br />

Dorsal branch<br />

to corpus callosum<br />

Parietooccipital branch<br />

Calcarine branch<br />

Medial frontobasal<br />

(orbitofrontal)<br />

artery<br />

Anterior<br />

communicating artery (cut)<br />

Distal medial striate artery<br />

(recurrent artery of Heubner)<br />

Right internal carotid artery<br />

Medial occipital artery<br />

Posterior temporal branch<br />

Anterior temporal branch<br />

Posterior communicating artery<br />

Note: Anterior parietal (postcentral sulcal) artery also occurs as separate anterior parietal and postcentral sulcal arteries<br />

15


NEUROANATOMY<br />

Arteries of Posterior Cranial Fossa<br />

Thalamogeniculate arteries<br />

Anterior choroidal artery<br />

Crura of fornix<br />

Anterolateral central<br />

(lenticulostriate) arteries<br />

Heads of caudate nuclei<br />

Septum pellucidum<br />

Corpus callosum<br />

Anterior<br />

cerebral arteries<br />

Longitudinal<br />

cerebral<br />

fissure<br />

Lateral and medial geniculate bodies of left thalamus<br />

Choroid plexuses of lateral ventricles<br />

Pulvinars of left and right thalami<br />

Splenium of corpus callosum<br />

Occipital (posterior) horn of right lateral ventricle<br />

Right dorsal branch to corpus callosum<br />

(posterior pericallosal artery)<br />

Parietooccipital Branches of<br />

right posterior<br />

Calcarine cerebral artery<br />

Superior<br />

colliculi<br />

Optic nerve (II)<br />

Ophthalmic artery<br />

Anterior<br />

cerebral artery<br />

Middle<br />

cerebral artery<br />

Posterior<br />

communicating artery<br />

Thalamoperforating arteries<br />

Left internal carotid artery<br />

Basilar artery<br />

Pontine arteries<br />

Labyrinthine (internal acoustic) artery<br />

Posterior cerebral artery<br />

Superior cerebellar artery<br />

III<br />

Anterior inferior cerebellar artery<br />

Anterior meningeal branch of vertebral artery<br />

Temporal branches of posterior cerebral artery<br />

Anterior spinal artery<br />

VI<br />

IV<br />

V<br />

VIII<br />

VII<br />

IX<br />

X<br />

XI<br />

Posterior medial<br />

choroidal artery<br />

to choroid plexus<br />

of 3rd ventricle<br />

Posterior lateral<br />

choroidal artery<br />

Lateral (marginal) branch<br />

Inferior vermian artery<br />

(phantom)<br />

Choroidal branch to 4th ventricle<br />

(phantom) and<br />

Cerebellar tonsillar branch<br />

of posterior inferior cerebellar artery<br />

Outline of 4th ventricle (broken line)<br />

Posterior meningeal branch of vertebral artery<br />

Posterior inferior cerebellar artery (PICA)<br />

Left posterior spinal artery<br />

Left vertebral artery<br />

Superior<br />

vermian<br />

branch<br />

16


Veins of Posterior Cranial Fossa<br />

NEUROANATOMY<br />

Left superior and inferior colliculi<br />

Basal vein (Rosenthal)<br />

Posterior mesencephalic vein<br />

Medial geniculate body<br />

Lateral geniculate body<br />

Left thalamus<br />

(cut surface)<br />

Optic tract<br />

Inferior thalamostriate<br />

veins<br />

Deep middle<br />

cerebral<br />

vein (cut)<br />

Anterior<br />

cerebral<br />

vein<br />

Optic<br />

nerve (II)<br />

Lateral<br />

mesencephalic vein<br />

Left pulvinar<br />

Right pulvinar<br />

Internal cerebral veins<br />

Splenium of corpus callosum<br />

Great cerebral vein (Galen)<br />

Dorsal vein of corpus callosum<br />

Inferior sagittal sinus<br />

Straight sinus<br />

Falx cerebri<br />

Tentorium<br />

cerebelli (cut)<br />

Confluence of sinuses<br />

Left transverse<br />

sinus (cut)<br />

Superior<br />

sagittal<br />

sinus<br />

Anterior pontomesencephalic<br />

vein<br />

Trigeminal nerve (V)<br />

Transverse pontine vein<br />

Petrosal vein (draining<br />

to superior petrosal sinus)<br />

Lateral pontine vein<br />

Anteromedian medullary vein<br />

Vein of lateral recess of 4th ventricle<br />

Superior, middle and<br />

inferior cerebellar peduncles<br />

Anterior spinal vein<br />

L<br />

CL<br />

N<br />

T<br />

C<br />

4th ventricle<br />

U<br />

C<br />

Posterior spinal vein<br />

P<br />

D<br />

F<br />

TU<br />

Preculminate vein<br />

Precentral cerebellar vein<br />

Superior retrotonsillar vein<br />

(Inferior retrotonsillar)<br />

vein of cerebellomedullary<br />

cistern<br />

Superior<br />

vermian<br />

vein<br />

Inferior<br />

vermian vein<br />

Falx cerebelli (cut)<br />

and occipital sinus<br />

Inferior cerebellar<br />

hemispheric veins<br />

Intraculminate vein<br />

Superior cerebellar vein (inconstant)<br />

Parts of cerebellum<br />

L Lingula TU Tuber<br />

CL Central lobule P Pyramid<br />

C Culmen U Uvula<br />

D Declive N Nodule<br />

F Folium T Tonsil<br />

17


NEUROANATOMY<br />

Deep Veins of Brain<br />

Longitudinal cerebral fissure<br />

Anterior cerebral veins<br />

Rostrum of corpus callosum<br />

Septum pellucidum<br />

Anterior vein of septum pellucidum<br />

Head of caudate nucleus<br />

Anterior vein of caudate nucleus<br />

Transverse veins of caudate nucleus<br />

Interventricular foramen (Monro)<br />

Columns of fornix<br />

Superior thalamostriate vein<br />

Superior choroid vein and<br />

choroid plexus of lateral ventricle<br />

Thalamus<br />

Tela choroidea of 3rd ventricle<br />

Lateral direct vein<br />

Posterior vein of caudate nucleus<br />

Internal cerebral veins<br />

Basal vein (Rosenthal)<br />

Great cerebral vein (Galen)<br />

Inferior sagittal sinus<br />

Straight sinus<br />

Tentorium cerebelli<br />

Transverse sinus<br />

Confluence of sinuses<br />

Superior sagittal sinus<br />

Dissection: superior view<br />

Uncal vein<br />

Anterior cerebral vein<br />

Superficial middle cerebral vein<br />

(draining to sphenoparietal sinus)<br />

Deep middle cerebral vein<br />

Optic chiasm<br />

Cerebral crus<br />

Basal vein (Rosenthal)<br />

Lateral geniculate body<br />

Medial geniculate body<br />

Inferior<br />

cerebral<br />

veins<br />

Pulvinar of thalamus<br />

Splenium of corpus callosum<br />

Great cerebral vein (Galen)<br />

Inferior<br />

anastomotic<br />

vein (Labbé)<br />

Dissection: inferior view<br />

18


Subependymal Veins of Brain<br />

NEUROANATOMY<br />

Posterior veins of septum pellucidum<br />

Superior thalamic veins<br />

Superior choroid vein<br />

Transverse veins of caudate nucleus<br />

Superior thalamostriate vein<br />

Lateral ventricle<br />

Anterior vein of<br />

caudate nucleus<br />

Anterior vein of<br />

septum pellucidum<br />

Genu of<br />

corpus<br />

callosum<br />

Lateral direct vein<br />

Posterior terminal vein of caudate nucleus<br />

(posterior part of thalamostriate vein)<br />

Internal cerebral veins (right and left)<br />

Medial (atrial) vein of lateral ventricle<br />

Lateral (atrial) vein of lateral ventricle<br />

Splenium of corpus callosum<br />

Great cerebral vein<br />

(Galen)<br />

Dorsal vein of corpus<br />

callosum<br />

Inferior sagittal<br />

sinus<br />

Internal<br />

occipital vein<br />

Straight sinus<br />

Occipital<br />

(posterior)<br />

horn of<br />

lateral<br />

ventricle<br />

Interventricular<br />

foramen (Monro)<br />

Anterior commissure<br />

Interthalamic adhesion<br />

Anterior cerebral vein<br />

Optic chiasm<br />

3rd ventricle<br />

Cerebellum<br />

Deep middle cerebral vein<br />

Inferior thalamostriate veins<br />

Basal vein (Rosenthal)<br />

Temporal (inferior) horn of lateral ventricle<br />

Posterior mesencephalic vein<br />

Hippocampal and inferior ventricular veins<br />

Cerebral aqueduct<br />

4th ventricle<br />

Lateral and median apertures of 4th ventricle<br />

Superior vermian vein<br />

Veins on lateral wall of ventricle<br />

Veins on medial wall and floor of ventricle<br />

All other veins<br />

19


NEUROANATOMY<br />

Hypothalamus and Hypophysis<br />

Septum pellucidum<br />

Thalamus<br />

Fornix<br />

Hypothalamic sulcus<br />

Anterior commissure<br />

Principal<br />

nuclei of<br />

hypothalamus<br />

Paraventricular<br />

Posterior<br />

Dorsomedial<br />

Supraoptic<br />

Ventromedial<br />

Arcuate<br />

(infundibular)<br />

Mammillary<br />

Optic chiasm<br />

Infundibulum (pituitary stalk)<br />

Hypophysis (pituitary gland)<br />

Mammillothalamic tract<br />

Dorsal longitudinal<br />

fasciculus and other<br />

descending pathways<br />

Lamina terminalis<br />

Paraventricular hypothalamic nucleus<br />

Hypothalamic<br />

sulcus<br />

Supraoptic hypothalamic nucleus<br />

Supraopticohypophyseal tract<br />

Tuberohypophyseal tract<br />

Hypothalamohypophyseal tract<br />

Infundibulum (pituitary stalk)<br />

Mammillary<br />

body<br />

Arcuate (infundibular) nucleus<br />

Adenohypophysis<br />

(anterior lobe of<br />

pituitary gland)<br />

Pars tuberalis<br />

Fibrous trabecula<br />

Pars intermedia<br />

Pars distalis<br />

Cleft<br />

Median eminence<br />

of tuber cinereum<br />

Infundibular<br />

stem<br />

Infundibular<br />

process<br />

<strong>Neuro</strong>hypophysis<br />

(posterior lobe<br />

of pituitary gland)<br />

20


Arteries and Veins of Hypothalamus and Hypophysis<br />

NEUROANATOMY<br />

Hypothalamic vessels<br />

Primary plexus of<br />

hypophyseal portal system<br />

Superior<br />

hypophyseal<br />

artery<br />

Artery of trabecula<br />

Trabecula (fibrous tissue)<br />

Efferent hypophyseal vein<br />

to cavernous sinus<br />

Long hypophyseal portal veins<br />

Short hypophyseal portal veins<br />

Efferent hypophyseal vein<br />

to cavernous sinus<br />

Secondary plexus<br />

of hypophyseal<br />

portal system<br />

<strong>Neuro</strong>hypophysis<br />

(posterior lobe of<br />

pituitary gland)<br />

Adenohypophysis<br />

(anterior lobe of<br />

pituitary gland)<br />

Capillary plexus of<br />

infundibular process<br />

Efferent hypophyseal vein<br />

to cavernous sinus<br />

Efferent hypophyseal<br />

veins to cavernous sinus<br />

Inferior hypophyseal artery<br />

21


NEUROANATOMY<br />

Relation of Spinal Nerve Roots to Vertebrae<br />

Cervical<br />

enlargement<br />

Lumbar<br />

enlargement<br />

Base<br />

of skull<br />

C1<br />

C2<br />

C3<br />

C4<br />

C5<br />

C6<br />

C7<br />

T1<br />

T2<br />

T3<br />

T4<br />

T5<br />

T6<br />

T7<br />

T8<br />

T9<br />

T10<br />

C1<br />

C2<br />

C3<br />

C4<br />

C5<br />

C6<br />

C7<br />

C8<br />

T1<br />

T2<br />

T3<br />

T4<br />

T5<br />

T6<br />

T7<br />

T8<br />

T9<br />

T10<br />

T11<br />

T11<br />

T12<br />

T12<br />

L1<br />

L1<br />

L2<br />

C1 spinal nerve exits<br />

above C1 vertebra<br />

C8 spinal nerve<br />

exits below<br />

C7 vertebra<br />

(there are 8 cervical<br />

nerves but only<br />

7 cervical vertebrae)<br />

Conus medullaris<br />

(termination of<br />

spinal cord)<br />

S1<br />

S2<br />

L4<br />

L5<br />

Lumbar disc protrusion does not usually affect<br />

nerve exiting above disc. Lateral protrusion<br />

at disc level L4–5 affects L5 spinal nerve, not<br />

L4 spinal nerve. Protrusion at disc level L5–S1<br />

affects S1 spinal nerve, not L5 spinal nerve<br />

L4<br />

L4<br />

L5<br />

L4<br />

Internal terminal<br />

filum (pial part)<br />

L3<br />

L4<br />

L2<br />

L3<br />

L4<br />

Cauda equina<br />

L5<br />

L5<br />

External<br />

terminal filum<br />

(dural part)<br />

S2<br />

S3<br />

Termination of<br />

S4 dural sac<br />

S5<br />

Coccygeal nerve<br />

Coccyx<br />

L5<br />

L5<br />

Sacrum<br />

S1<br />

Cervical nerves<br />

Thoracic nerves<br />

Lumbar nerves<br />

Sacral and coccygeal nerves<br />

S1<br />

S2<br />

S3<br />

S4<br />

S5<br />

Coccygeal nerve<br />

Medial protrusion at disc level L4–5 rarely affects<br />

L4 spinal nerve but may affect L5 spinal nerve<br />

and sometimes S1–4 spinal nerves<br />

22


Autonomic Nervous System: General Topography<br />

NEUROANATOMY<br />

Oculomotor nerve (III)<br />

Facial nerve (VII)<br />

Glossopharyngeal nerve (IX)<br />

Vagus nerve (X)<br />

Internal carotid nerve and plexus<br />

Superior cervical sympathetic ganglion<br />

C4 spinal nerve<br />

Middle cervical sympathetic ganglion<br />

Vertebral ganglion<br />

Cervicothoracic (stellate) ganglion<br />

Cervical (sympathetic)<br />

cardiac nerves<br />

Sympathetic trunk<br />

Superior<br />

Middle<br />

Inferior<br />

Thoracic (sympathetic) cardiac nerves<br />

6th intercostal nerve<br />

(ventral ramus of T6<br />

spinal nerve)<br />

Sympathetic trunk<br />

6th thoracic sympathetic ganglion<br />

Gray and white rami communicantes<br />

Greater splanchnic nerve<br />

Lesser splanchnic nerve<br />

Least splanchnic nerve<br />

Aorticorenal ganglion<br />

Lumbar splanchnic nerves (sympathetic)<br />

Gray rami communicantes<br />

Sacral splanchnic nerves (sympathetic)<br />

Pelvic splanchnic nerves<br />

(sacral parasympathetic<br />

outflow)<br />

Sciatic nerve<br />

Inferior hypogastric<br />

(pelvic) plexus<br />

Sympathetic fibers<br />

Parasympathetic fibers<br />

Ciliary ganglion<br />

Pterygopalatine ganglion<br />

Otic ganglion<br />

Chorda tympani nerve<br />

Lingual nerve<br />

Submandibular ganglion<br />

Pharyngeal and superior laryngeal branches<br />

of vagus nerve<br />

Recurrent laryngeal branch of vagus nerve<br />

Superior cervical<br />

Inferior cervical<br />

Thoracic<br />

Cardiac plexus<br />

Anterior<br />

Posterior<br />

Esophageal plexus<br />

Cardiac branches<br />

of vagus nerve<br />

Pulmonary plexuses<br />

Thoracic aortic plexus<br />

Anterior vagal trunk<br />

Posterior vagal trunk<br />

Celiac ganglion<br />

Celiac trunk and plexus<br />

Superior mesenteric ganglion<br />

Superior mesenteric artery<br />

and plexus<br />

Intermesenteric<br />

(abdominal aortic) plexus<br />

Inferior mesenteric ganglion<br />

Inferior mesenteric artery<br />

and plexus<br />

Superior hypogastric plexus<br />

Parasympathetic branch from<br />

inferior hypogastric plexus to<br />

descending colon<br />

Hypogastric nerves<br />

Rectal plexus<br />

Vesical plexus<br />

Prostatic plexus<br />

23


NEUROANATOMY<br />

Spinal Nerve Origin: Cross Sections<br />

Section through thoracic vertebra<br />

Aorta<br />

Fat in epidural space<br />

Sympathetic ganglion<br />

Ventral root<br />

White and gray rami<br />

communicantes<br />

Spinal nerve<br />

Ventral ramus<br />

(intercostal nerve)<br />

Dorsal ramus<br />

Body of vertebra<br />

Dura mater<br />

Arachnoid mater*<br />

Subarachnoid space<br />

Pia mater*<br />

Recurrent<br />

meningeal<br />

branches of<br />

spinal nerve<br />

Pleura<br />

Lung<br />

Spinal sensory<br />

(dorsal root) ganglion<br />

Dorsal root<br />

Lateral horn of<br />

gray matter of spinal cord<br />

Section through lumbar vertebra<br />

Sympathetic<br />

ganglion<br />

Dura mater<br />

Lateral branch<br />

Medial branch<br />

of dorsal<br />

ramus<br />

of spinal<br />

nerve<br />

Gray ramus<br />

communicans<br />

Fat in<br />

epidural<br />

space<br />

Arachnoid mater<br />

Ventral root<br />

Spinal nerve<br />

Internal vertebral<br />

(epidural) venous plexus<br />

Ventral ramus (contributes to lumbar plexus)<br />

Dorsal ramus<br />

Dorsal and ventral<br />

roots of lumbar and<br />

sacral spinal nerves<br />

forming cauda equina<br />

Spinal sensory (dorsal root) ganglion<br />

Dorsal root<br />

Conus medullaris<br />

*Leptomeninges<br />

24


Olfactory Nerve (I): Schema<br />

NEUROANATOMY<br />

Olfactory bulb cells: schema<br />

Efferent fibers to<br />

olfactory bulb<br />

Afferent fibers from bulb<br />

to central connections<br />

and contralateral bulb<br />

Granule cell (excited by<br />

and inhibiting to mitral<br />

and tufted cells)<br />

Mitral cell<br />

Recurrent process<br />

Tufted cell<br />

Periglomerular<br />

cell<br />

Glomerulus<br />

Olfactory<br />

nerve fibers<br />

Subcallosal (parolfactory) area<br />

Septal area and nuclei<br />

Fibers from<br />

Fibers to<br />

Contralateral<br />

olfactory bulb<br />

Anterior commissure<br />

Medial<br />

olfactory stria<br />

Olfactory cells<br />

Olfactory tract<br />

Olfactory mucosa<br />

Olfactory nerves (I)<br />

Olfactory bulb<br />

Cribriform plate of ethmoid bone<br />

Anterior olfactory nucleus<br />

Olfactory trigone<br />

and olfactory tubercle<br />

Lateral olfactory stria<br />

Lateral olfactory tract nucleus<br />

Anterior perforated substance<br />

Amygdaloid body (phantom)<br />

Piriform lobe<br />

Uncus<br />

Hippocampal<br />

fimbria<br />

Dentate gyrus<br />

Parahippocampal gyrus<br />

25


NEUROANATOMY<br />

Optic Nerve (II) (Visual Pathway): Schema<br />

G<br />

A<br />

B<br />

H<br />

G<br />

B<br />

A<br />

H<br />

Overlapping<br />

visual fields<br />

Central darker<br />

circle represents<br />

macular zone<br />

Lighter shades<br />

represent<br />

monocular fields<br />

Each quadrant<br />

a different color<br />

R R C<br />

C<br />

Projection on<br />

left retina<br />

Projection on<br />

right retina<br />

P<br />

Choroid<br />

Periphery<br />

P<br />

Choroid<br />

Macula<br />

Optic nerves (II)<br />

Optic chiasm<br />

Structure of retina: schema<br />

A Amacrine cells<br />

B Bipolar cells<br />

C Cones<br />

G Ganglion cells<br />

H Horizontal cells<br />

P Pigment cells<br />

R Rods<br />

Projection on left<br />

dorsal lateral<br />

geniculate nucleus<br />

Optic tracts<br />

Lateral<br />

geniculate<br />

bodies<br />

Projection on right<br />

dorsal lateral<br />

geniculate nucleus<br />

Optic radiation<br />

Optic radiation<br />

Calcarine<br />

sulcus<br />

Calcarine<br />

sulcus<br />

Projection on left<br />

occipital lobe<br />

Projection on right<br />

occipital lobe<br />

26


Oculomotor (III), Trochlear (IV) and Abducent (VI) Nerves: Schema<br />

NEUROANATOMY<br />

Long ciliary nerve<br />

Short ciliary nerves<br />

Anterior ethmoidal nerve<br />

Superior oblique muscle<br />

Levator palpebrae<br />

superioris muscle<br />

Superior<br />

rectus muscle<br />

Ciliary ganglion<br />

Posterior ethmoidal nerve<br />

Sensory root of ciliary ganglion<br />

Sympathetic root of ciliary ganglion<br />

Superior division of<br />

oculomotor nerve<br />

Frontal nerve (cut)<br />

Lacrimal nerve (cut)<br />

Nasociliary nerve<br />

Abducent nucleus<br />

Trochlear nucleus<br />

Oculomotor nucleus<br />

Accessory oculomotor<br />

(Edinger-Westphal)<br />

nucleus (parasympathetic)<br />

Trochlear nerve (IV)<br />

Oculomotor nerve (III)<br />

Ophthalmic nerve (V 1 )<br />

Infraorbital nerve<br />

Zygomatic nerve (cut)<br />

Inferior oblique muscle<br />

Ciliary muscle<br />

Dilator muscle of pupil<br />

Sphincter muscle of pupil<br />

Efferent fibers<br />

Afferent fibers<br />

Sympathetic fibers<br />

Parasympathetic fibers<br />

Pterygopalatine<br />

ganglion<br />

Inferior division of<br />

oculomotor nerve<br />

Medial rectus muscle<br />

Inferior rectus muscle<br />

Parasympathetic root<br />

of ciliary ganglion<br />

Abducent<br />

nerve (VI)<br />

Mandibular nerve (V 3 )<br />

Internal carotid artery<br />

and nerve plexus<br />

Maxillary nerve (V 2 )<br />

Lateral rectus muscle and<br />

abducent nerve (turned back)<br />

Cavernous plexus<br />

Common tendinous ring<br />

27


NEUROANATOMY<br />

Trigeminal Nerve (V): Schema<br />

Efferent fibers<br />

Afferent fibers<br />

Proprioceptive fibers<br />

Parasympathetic fibers<br />

Sympathetic fibers<br />

Frontal nerve<br />

Ciliary ganglion<br />

Posterior ethmoidal nerve<br />

Long ciliary nerve<br />

Short ciliary nerves<br />

Anterior ethmoidal nerve<br />

Supraorbital nerve<br />

Supratrochlear nerve<br />

Infratrochlear nerve<br />

Internal nasal branches<br />

and<br />

External nasal branches<br />

of anterior ethmoidal nerve<br />

Maxillary nerve (V 2 )<br />

Meningeal branch<br />

Zygomaticotemporal<br />

nerve<br />

Zygomaticofacial nerve<br />

Zygomatic nerve<br />

Infraorbital nerve<br />

Pterygopalatine<br />

ganglion<br />

Superior<br />

alveolar<br />

branches of<br />

infraorbital nerve<br />

Nasal branches<br />

(posterior superior<br />

lateral, nasopalatine<br />

and posterior<br />

superior medial)<br />

Nerve (vidian) of<br />

pterygoid canal<br />

(from facial nerve [VII]<br />

and carotid plexus)<br />

Pharyngeal branch<br />

Greater and lesser<br />

palatine nerves<br />

Ophthalmic nerve (V 1 )<br />

Tentorial (meningeal) branch<br />

Nasociliary nerve<br />

Lacrimal nerve<br />

Sensory root of<br />

ciliary ganglion<br />

Trigeminal nerve (V) ganglion and nuclei<br />

Motor nucleus<br />

Mesencephalic nucleus<br />

Principal sensory nucleus<br />

Spinal tract and nucleus<br />

Facial nerve (VII)<br />

Chorda<br />

tympani nerve<br />

Deep temporal nerves<br />

(to temporalis muscle)<br />

Lateral pterygoid<br />

and masseteric nerves<br />

Tensor veli palatini and<br />

medial pterygoid nerves<br />

Buccal nerve<br />

Mental nerve<br />

Inferior dental plexus<br />

Lingual nerve<br />

Submandibular<br />

ganglion<br />

Mylohyoid nerve<br />

Mandibular nerve (V 3 )<br />

Inferior<br />

alveolar nerve<br />

Otic ganglion<br />

Tensor tympani nerve<br />

Superficial<br />

temporal branches<br />

Articular branch<br />

and anterior<br />

auricular nerves<br />

Auriculotemporal nerve<br />

Parotid branches<br />

Meningeal branch<br />

Lesser petrosal nerve (from<br />

glossopharyngeal nerve [IX])<br />

28


Facial Nerve (VII): Schema<br />

NEUROANATOMY<br />

Greater petrosal nerve<br />

Deep petrosal nerve (from internal carotid plexus)<br />

Lesser petrosal nerve<br />

Nerve (vidian) of pterygoid canal<br />

Otic ganglion<br />

Pterygopalatine ganglion<br />

Facial muscles<br />

Facial nerve (VII)<br />

Geniculate ganglion<br />

Internal carotid plexus<br />

(on internal carotid artery)<br />

Internal acoustic meatus<br />

Intermediate nerve<br />

Motor nucleus of facial nerve<br />

Superior salivatory nucleus<br />

Solitary tract nucleus<br />

Frontal belly (frontalis)<br />

of occipitofrontalis<br />

Orbicularis oculi<br />

Corrugator supercilii<br />

Zygomaticus major<br />

Zygomaticus minor<br />

Procerus<br />

Levator labii<br />

superioris<br />

Levator labii<br />

superioris<br />

alaeque nasi<br />

Levator<br />

anguli oris<br />

Nasalis<br />

Temporal<br />

branches<br />

Depressor<br />

septi nasi<br />

Orbicularis<br />

oris<br />

Depressor<br />

anguli oris<br />

Depressor labii<br />

inferioris<br />

Mentalis<br />

(Risorius)<br />

(not shown)<br />

Buccinator<br />

Platysma<br />

Taste:<br />

of<br />

anterior 2 ⁄3<br />

tongue<br />

Zygomatic<br />

Marginal<br />

mandibular<br />

branch<br />

branches<br />

Buccal<br />

branches<br />

Sublingual gland<br />

Submandibular gland<br />

Efferent fibers<br />

Submandibular ganglion<br />

Afferent fibers<br />

Parasympathetic fibers Lingual nerve (from trigeminal nerve)<br />

Sympathetic fibers<br />

Chorda tympani nerve<br />

Cervical branch<br />

Tympanic nerve (Jacobson)<br />

(from glossopharyngeal nerve)<br />

Glossopharyngeal nerve (IX)<br />

Digastric muscle (posterior belly)<br />

Stylohyoid muscle<br />

Nerve to stapedius muscle<br />

Stylomastoid foramen<br />

Tympanic plexus<br />

Occipital<br />

branch of<br />

posterior<br />

auricular<br />

nerve<br />

Branches to auricular muscles<br />

Posterior auricular nerve<br />

Caroticotympanic nerve (from internal carotid plexus)<br />

Occipital<br />

belly<br />

(occipitalis) of<br />

occipitofrontalis<br />

muscle<br />

29


NEUROANATOMY<br />

Vestibulocochlear Nerve (VIII): Schema<br />

Afferent fibers<br />

Geniculum of facial nerve<br />

(site of geniculate ganglion)<br />

Greater petrosal nerve<br />

Facial canal<br />

Tympanic cavity<br />

Chorda tympani nerve<br />

Head of malleus<br />

Cochlear (spiral) ganglion<br />

Incus<br />

Vestibular nerve<br />

Cochlear nerve<br />

Motor root of facial nerve<br />

and intermediate nerve<br />

Vestibulocochlear<br />

nerve (VIII)<br />

Medulla oblongata<br />

(cross section)<br />

Medial<br />

Internal<br />

acoustic<br />

meatus<br />

Ampulla of lateral<br />

semicircular duct<br />

Ampulla of superior<br />

semicircular duct<br />

Vestibular<br />

nuclei<br />

(diagrammatic)<br />

Superior<br />

Inferior<br />

Lateral<br />

Anterior<br />

Posterior<br />

Cochlear<br />

nuclei<br />

Inferior cerebellar<br />

peduncle (to cerebellum)<br />

Saccule<br />

Utricle<br />

Ampulla of posterior<br />

semicircular duct<br />

Vestibular ganglion<br />

Superior division<br />

Inferior division<br />

of vestibular nerve<br />

30


Glossopharyngeal Nerve (IX): Schema<br />

NEUROANATOMY<br />

Efferent fibers<br />

Spinal tract and spinal nucleus of trigeminal nerve<br />

Afferent fibers<br />

Solitary tract nucleus<br />

Parasympathetic fibers Tympanic nerve (Jacobson)<br />

Nucleus ambiguus<br />

Tympanic cavity and plexus<br />

Inferior salivatory nucleus<br />

Stylomastoid foramen<br />

Geniculate ganglion<br />

of facial nerve<br />

Caroticotympanic nerve (from internal carotid plexus)<br />

Greater petrosal nerve<br />

Deep petrosal nerve<br />

Nerve (vidian) of pterygoid canal<br />

Lesser petrosal nerve<br />

Pterygopalatine ganglion<br />

Mandibular nerve (V 3 )<br />

Otic ganglion<br />

Auriculotemporal nerve<br />

Parotid gland<br />

Tubal branch of tympanic plexus<br />

Pharyngotympanic (auditory)<br />

tube and pharyngeal opening<br />

Stylopharyngeus muscle (and branch<br />

Glossopharyngeal<br />

from glossopharyngeal nerve)<br />

nerve (IX)<br />

Jugular foramen<br />

Communication to auricular<br />

branch of vagus nerve<br />

Superior and<br />

Inferior ganglia of<br />

Glossopharyngeal nerve<br />

Taste and<br />

somatic<br />

sensation:<br />

posterior<br />

1<br />

⁄3 of tongue<br />

Communication to facial nerve (VII)<br />

Vagus nerve (X)<br />

Superior cervical<br />

sympathetic ganglion<br />

Sympathetic trunk<br />

Carotid branch of<br />

glossopharyngeal nerve<br />

Pharyngeal plexus<br />

Pharyngeal, tonsillar and lingual<br />

branches of glossopharyngeal nerve<br />

Pharyngeal branch of vagus nerve<br />

Internal carotid artery<br />

Carotid sinus<br />

Carotid body<br />

Common carotid artery<br />

External carotid artery<br />

31


NEUROANATOMY<br />

Vagus Nerve (X): Schema<br />

SEE ALSO PLATE 160<br />

Glossopharyngeal nerve (IX)<br />

Meningeal branch of vagus nerve<br />

Auricular branch of vagus nerve<br />

Pharyngotympanic (auditory) tube<br />

Levator veli<br />

palatini muscle<br />

Salpingopharyngeus<br />

muscle<br />

Palatoglossus muscle<br />

Palatopharyngeus<br />

muscle<br />

Superior pharyngeal<br />

constrictor muscle<br />

Stylopharyngeus muscle<br />

Middle pharyngeal constrictor muscle<br />

Inferior pharyngeal constrictor muscle<br />

Cricothyroid muscle<br />

Trachea<br />

Esophagus<br />

Right subclavian artery<br />

Right recurrent laryngeal nerve<br />

Heart<br />

Hepatic branch of anterior<br />

vagal trunk (in lesser omentum)<br />

Celiac branches from anterior<br />

and posterior vagal trunks<br />

to celiac plexus<br />

Celiac and superior mesenteric<br />

ganglia and celiac plexus<br />

Hepatic plexus<br />

Gallbladder<br />

and bile ducts<br />

Liver<br />

Pyloric branch<br />

from hepatic plexus<br />

Pancreas<br />

Duodenum<br />

Ascending colon<br />

Cecum<br />

Appendix<br />

Jugular foramen<br />

Posterior nucleus of vagus<br />

nerve (parasympathetic<br />

and visceral afferent)<br />

Solitary tract nucleus (visceral<br />

afferents including taste)<br />

Spinal tract and spinal<br />

nucleus of trigeminal nerve<br />

(somatic afferent)<br />

Nucleus ambiguus<br />

(motor to pharyngeal<br />

and laryngeal muscles)<br />

Cranial root of<br />

accessory nerve*<br />

(see next plate)<br />

Vagus nerve (X)<br />

Superior ganglion of vagus nerve<br />

Inferior ganglion of vagus nerve<br />

Pharyngeal branch of vagus nerve (motor to muscles of<br />

palate and lower pharynx; sensory to lower pharynx)<br />

Communicating branch of vagus nerve to<br />

carotid branch of glossopharyngeal nerve<br />

Pharyngeal plexus<br />

Superior laryngeal nerve:<br />

Internal branch (sensory and parasympathetic)<br />

External branch (motor to cricothyroid muscle)<br />

Superior cervical cardiac branch of vagus nerve<br />

Inferior cervical cardiac branch of vagus nerve<br />

Thoracic cardiac branch of vagus nerve<br />

Left recurrent laryngeal nerve (motor to muscles of larynx<br />

except cricothyroid; sensory and parasympathetic to<br />

larynx below vocal folds; parasympathetic, efferent and<br />

afferent to upper esophagus and trachea)<br />

Pulmonary plexus<br />

Cardiac plexus<br />

Esophageal plexus<br />

Anterior vagal trunk<br />

Gastric branches of anterior vagal trunk<br />

(branches from posterior trunk behind stomach)<br />

Vagal branches (parasympathetic motor,<br />

secretomotor and afferent fibers) accompany<br />

superior mesenteric artery and its branches<br />

usually as far as left colic (splenic) flexure<br />

Small intestine<br />

Efferent fibers<br />

Afferent fibers<br />

Parasympathetic fibers<br />

32


Accessory Nerve (XI): Schema<br />

NEUROANATOMY<br />

SEE ALSO PLATE 28<br />

Nucleus ambiguus<br />

Vagus nerve (X)<br />

Cranial root of accessory nerve (joins vagus nerve<br />

and via recurrent laryngeal nerve supplies muscles of<br />

larynx, except cricothyroid)*<br />

Spinal root of<br />

accessory nerve<br />

Jugular foramen<br />

Foramen<br />

magnum<br />

Superior ganglion<br />

of vagus nerve<br />

Accessory nerve (XI)*<br />

Inferior ganglion<br />

of vagus nerve<br />

C1 spinal nerve<br />

C2 spinal nerve<br />

Accessory nerve<br />

(to sternocleidomastoid<br />

and trapezius muscles)<br />

Sternocleidomastoid muscle (cut)<br />

C3 spinal nerve<br />

C4 spinal nerve<br />

Trapezius muscle<br />

*Recent evidence suggests that the accessory nerve lacks a cranial root and has no connection to the vagus nerve.<br />

Verification of this finding awaits further investigation.<br />

Efferent fibers<br />

Proprioceptive fibers<br />

33


NEUROANATOMY<br />

Hypoglossal Nerve (XII): Schema<br />

Hypoglossal nerve (XII)<br />

(in hypoglossal canal)<br />

Meningeal branch<br />

Intrinsic<br />

muscles<br />

of tongue<br />

Superior<br />

longitudinal<br />

Transverse<br />

and vertical<br />

Inferior<br />

longitudinal<br />

Styloglossus<br />

muscle<br />

Hypoglossal nucleus<br />

Occipital condyle<br />

Inferior ganglion of<br />

vagus nerve<br />

Ventral rami of<br />

C1, 2, 3 form<br />

ansa cervicalis<br />

of cervical plexus<br />

Superior cervical<br />

sympathetic<br />

ganglion<br />

Genioglossus<br />

muscle<br />

Geniohyoid muscle<br />

Hyoglossus muscle<br />

Superior root of<br />

ansa cervicalis<br />

Internal carotid artery<br />

Inferior root of ansa cervicalis<br />

Thyrohyoid muscle<br />

Omohyoid muscle<br />

(superior belly)<br />

Sternohyoid muscle<br />

Ansa cervicalis<br />

Internal jugular vein<br />

Common carotid artery<br />

Sternothyroid muscle<br />

Omohyoid muscle (inferior belly)<br />

Efferent fibers<br />

Afferent fibers<br />

34


Nerves of Heart<br />

NEUROANATOMY<br />

Superior cervical<br />

sympathetic ganglion<br />

Vagus nerve (X)<br />

(Conjoined sympathetic and<br />

vagal) superior cervical cardiac nerves<br />

Middle cervical<br />

sympathetic ganglion<br />

Middle cervical<br />

(sympathetic) cardiac nerve<br />

Phrenic nerve<br />

Inferior cervical<br />

(vagal) cardiac nerve<br />

Vertebral ganglion<br />

Inferior thyroid artery<br />

Vertebral artery<br />

Cervicothoracic<br />

(stellate) ganglion<br />

Ansa subclavia<br />

Recurrent<br />

laryngeal nerve<br />

Superior cervical<br />

sympathetic ganglion<br />

Vagus nerve (X)<br />

Superior cervical<br />

(sympathetic) cardiac nerve<br />

Superior cervical<br />

(vagal) cardiac nerve<br />

Middle cervical<br />

sympathetic ganglion<br />

Phrenic nerve<br />

Middle cervical<br />

(sympathetic) cardiac nerve<br />

Inferior cervical<br />

(vagal) cardiac nerve<br />

Vertebral ganglion<br />

Cervicothoracic<br />

(stellate) ganglion<br />

Inferior cervical<br />

sympathetic<br />

cardiac nerves<br />

Inferior cervical<br />

(sympathetic) cardiac nerves<br />

Thoracic cardiac branch<br />

of vagus nerve<br />

4th thoracic<br />

sympathetic ganglion<br />

Thoracic (sympathetic)<br />

cardiac branches<br />

Cardiac plexus<br />

3rd thoracic<br />

sympathetic ganglion<br />

Thoracic (sympathetic)<br />

cardiac branches<br />

Thoracic cardiac<br />

branch of<br />

vagus nerve<br />

Recurrent laryngeal<br />

nerve<br />

Phrenic nerve (cut)<br />

35


NEUROANATOMY<br />

Autonomic Nerves and Ganglia of Abdomen<br />

Right sympathetic trunk<br />

Thoracic duct<br />

Right greater<br />

and lesser<br />

splanchnic<br />

nerves<br />

Right phrenic nerve<br />

Inferior phrenic<br />

arteries and plexuses<br />

Right greater<br />

and lesser<br />

splanchnic<br />

nerves<br />

Right suprarenal<br />

plexus<br />

Right aorticorenal<br />

ganglion<br />

Right least<br />

splanchnic nerve<br />

Right renal<br />

artery and plexus<br />

Right<br />

sympathetic trunk<br />

White and gray<br />

rami communicantes<br />

Cisterna chyli<br />

Gray ramus communicans<br />

3rd lumbar ganglion<br />

of sympathetic trunk<br />

2nd and 3rd lumbar<br />

splanchnic nerves<br />

Right ureter and plexus<br />

Right testicular (ovarian)<br />

artery and plexus<br />

4th lumbar splanchnic nerve<br />

1st sacral ganglion<br />

of sympathetic trunk<br />

Gray rami communicantes<br />

Anterior,<br />

Posterior<br />

vagal trunks<br />

Left gastric artery<br />

and plexus<br />

Celiac ganglia<br />

Left greater<br />

splanchnic nerve<br />

Left lesser<br />

splanchnic nerve<br />

Splenic artery<br />

and plexus<br />

Common hepatic<br />

artery and plexus<br />

Superior mesenteric<br />

ganglion and plexus<br />

Left aorticorenal<br />

ganglion<br />

Left sympathetic<br />

trunk<br />

Intermesenteric<br />

(aortic) plexus<br />

Inferior mesenteric<br />

ganglion<br />

Left colic artery<br />

and plexus<br />

Inferior mesenteric<br />

artery and plexus<br />

Left common iliac<br />

artery and plexus<br />

Superior rectal<br />

artery and plexus<br />

Superior hypogastric<br />

plexus<br />

Internal and external<br />

iliac arteries and<br />

plexuses<br />

Right and left<br />

hypogastric nerves<br />

to inferior hypogastric<br />

(pelvic) plexus<br />

Left sacral plexus<br />

Pelvic splanchnic<br />

nerves<br />

36


Nerves of Stomach and Duodenum<br />

NEUROANATOMY<br />

Right and left inferior phrenic arteries and plexuses<br />

Anterior and posterior layers of lesser omentum<br />

Branch from hepatic plexus to<br />

cardia via lesser omentum<br />

Right greater splanchnic<br />

nerve<br />

Hepatic branch of anterior vagal trunk<br />

Anterior vagal trunk<br />

Celiac branch of posterior vagal trunk<br />

Celiac branch of anterior vagal trunk<br />

Left gastric artery and plexus<br />

Vagal<br />

branch<br />

from<br />

hepatic<br />

plexus<br />

to<br />

pyloric<br />

part of<br />

stomach<br />

Hepatic plexus<br />

Right gastric<br />

artery and plexus<br />

Anterior gastric<br />

branch of anterior<br />

vagal trunk<br />

Left greater splanchnic<br />

nerve<br />

Left lesser splanchnic<br />

nerve<br />

Splenic artery and plexus<br />

Celiac ganglia and plexus<br />

Plexus on gastro-omental<br />

(gastroepiploic) arteries<br />

Superior mesenteric artery and plexus<br />

Plexus on inferior pancreaticoduodenal artery<br />

Plexus on first jejunal artery<br />

Plexus on anterior superior and anterior<br />

inferior pancreaticoduodenal arteries<br />

(posterior pancreaticoduodenal arteries<br />

and plexuses not visible in this view)<br />

37


NEUROANATOMY<br />

Nerves of Stomach and Duodenum (continued)<br />

Plexus on gastro-omental<br />

(gastroepiploic) arteries<br />

Hepatic plexus<br />

Right gastric<br />

artery and<br />

plexus<br />

Posterior gastric branch of posterior vagal trunk<br />

Hepatic branch of anterior vagal trunk via lesser omentum<br />

Branch from hepatic plexus to cardia via lesser omentum<br />

Right inferior phrenic artery and plexus<br />

Posterior vagal trunk<br />

Celiac branch of posterior vagal trunk<br />

Celiac branch of anterior vagal trunk<br />

Left gastric artery and plexus<br />

Left inferior phrenic artery and plexus<br />

Celiac ganglia and plexus<br />

Greater, lesser and least<br />

splanchnic nerves<br />

Aorticorenal ganglia<br />

Splenic artery and plexus<br />

Greater,<br />

Lesser,<br />

Least<br />

splanchnic<br />

nerves<br />

View<br />

with<br />

stomach<br />

reflected<br />

cephalad<br />

Right phrenic nerve<br />

Phrenic ganglion<br />

Branch from right inferior phrenic<br />

plexus to cardia of stomach<br />

Right and left inferior phrenic<br />

arteries and plexuses<br />

Anterior vagal trunk<br />

Posterior vagal trunk<br />

Plexus on<br />

anterior superior<br />

and anterior inferior<br />

pancreaticoduodenal<br />

arteries<br />

Plexus on gastroduodenal artery<br />

Plexus on posterior superior<br />

and posterior inferior<br />

pancreaticoduodenal arteries<br />

Superior mesenteric ganglion and plexus<br />

Right greater,<br />

lesser<br />

and least<br />

splanchnic nerves<br />

Celiac ganglia<br />

Right aorticorenal<br />

ganglion<br />

Celiac branches<br />

of anterior<br />

and posterior<br />

vagal trunks<br />

Left gastric<br />

artery and plexus<br />

Left greater,<br />

lesser and least<br />

splanchnic nerves<br />

Superior mesenteric ganglion and plexus<br />

Left aorticorenal ganglion<br />

38


Nerves of Small Intestine<br />

NEUROANATOMY<br />

Recurrent branch of left inferior phrenic<br />

artery and plexus to esophagus<br />

Anterior vagal trunk<br />

Posterior vagal trunk<br />

Hepatic branch of anterior<br />

vagal trunk (courses in lesser<br />

omentum, removed here)<br />

Celiac branches of anterior<br />

and posterior vagal trunks<br />

Inferior phrenic arteries and plexuses<br />

Left gastric artery and plexus<br />

Hepatic plexus<br />

Greater splanchnic nerves<br />

Right gastric artery and plexus (cut)<br />

Celiac ganglia and plexus<br />

Gastroduodenal artery and plexus<br />

Lesser splanchnic nerves<br />

Least splanchnic nerves<br />

Aorticorenal ganglia<br />

Superior mesenteric ganglion<br />

Intermesenteric (aortic) plexus<br />

Inferior pancreaticoduodenal<br />

arteries and plexuses<br />

Superior mesenteric<br />

artery and plexus<br />

Middle colic artery and plexus (cut)<br />

Right colic artery and plexus<br />

Ileocolic artery and plexus<br />

Superior mesenteric<br />

artery and plexus<br />

Peritoneum (cut edge)<br />

Mesenteric branches<br />

Mesoappendix (contains<br />

appendicular artery and<br />

nerve plexus)<br />

39


NEUROANATOMY<br />

Nerves of Large Intestine<br />

Anterior vagal trunk and hepatic branch<br />

Posterior vagal trunk<br />

Celiac branches of anterior<br />

and posterior vagal trunks<br />

Right inferior phrenic artery and plexus<br />

Right greater<br />

splanchnic nerve<br />

Celiac ganglia and plexus<br />

Right lesser and<br />

least splanchnic<br />

nerves<br />

Right aorticorenal<br />

ganglion<br />

Superior<br />

mesenteric<br />

ganglion<br />

Middle colic<br />

artery<br />

and plexus<br />

Inferior<br />

pancreaticoduodenal<br />

arteries<br />

and plexuses<br />

Right colic<br />

artery<br />

and plexus<br />

Ileocolic<br />

artery<br />

and plexus<br />

Cecal and<br />

appendicular<br />

arteries<br />

and plexuses<br />

Right internal<br />

iliac artery<br />

and plexus (cut)<br />

Sacral sympathetic trunk<br />

Right sacral plexus<br />

Pelvic splanchnic nerves<br />

Middle rectal artery and plexus<br />

Right inferior hypogastric<br />

(pelvic) plexus<br />

Vesical plexus<br />

Rectal plexus<br />

Urinary bladder<br />

Marginal artery and plexus<br />

Esophagus<br />

Left inferior phrenic<br />

artery and plexus<br />

Left gastric artery<br />

and plexus<br />

Left greater<br />

splanchnic<br />

nerve<br />

Left suprarenal<br />

plexus<br />

Left lesser and<br />

least splanchnic<br />

nerves<br />

Left aorticorenal<br />

ganglion<br />

Left renal artery<br />

and plexus<br />

1st left lumbar<br />

splanchnic nerve<br />

Left lumbar<br />

sympathetic trunk<br />

Intermesenteric<br />

(aortic) plexus<br />

Left colic artery<br />

and plexus<br />

Inferior<br />

mesenteric<br />

ganglion, artery<br />

and plexus<br />

Sigmoid<br />

arteries<br />

and plexuses<br />

Superior<br />

hypogastric<br />

plexus<br />

Superior<br />

rectal<br />

artery<br />

and plexus<br />

Right and left<br />

hypogastric<br />

nerves<br />

Rectosigmoid<br />

artery and<br />

plexus<br />

Nerves from inferior hypogastric (pelvic)<br />

plexuses to sigmoid colon, descending<br />

colon and left colic (splenic) flexure<br />

40


Nerves of Kidneys, Ureters and Urinary Bladder<br />

NEUROANATOMY<br />

Anterior vagal trunk<br />

Posterior vagal trunk<br />

Greater splanchnic nerve<br />

Celiac ganglia and plexus<br />

Lesser splanchnic nerve<br />

Superior mesenteric ganglion<br />

Least splanchnic nerve<br />

Aorticorenal ganglion<br />

Renal plexus and ganglion<br />

2nd lumbar splanchnic nerve<br />

Renal and upper ureteric branches<br />

from intermesenteric plexus<br />

Intermesenteric (aortic) plexus<br />

Testicular (ovarian) artery and plexus<br />

Inferior mesenteric ganglion<br />

Sympathetic trunk and ganglion<br />

Middle ureteric branch<br />

Superior hypogastric plexus<br />

Sacral splanchnic nerves<br />

(branches from upper sacral<br />

sympathetic ganglia to<br />

hypogastric plexus)<br />

Gray ramus communicans<br />

Hypogastric nerves<br />

Sacral plexus<br />

Pudendal nerve<br />

Pelvic splanchnic nerves<br />

Inferior hypogastric (pelvic) plexus<br />

with periureteric loops and<br />

branches to lower ureter<br />

Rectal plexus<br />

Vesical plexus<br />

Prostatic plexus<br />

41


NEUROANATOMY<br />

Nerves of Pelvic Viscera: Male<br />

Anterior vagal trunk<br />

Posterior vagal trunk<br />

and<br />

Celiac branch<br />

Inferior phrenic arteries and plexuses<br />

Left gastric artery and gastric plexus<br />

Celiac ganglia, plexus and trunk<br />

Left aorticorenal ganglion<br />

Superior mesenteric ganglion<br />

Superior mesenteric artery and plexus<br />

Intermesenteric (aortic) plexus<br />

Inferior mesenteric ganglion,<br />

artery and plexus<br />

Ureter and ureteric plexus<br />

Superior hypogastric plexus<br />

Superior rectal artery and plexus<br />

Hypogastric nerves<br />

Nerve from inferior<br />

hypogastric plexus<br />

to sigmoid and descending<br />

colon (parasympathetic)<br />

Sacral splanchnic nerves<br />

(sympathetic)<br />

Inferior hypogastric<br />

(pelvic) plexus<br />

Obturator nerve<br />

and artery<br />

Ductus deferens<br />

and plexus<br />

Vesical plexus<br />

Rectal plexus<br />

Prostatic plexus<br />

Cavernous nerves<br />

of penis<br />

T10 spinal nerve (anterior ramus)<br />

White and gray rami communicantes<br />

Greater<br />

Lesser<br />

Least<br />

Gray<br />

White<br />

Lumbosacral trunk<br />

Diaphragm<br />

Gray rami communicantes<br />

Sympathetic trunk and ganglia<br />

5th lumbar splanchnic nerve<br />

L5 spinal nerve (anterior ramus)<br />

Gray rami communicantes<br />

S1 spinal nerve<br />

(anterior ramus)<br />

Sacral plexus<br />

Pudendal nerve<br />

Levator ani muscle<br />

Splanchnic<br />

nerves<br />

Left renal artery<br />

and plexus<br />

L1 spinal nerve<br />

(anterior ramus)<br />

Rami<br />

communicantes<br />

1st, 2nd, 3rd lumbar splanchnic nerves<br />

Pelvic splanchnic<br />

nerves<br />

(parasympathetic)<br />

Piriformis muscle<br />

Gluteus maximus<br />

muscle and sacrotuberous<br />

ligament<br />

(Ischio-)coccygeus<br />

muscle and<br />

sacrospinous ligament<br />

Inferior anal (rectal) nerve<br />

Perineal nerve<br />

Dorsal nerve of penis<br />

Posterior scrotal nerves<br />

42


Nerves of Pelvic Viscera: Female<br />

NEUROANATOMY<br />

Sympathetic trunk<br />

and L2 ganglion<br />

Abdominal aorta<br />

Inferior vena cava<br />

Peritoneum<br />

White and<br />

gray rami<br />

communicantes<br />

Lumbar<br />

splanchnic<br />

nerves<br />

Extraperitoneal<br />

(subserous)<br />

fascia<br />

Common<br />

iliac vessels<br />

and plexus<br />

Ureter<br />

Intermesenteric<br />

(aortic) plexus<br />

Gray rami<br />

communicantes<br />

L5 spinal<br />

nerve<br />

Ovarian artery<br />

and plexus<br />

Superior<br />

hypogastric<br />

plexus<br />

Sacral<br />

promontory<br />

Right<br />

hypogastric<br />

nerve (cut)<br />

Right and<br />

left sacral<br />

sympathetic<br />

trunks and<br />

ganglia<br />

Piriformis<br />

muscle<br />

Sacral<br />

splanchnic<br />

nerves<br />

(sympathetic)<br />

Pudendal<br />

nerve<br />

S2<br />

S3<br />

S4<br />

S5<br />

S1<br />

Superior<br />

hypogastric<br />

plexus<br />

Common<br />

iliac artery<br />

and plexus<br />

Ureter<br />

Internal<br />

iliac artery<br />

and plexus<br />

External<br />

iliac artery<br />

and plexus<br />

Left hypogastric nerve<br />

Inferior hypogastric (pelvic) plexus<br />

Uterine (fallopian) tube<br />

Ovary<br />

Right and left<br />

hypogastric nerves<br />

Uterus<br />

Sigmoid<br />

colon<br />

Right sympathetic trunk<br />

Pelvic<br />

splanchnic<br />

nerves<br />

(parasympathetic)<br />

Symphyseal surface of pubis<br />

Urinary bladder<br />

Vesical plexus<br />

(Ischio-)coccygeus muscle<br />

Uterovaginal plexus<br />

Rectal plexus<br />

Uterus (retracted)<br />

Rectum (retracted)<br />

43


NEUROANATOMY<br />

Median Nerve<br />

Anterior view<br />

Note: Only muscles innervated by median nerve shown<br />

Musculocutaneous nerve<br />

Median nerve (C5, 6, 7, 8, T1)<br />

Inconstant contribution<br />

Pronator teres muscle (humeral head)<br />

Articular branch<br />

Flexor carpi radialis muscle<br />

Palmaris longus muscle<br />

Pronator teres muscle (ulnar head)<br />

Flexor digitorum superficialis muscle<br />

(turned up)<br />

Medial<br />

Posterior<br />

Lateral<br />

Medial cutaneous<br />

nerve of arm<br />

Medial cutaneous<br />

nerve of forearm<br />

Axillary nerve<br />

Radial nerve<br />

Ulnar nerve<br />

Cords of<br />

brachial<br />

plexus<br />

Flexor digitorum profundus muscle<br />

(lateral part supplied by median<br />

[anterior interosseous] nerve;<br />

medial part supplied by ulnar nerve)<br />

Anterior interosseous nerve<br />

Flexor pollicis longus muscle<br />

Pronator quadratus muscle<br />

Palmar branch of median nerve<br />

Cutaneous<br />

innervation<br />

Thenar<br />

muscles<br />

Abductor pollicis brevis<br />

Opponens pollicis<br />

Superficial head of<br />

flexor pollicis brevis<br />

(deep head<br />

supplied by<br />

ulnar nerve)<br />

1st and 2nd<br />

lumbrical muscles<br />

Communicating branch<br />

of median nerve with<br />

ulnar nerve<br />

Common palmar<br />

digital nerves<br />

Palmar view<br />

Dorsal branches to<br />

dorsum of middle and<br />

distal phalanges<br />

Proper palmar<br />

digital nerves<br />

Posterior (dorsal) view<br />

44


Ulnar Nerve<br />

NEUROANATOMY<br />

Anterior view<br />

Note: Only muscles innervated<br />

by ulnar nerve shown<br />

Ulnar nerve (C7, 8, T1)<br />

(no branches above elbow)<br />

Inconstant contribution<br />

Medial epicondyle<br />

Cutaneous<br />

innervation<br />

Articular branch<br />

(behind condyle)<br />

Flexor digitorum profundus<br />

muscle (medial part only;<br />

lateral part supplied by<br />

anterior interosseous<br />

branch of median nerve)<br />

Palmar view<br />

Flexor carpi ulnaris muscle<br />

(drawn aside)<br />

Posterior<br />

(dorsal) view<br />

Dorsal branch of ulnar nerve<br />

Palmar branch<br />

Flexor pollicis brevis muscle<br />

(deep head only; superficial<br />

head and other thenar muscles<br />

supplied by median nerve)<br />

Superficial branch<br />

Deep branch<br />

Adductor pollicis muscle<br />

Palmaris brevis<br />

Abductor digiti minimi<br />

Flexor digiti minimi brevis<br />

Opponens digiti minimi<br />

Hypothenar muscles<br />

Common palmar digital nerve<br />

Communicating branch of median nerve with<br />

ulnar nerve<br />

Palmar and dorsal interosseous muscles<br />

3rd and 4th lumbrical muscles (turned down)<br />

Proper palmar digital nerves<br />

(dorsal digital nerves are from dorsal branch)<br />

Dorsal branches to dorsum of middle and distal phalanges<br />

45


NEUROANATOMY<br />

Radial Nerve in Arm and Nerves of Posterior Shoulder<br />

Dorsal scapular nerve (C5)<br />

Posterior view<br />

Supraspinatus muscle<br />

Suprascapular nerve (C5, 6)<br />

Levator scapulae<br />

muscle (supplied<br />

also by branches<br />

from C3 and C4)<br />

Deltoid muscle<br />

Teres minor muscle<br />

Axillary nerve (C5, 6)<br />

Rhomboid<br />

minor muscle<br />

Rhomboid<br />

major muscle<br />

Superior lateral<br />

cutaneous nerve of arm<br />

Radial nerve<br />

(C5, 6, 7, 8, T1)<br />

Inconstant contribution<br />

Inferior lateral<br />

cutaneous nerve of arm<br />

Infraspinatus muscle<br />

Teres major muscle<br />

Lower subscapular nerve (C5, 6)<br />

Posterior cutaneous nerve of arm<br />

(branch of radial nerve in axilla)<br />

Triceps brachii muscle<br />

Long head<br />

Lateral head<br />

Medial head<br />

Posterior cutaneous<br />

nerve of forearm<br />

Lateral intermuscular<br />

septum<br />

Brachialis muscle (lateral<br />

part; remainder of muscle<br />

supplied by musculocutaneous<br />

nerve)<br />

Brachioradialis muscle<br />

Triceps brachii tendon<br />

Medial epicondyle<br />

Olecranon<br />

Anconeus muscle<br />

Extensor digitorum muscle<br />

Extensor carpi radialis<br />

longus muscle<br />

Extensor carpi<br />

radialis brevis<br />

muscle<br />

Extensor carpi ulnaris muscle<br />

46


Radial Nerve in Forearm<br />

NEUROANATOMY<br />

Radial nerve (C5, 6, 7, 8, T1)<br />

Inconstant contribution<br />

Superficial (terminal) branch<br />

Deep (terminal) branch<br />

Lateral epicondyle<br />

Posterior view<br />

Anconeus muscle<br />

Brachioradialis muscle<br />

Extensor carpi radialis longus muscle<br />

Supinator muscle<br />

Extensor carpi radialis brevis muscle<br />

Extensor carpi ulnaris muscle<br />

Extensor digitorum muscle and<br />

extensor digiti minimi muscle<br />

Extensor indicis muscle<br />

Extensor-supinator<br />

group of muscles<br />

Extensor pollicis longus muscle<br />

Abductor pollicis longus muscle<br />

Extensor pollicis brevis muscle<br />

Posterior interosseous nerve<br />

(continuation of deep branch of<br />

radial nerve distal to supinator muscle)<br />

Superficial branch of radial nerve<br />

From axillary nerve<br />

Superior lateral<br />

cutaneous nerve<br />

of arm<br />

Inferior lateral<br />

cutaneous nerve<br />

of arm<br />

From radial nerve<br />

Posterior cutaneous<br />

nerve of arm<br />

Posterior cutaneous<br />

nerve of forearm<br />

Superficial branch of<br />

radial nerve and dorsal<br />

digital branches<br />

Dorsal digital nerves<br />

Cutaneous innervation from<br />

radial and axillary nerves<br />

47


NEUROANATOMY<br />

Sciatic Nerve and Posterior Cutaneous Nerve of Thigh<br />

Posterior cutaneous<br />

nerve of thigh<br />

(S1, 2, 3)<br />

Inferior cluneal nerves<br />

Perineal branches<br />

Greater sciatic foramen<br />

Sciatic nerve (L4, 5, S1, 2, 3)<br />

Tibial division<br />

of sciatic nerve<br />

Common fibular (peroneal)<br />

division of sciatic nerve<br />

Long head (cut) of<br />

biceps femoris muscle<br />

Short head of<br />

biceps femoris muscle<br />

Cutaneous innervation<br />

Adductor magnus muscle<br />

(also partially supplied<br />

by obturator nerve)<br />

Semitendinosus muscle<br />

Semimembranosus muscle<br />

Long head (cut)<br />

of biceps femoris<br />

muscle<br />

Common fibular<br />

(peroneal) nerve<br />

Tibial nerve<br />

Articular branch<br />

Plantaris muscle<br />

Articular<br />

branch<br />

Lateral sural<br />

cutaneous nerve<br />

Posterior<br />

cutaneous nerve<br />

of thigh<br />

Medial sural<br />

cutaneous nerve<br />

Gastrocnemius muscle<br />

Sural nerve<br />

Soleus muscle<br />

Tibial nerve<br />

Medial<br />

calcaneal branches<br />

Medial and lateral<br />

plantar nerves<br />

Sural<br />

communicating<br />

branch<br />

Lateral calcaneal<br />

branches<br />

Lateral dorsal<br />

cutaneous nerve<br />

From sciatic<br />

nerve<br />

Common fibular<br />

(peroneal) nerve<br />

via lateral sural<br />

cutaneous nerve<br />

Medial sural<br />

cutaneous nerve<br />

Superficial fibular<br />

(peroneal) nerve<br />

Sural nerve<br />

Tibial nerve<br />

via medial<br />

calcaneal<br />

branches<br />

48


Tibial Nerve<br />

NEUROANATOMY<br />

Tibial nerve<br />

(L4, 5, S1, 2, 3)<br />

Medial sural<br />

cutaneous nerve (cut)<br />

Articular branches<br />

Plantaris muscle<br />

Gastrocnemius<br />

muscle (cut)<br />

Nerve to popliteus muscle<br />

Popliteus muscle<br />

Interosseous nerve of leg<br />

Common fibular (peroneal) nerve<br />

Lateral sural cutaneous nerve (cut)<br />

From<br />

tibial nerve<br />

Articular branch<br />

Medial calcaneal<br />

branches<br />

(S1, 2)<br />

Medial<br />

plantar nerve<br />

(L4, 5)<br />

Lateral<br />

plantar nerve<br />

(S1, 2)<br />

Saphenous nerve<br />

(L3, 4)<br />

Sural nerve<br />

(S1, 2) via<br />

lateral calcaneal<br />

and lateral dorsal<br />

cutaneous<br />

branches<br />

Cutaneous innervation of sole<br />

Soleus muscle (cut and<br />

partly retracted)<br />

Flexor digitorum<br />

longus muscle<br />

Tibialis posterior muscle<br />

Flexor hallucis<br />

longus muscle<br />

Sural nerve (cut)<br />

Lateral calcaneal branch<br />

Medial<br />

calcaneal branch<br />

Flexor retinaculum (cut)<br />

Lateral dorsal<br />

cutaneous nerve<br />

Flexor<br />

retinaculum<br />

(cut)<br />

Tibial<br />

nerve<br />

Medial<br />

calcaneal<br />

branch<br />

Medial plantar<br />

nerve<br />

Flexor digitorum<br />

brevis muscle<br />

and nerve<br />

Abductor hallucis<br />

muscle and nerve<br />

Flexor hallucis<br />

brevis muscle<br />

and nerve<br />

1st lumbrical<br />

muscle and<br />

nerve<br />

Common<br />

plantar<br />

digital<br />

nerves<br />

Proper<br />

plantar<br />

digital<br />

nerves<br />

Lateral calcaneal<br />

branch of sural nerve<br />

Lateral plantar<br />

nerve<br />

Nerve to abductor<br />

digiti minimi muscle<br />

Quadratus plantae<br />

muscle and nerve<br />

Abductor digiti<br />

minimi muscle<br />

Deep branch to<br />

interosseous<br />

muscles,<br />

2nd, 3rd and 4th<br />

lumbrical muscles<br />

and<br />

Adductor hallucis<br />

muscle<br />

Superficial<br />

branch to<br />

4th interosseous<br />

muscle<br />

and<br />

Flexor digiti minimi<br />

brevis muscle<br />

Common and<br />

Proper plantar<br />

digital nerves<br />

Note: Articular branches not shown<br />

49


NEUROANATOMY<br />

Common Fibular (Peroneal) Nerve<br />

Common fibular<br />

(peroneal) nerve<br />

(phantom)<br />

Biceps femoris tendon<br />

Common fibular (peroneal)<br />

nerve (L4, 5, S1, 2)<br />

Lateral sural cutaneous nerve (phantom)<br />

Articular branches<br />

Recurrent articular nerve<br />

Extensor digitorum longus muscle (cut)<br />

Head of fibula<br />

Fibularis (peroneus)<br />

longus muscle (cut)<br />

Deep fibular (peroneal) nerve<br />

Tibialis anterior muscle<br />

Superficial fibular<br />

(peroneal) nerve<br />

Cutaneous innervation<br />

Branches of lateral<br />

sural cutaneous nerve<br />

Extensor digitorum<br />

longus muscle<br />

Fibularis (peroneus)<br />

longus muscle<br />

Fibularis (peroneus)<br />

brevis muscle<br />

Extensor hallucis<br />

longus muscle<br />

Lateral sural<br />

cutaneous nerve<br />

Medial dorsal cutaneous nerve<br />

Superficial fibular<br />

(peroneal) nerve<br />

Intermediate dorsal<br />

cutaneous nerve<br />

Inferior extensor<br />

retinaculum (partially cut)<br />

Lateral dorsal cutaneous nerve<br />

(branch of sural nerve)<br />

Lateral branch of<br />

deep fibular<br />

(peroneal) nerve to<br />

Extensor hallucis brevis<br />

and<br />

Extensor digitorum brevis<br />

muscles<br />

Medial branch of<br />

deep fibular<br />

(peroneal) nerve<br />

Deep<br />

fibular<br />

(peroneal)<br />

nerve<br />

Dorsal digital nerves<br />

Sural nerve<br />

via lateral dorsal<br />

cutaneous branch<br />

50


Part 2 <strong>Neuro</strong>physiology<br />

Organization of the Brain: Cerebrum. . . . . . . 52<br />

Organization of the Brain: Cell Types. . . . . . . 53<br />

Blood-Brain Barrier . . . . . . . . . . . . . . . . . . . . . 54<br />

Synaptic Transmission:<br />

Morphology of Synapses . . . . . . . . . . . . . . . 55<br />

Synaptic Transmission:<br />

<strong>Neuro</strong>muscular Junction . . . . . . . . . . . . . . . 56<br />

Synaptic Transmission:<br />

Visceral Efferent Endings . . . . . . . . . . . . . . . 57<br />

Synaptic Transmission:<br />

Inhibitory Mechanisms . . . . . . . . . . . . . . . . 58<br />

Synaptic Transmission:<br />

Chemical Synaptic Transmission . . . . . . . . . 59<br />

Synaptic Transmission:<br />

Temporal and Spatial Summation . . . . . . . . 60<br />

Cerebrospinal Fluid (CSF):<br />

Brain Ventricles and CSF Composition . . . . 61<br />

Cerebrospinal Fluid (CSF):<br />

Circulation of CSF . . . . . . . . . . . . . . . . . . . . 62<br />

Spinal Cord: Ventral Rami. . . . . . . . . . . . . . . . 63<br />

Spinal Cord: Membranes and Nerve Roots . . 64<br />

Peripheral Nervous System . . . . . . . . . . . . . . . 65<br />

Autonomic Nervous System: Schema. . . . . . . 66<br />

Autonomic Nervous System:<br />

Cholinergic and Adrenergic Synapses . . . . . 67<br />

Hypothalamus . . . . . . . . . . . . . . . . . . . . . . . . . 68<br />

Limbic System . . . . . . . . . . . . . . . . . . . . . . . . . 69<br />

The Cerebral Cortex . . . . . . . . . . . . . . . . . . . . 70<br />

Descending Motor Pathways . . . . . . . . . . . . . 71<br />

Cerebellum: Afferent Pathways. . . . . . . . . . . . 72<br />

Cerebellum: Efferent Pathways . . . . . . . . . . . . 73<br />

Cutaneous Sensory Receptors. . . . . . . . . . . . . 74<br />

Cutaneous Receptors:<br />

Pacinian Corpuscle. . . . . . . . . . . . . . . . . . . . 75<br />

Proprioception and Reflex Pathways: I . . . . . . 76<br />

Proprioception and Reflex Pathways: II . . . . . 77<br />

Proprioception and Reflex Pathways: III . . . . 78<br />

Proprioception and Reflex Pathways: IV. . . . . 79<br />

Sensory Pathways: I. . . . . . . . . . . . . . . . . . . . . 80<br />

Sensory Pathways: II . . . . . . . . . . . . . . . . . . . . 81<br />

Sensory Pathways: III. . . . . . . . . . . . . . . . . . . . 82<br />

Visual System: Receptors. . . . . . . . . . . . . . . . . 83<br />

Visual System: Visual Pathway . . . . . . . . . . . . 84<br />

Auditory System: Cochlea . . . . . . . . . . . . . . . . 85<br />

Auditory System: Pathways . . . . . . . . . . . . . . . 86<br />

Vestibular System: Receptors . . . . . . . . . . . . . 87<br />

Vestibular System: Vestibulospinal Tracts. . . . 88<br />

Gustatory (Taste) System: Receptors . . . . . . . 89<br />

Gustatory (Taste) System: Pathways . . . . . . . . 90<br />

Olfactory System: Receptors . . . . . . . . . . . . . . 91<br />

Olfactory System: Pathway . . . . . . . . . . . . . . . 92


NEUROPHYSIOLOGY<br />

Organization of the Brain: Cerebrum<br />

Precentral sulcus<br />

Central sulcus (Rolando)<br />

Precentral gyrus<br />

Postcentral gyrus<br />

Postcentral sulcus<br />

Superior parietal lobule<br />

Inferior parietal lobule<br />

Supramarginal gyrus<br />

Angular gyrus<br />

Parietooccipital<br />

sulcus<br />

Frontal pole<br />

Occipital pole<br />

Calcarine sulcus<br />

Lateral sulcus<br />

(Sylvius)<br />

Temporal pole<br />

Superior temporal gyrus<br />

Middle temporal gyrus<br />

Inferior temporal gyrus<br />

Frontal lobe<br />

Parietal lobe<br />

Temporal lobe<br />

Occipital lobe<br />

Insula (island of Reil)<br />

©<br />

FIGURE 2.1<br />

ORGANIZATION OF THE BRAIN: CEREBRUM •<br />

The cerebral cortex represents the highest center for sensory and<br />

motor processing. In general, the frontal lobe processes motor,<br />

visual, speech, and personality modalities. The parietal lobe<br />

processes sensory information; the temporal lobe, auditory and<br />

memory modalities; and the occipital lobe, vision. The cerebellum<br />

coordinates smooth motor activities and processes muscle position.<br />

The brainstem (medulla, pons, midbrain) conveys motor and sensory<br />

information and mediates important autonomic functions. The spinal<br />

cord receives sensory input from the body and conveys somatic and<br />

autonomic motor information to peripheral targets (muscles, viscera).<br />

52


Organization of the Brain: Cell Types<br />

NEUROPHYSIOLOGY<br />

Multipolar (pyramidal)<br />

cell of cerebral<br />

motor cortex<br />

Astrocyte<br />

Motor<br />

endplate<br />

Multipolar somatic<br />

motor cell of nuclei<br />

of cranial nn.<br />

Multipolar cell<br />

of lower brain<br />

motor centers<br />

Oligodendrocyte<br />

Corticospinal<br />

(pyramidal) fiber<br />

Axodendritic ending<br />

Axosomatic ending<br />

Axoaxonic ending<br />

Multipolar somatic<br />

motor cell of<br />

anterior horn<br />

of spinal cord<br />

Collateral<br />

Striated<br />

(somatic)<br />

muscle<br />

Renshaw interneuron<br />

(feedback)<br />

Myelinated somatic motor<br />

fiber of spinal nerve<br />

Interneurons<br />

Blood vessel<br />

Interneuron<br />

Astrocyte<br />

Multipolar visceral<br />

motor (autonomic)<br />

cell of spinal cord<br />

Autonomic preganglionic<br />

(sympathetic or parasympathetic)<br />

nerve fiber<br />

Myelin sheath<br />

Autonomic postganglionic<br />

neuron of sympathetic or<br />

parasympathetic ganglion<br />

Satellite cells<br />

Unmyelinated nerve fiber<br />

Schwann cells<br />

Bipolar cell of cranial n.<br />

Unipolar cell of<br />

sensory ganglia of<br />

cranial nn.<br />

Satellite cells<br />

Schwann cell<br />

Free nerve endings<br />

(unmyelinated fibers)<br />

Encapsulated ending<br />

Specialized ending<br />

Muscle spindle<br />

Unipolar sensory cell<br />

of dorsal spinal<br />

root ganglion<br />

Satellite cells<br />

Myelinated afferent<br />

fiber of spinal nerve<br />

Myelin sheath<br />

Red: Motor neuron<br />

Blue: Sensory neuron<br />

Purple: Interneuron<br />

Gray: Glial and<br />

neurilemmal cells<br />

and myelin<br />

Note: Cerebellar cells<br />

not shown here<br />

Myelin sheath<br />

Schwann cells<br />

Motor endplate with<br />

Schwann cell cap<br />

Striated<br />

(voluntary)<br />

muscle<br />

Endings on<br />

cardiac muscle<br />

or nodal cells<br />

Beaded<br />

varicosities<br />

and endings on<br />

smooth muscle<br />

and gland cells<br />

Unmyelinated fibers<br />

Free nerve endings<br />

Encapsulated ending<br />

Muscle spindle<br />

©<br />

FIGURE 2.2<br />

ORGANIZATION OF THE BRAIN: CELL TYPES •<br />

<strong>Neuro</strong>ns form the functional cellular units responsible for<br />

communication, and throughout the nervous system, they are<br />

characterized by their distinctive size and shapes (e.g., bipolar,<br />

unipolar, multipolar). Supporting cells include the neuroglia<br />

(e.g., astrocytes, oligodendrocytes), satellite cells, and other specialized<br />

cells that optimize neuronal function, provide maintenance<br />

functions, or protect the nervous system.<br />

53


NEUROPHYSIOLOGY<br />

Blood-Brain Barrier<br />

Tight<br />

junction<br />

proteins<br />

Cell<br />

membrane<br />

Basement<br />

membrane<br />

Cytoplasm<br />

Red<br />

blood<br />

cell<br />

Capillary<br />

lumen<br />

Astrocyte<br />

foot processes<br />

Tight<br />

junction<br />

Capillary<br />

endothelial<br />

cell<br />

Astrocyte<br />

©<br />

FIGURE 2.3<br />

BLOOD-BRAIN BARRIER •<br />

The blood-brain barrier (BBB) is the cellular interface between the<br />

blood and the central nervous system (CNS; brain and spinal cord).<br />

It serves to maintain the interstitial fluid environment to ensure<br />

optimal functionality of the neurons. This barrier consists of the<br />

capillary endothelial cells with an elaborate network of tight junctions<br />

and astrocytic foot processes that abut the endothelium and<br />

its basement membrane. The movement of large molecules and<br />

54<br />

other substances (including many drugs) from the blood to the<br />

interstitial space of the CNS is restricted by the BBB. CNS endothelial<br />

cells also exhibit a low level of pinocytotic activity across the<br />

cell, so specific carrier systems for the transport of essential substrates<br />

of energy and amino acid metabolism are characteristic of<br />

these cells. The astrocytes help transfer important metabolites from<br />

the blood to the neurons and also remove excess K and neurotransmitters<br />

from the interstitial fluid.


Synaptic Transmission: Morphology of Synapses<br />

NEUROPHYSIOLOGY<br />

Dendrite<br />

Node<br />

Axon<br />

Dendrites<br />

Myelin sheath<br />

Numerous boutons (synaptic knobs)<br />

of presynaptic neurons terminating<br />

on a motor neuron and its dendrites<br />

Enlarged section<br />

of bouton<br />

Axolemma<br />

Mitochondria<br />

Glial process<br />

Synaptic vesicles<br />

Synaptic cleft<br />

Presynaptic membrane<br />

(densely staining)<br />

Postsynaptic membrane<br />

(densely staining)<br />

Postsynaptic cell<br />

Axon (axoplasm)<br />

©<br />

FIGURE 2.4<br />

MORPHOLOGY OF SYNAPSES •<br />

<strong>Neuro</strong>ns communicate with each other and with effector targets at<br />

specialized regions called synapses. The top figure shows a typical<br />

motor neuron that receives numerous synaptic contacts on its cell<br />

body and associated dendrites. Incoming axons lose their myelin<br />

sheaths, exhibit extensive branching, and terminate as synaptic<br />

boutons (synaptic terminals or knobs) on the motor neuron. The<br />

lower figure shows an enlargement of one such synaptic bouton.<br />

Chemical neurotransmitters are contained in synaptic vesicles,<br />

which can fuse with the presynaptic membrane, release the transmitters<br />

into the synaptic cleft, and then bind to receptors situated<br />

in the postsynaptic membrane. This synaptic transmission results in<br />

excitatory, inhibitory, or modulatory effects on the target cell.<br />

55


NEUROPHYSIOLOGY<br />

Synaptic Transmission: <strong>Neuro</strong>muscular Junction<br />

Structure of <strong>Neuro</strong>muscular Junction<br />

Active zone<br />

Schwann cell process<br />

Acetylcholine<br />

receptor sites<br />

Myelin sheath<br />

Neurilemma<br />

Axoplasm<br />

Schwann cell<br />

Mitochondria<br />

Basement membrane<br />

Nucleus of Schwann cell<br />

Presynaptic membrane<br />

Active zone<br />

Synaptic vesicles<br />

Synaptic trough<br />

Basement membrane<br />

Sarcolemma<br />

Nucleus of<br />

muscle cell<br />

Myofibrils<br />

Synaptic cleft<br />

Postsynaptic<br />

membrane<br />

Junctional fold<br />

Sarcoplasm<br />

Acetylcholine receptor sites<br />

©<br />

FIGURE 2.5<br />

STRUCTURE OF THE NEUROMUSCULAR JUNCTION •<br />

Motor axons that synapse on skeletal muscle form expanded terminals<br />

called neuromuscular junctions (motor endplates). The motor<br />

axon loses its myelin sheath and expands into a Schwann<br />

cell–invested synaptic terminal that resides within a trough in the<br />

muscle fiber. Acetylcholine-containing synaptic vesicles accumulate<br />

adjacent to the presynaptic membrane and, when appropriately<br />

stimulated, release their neurotransmitter into the synaptic<br />

cleft. The transmitter then binds to receptors that mediate depolarization<br />

of the muscle sarcolemma and initiate a muscle action<br />

potential. A single muscle fiber has only one neuromuscular junction,<br />

but a motor axon can innervate multiple muscle fibers.<br />

56


Synaptic Transmission: Visceral Efferent Endings<br />

NEUROPHYSIOLOGY<br />

Visceral Efferent Endings<br />

A. Smooth muscle<br />

Smooth muscle cells (cut)<br />

Schwann cell cap enclosing<br />

nerve axons<br />

Mucous cells<br />

Schwann cell<br />

cap enclosing<br />

nerve axons<br />

B. Gland (submandibular)<br />

Sympathetic terminal<br />

ending<br />

Varicosity<br />

Schwann<br />

cell cap<br />

⎧<br />

⎪⎪⎨⎪⎪⎩<br />

⎧<br />

⎪⎪⎨⎪⎪⎩<br />

⎧<br />

⎪⎪⎨⎪⎪⎩<br />

Axon<br />

C. <strong>Neuro</strong>secretory<br />

(posterior pituitary)<br />

Pituicyte processes<br />

Axon<br />

Schwann cell cap<br />

Smooth muscle cells<br />

Varicosities<br />

Terminal endings<br />

Serous cells<br />

Parasympathetic<br />

terminal ending<br />

Schwann cell<br />

cap enclosing<br />

nerve axons<br />

Varicosity<br />

Capillary<br />

Endothelium<br />

Mast cell<br />

Fibroblast<br />

<strong>Neuro</strong>secretory<br />

vesicles<br />

Collagen space<br />

Basement membrane<br />

©<br />

FIGURE 2.6<br />

VISCERAL EFFERENT ENDINGS •<br />

<strong>Neuro</strong>nal efferent endings on smooth muscle (A) and glands (B<br />

and C) exhibit unique endings unlike the presynaptic and postsynaptic<br />

terminals observed in neuronal and neuromuscular junction<br />

synapses. Rather, neurotransmitter substances are released<br />

into interstitial spaces (A and B) or into the bloodstream (C, neurosecretion)<br />

from expanded nerve terminal endings. This arrangement<br />

allows for the stimulation of numerous target cells over a<br />

wide area. Not all smooth muscle cells are innervated. They are<br />

connected to adjacent cells by gap junctions and can therefore<br />

contract together with the innervated cells.<br />

57


NEUROPHYSIOLOGY<br />

Synaptic Transmission: Inhibitory Mechanisms<br />

E<br />

(Excitatory<br />

fiber)<br />

I<br />

(Inhibitory<br />

fiber)<br />

E<br />

(Excitatory<br />

fiber)<br />

Motor<br />

neuron<br />

Motor<br />

neuron<br />

Axon<br />

I<br />

(Inhibitory<br />

fiber)<br />

Axon<br />

A. Only E fires<br />

90-mV spike<br />

in E terminal<br />

mV<br />

20<br />

90 mV A′. Only E fires<br />

mV<br />

EPSP in<br />

motor neuron<br />

70<br />

60<br />

70<br />

EPSP in<br />

motor<br />

neuron<br />

60<br />

70<br />

B. Only I fires<br />

Long-lasting<br />

partial<br />

depolarization<br />

in E terminal<br />

No response in<br />

motor neuron<br />

60<br />

70<br />

70<br />

B′. Only I fires<br />

Motor<br />

neuron<br />

hyperpolarized<br />

70<br />

80<br />

C. I fires before E<br />

Partial<br />

depolarization<br />

of E terminal<br />

reduces spike<br />

to 80 mV, thus<br />

releasing less<br />

transmitter<br />

substance<br />

Smaller EPSP in<br />

motor neuron<br />

20<br />

70<br />

60<br />

70<br />

80 mV<br />

C′. I fires before E<br />

Depolarization<br />

of motor<br />

neuron less<br />

than if only<br />

E fires<br />

60<br />

70<br />

80<br />

©<br />

FIGURE 2.7<br />

SYNAPTIC INHIBITORY MECHANISMS •<br />

Inhibitory synapses modulate neuronal activity. Illustrated here is presynaptic inhibition (left panel) and postsynaptic inhibition (right<br />

panel) at a motor neuron.<br />

58


Synaptic Transmission: Chemical Synaptic Transmission<br />

NEUROPHYSIOLOGY<br />

Excitatory<br />

⎧<br />

⎪⎪⎨⎪⎪⎩<br />

⎧<br />

⎪⎪⎨⎪⎪⎩<br />

Synaptic<br />

vesicles<br />

in synaptic<br />

bouton<br />

Presynaptic<br />

membrane<br />

Inhibitory<br />

<br />

<br />

<br />

<br />

<br />

<br />

Na Current<br />

K <br />

<br />

<br />

<br />

<br />

Transmitter<br />

substances<br />

Synaptic cleft<br />

Postsynaptic<br />

membrane<br />

<br />

<br />

<br />

<br />

<br />

<br />

Cl <br />

<br />

<br />

<br />

<br />

When impulse reaches excitatory synaptic<br />

bouton, it causes release of a transmitter<br />

substance into synaptic cleft. This increases<br />

permeability of postsynaptic membrane to<br />

Na and K . More Na moves into postsynaptic<br />

cell than K moves out, due to greater<br />

electrochemical gradient<br />

At inhibitory synapse, transmitter substance released<br />

by an impulse increases permeability of<br />

the postsynaptic membrane to Cl . K moves<br />

out of post-synaptic cell but no net flow of Cl <br />

occurs at resting membrane potential<br />

Synaptic bouton<br />

Resultant net ionic current flow is in a direction<br />

that tends to depolarize postsynaptic cell.<br />

If depolarization reaches firing threshold, an<br />

impulse is generated in postsynaptic cell<br />

Potential (mV)<br />

65<br />

Potential<br />

70 0 4 8 12 16<br />

msec<br />

Current flow and potential change<br />

Resultant ionic current flow is in direction that tends to<br />

hyperpolarize postsynaptic cell. This makes depolarization<br />

by excitatory synapses more difficult—more depolarization<br />

is required to reach threshold<br />

msec<br />

12 16<br />

75<br />

Current<br />

Potential<br />

Potential (mV)70 0 4 8<br />

Current flow and potential change<br />

©<br />

FIGURE 2.8<br />

CHEMICAL SYNAPTIC TRANSMISSION •<br />

Chemical synaptic transmission between neurons may be excitatory<br />

or inhibitory. During excitation (left column), a net increase in<br />

the inward flow of Na compared with the outward flow of K <br />

results in a depolarizing potential change (excitatory postsynaptic<br />

potential [EPSP]) that drives the postsynaptic cell closer to its<br />

threshold for an action potential. During inhibition (right column),<br />

the opening of K and Cl channels drives the membrane potential<br />

away from threshold (hyperpolarization) and decreases the probability<br />

that the neuron will reach threshold (inhibitory postsynaptic<br />

potential [IPSP]) for an action potential.<br />

59


NEUROPHYSIOLOGY<br />

Synaptic Transmission: Temporal and Spatial Summation<br />

Temporal and Spatial Summation<br />

of Excitation and Inhibition<br />

Excitatory fibers<br />

mV<br />

Excitatory fibers<br />

mV<br />

–70<br />

–70<br />

Axon<br />

Axon<br />

Inhibitory fibers<br />

A. Resting state: motor nerve cell shown with synaptic boutons of<br />

excitatory and inhibitory nerve fibers ending close to it<br />

Inhibitory fibers<br />

B. Partial depolarization: impulse from one excitatory fiber has<br />

caused partial (below firing threshold) depolarization of motor<br />

neuron<br />

Excitatory fibers<br />

mV<br />

–70<br />

Excitatory fibers<br />

mV<br />

–70<br />

Inhibitory fibers<br />

Axon<br />

C. Temporal excitatory summation: a series of impulses in one<br />

excitatory fiber together produce a suprathreshold depolarization<br />

that triggers an action potential<br />

Inhibitory fibers<br />

Axon<br />

D. Spatial excitatory summation: impulses in two excitatory fibers<br />

cause two synaptic depolarizations that together reach firing<br />

threshold triggering an action potential<br />

Excitatory fibers<br />

mV<br />

Excitatory fibers<br />

mV<br />

–70<br />

–70<br />

Axon<br />

Axon<br />

Inhibitory fibers<br />

E. Spatial excitatory summation with inhibition: impulses from<br />

two excitatory fibers reach motor neuron but impulses from<br />

inhibitory fiber prevent depolarization from reaching threshold<br />

Inhibitory fibers<br />

E. (continued): motor neuron now receives additional excitatory<br />

impulses and reaches firing threshold despite a simultaneous<br />

inhibitory impulse; additional inhibitory impulses might still<br />

prevent firing<br />

©<br />

CHART 2.1<br />

SUMMARY OF SOME NEUROTRANSMITTERS AND WHERE WITHIN THE CENTRAL AND PERIPHERAL NERVOUS<br />

SYSTEM THEY ARE FOUND<br />

Transmitter<br />

Acetylcholine<br />

Biogenic amines<br />

Norepinephrine<br />

Dopamine<br />

Serotonin<br />

Amino acids<br />

-Aminobutyric<br />

acid (GABA)<br />

Glutamate<br />

Purines<br />

Adenosine<br />

Adenosine<br />

triphosphate (ATP)<br />

Location<br />

<strong>Neuro</strong>muscular junction, autonomic endings<br />

and ganglia, CNS<br />

Sympathetic endings, CNS<br />

CNS<br />

CNS, GI tract<br />

CNS<br />

CNS<br />

CNS<br />

CNS<br />

Transmitter<br />

Gas<br />

Nitric oxide<br />

Peptides<br />

-Endorphins<br />

Enkephalins<br />

Antidiuretic<br />

hormone<br />

Pituitary-releasing<br />

hormones<br />

Somatostatin<br />

<strong>Neuro</strong>peptide Y<br />

Vasoactive<br />

intestinal peptide<br />

Location<br />

CNS, GI tract<br />

CNS, GI tract<br />

CNS<br />

CNS (hypothalamus/posterior<br />

pituitary)<br />

CNS (hypothalamus/anterior<br />

pituitary)<br />

CNS, GI tract<br />

CNS<br />

CNS, GI tract<br />

CNS, Central nervous system; GI, gastrointestinal.<br />

FIGURE 2.9<br />

TEMPORAL AND SPATIAL SUMMATION •<br />

<strong>Neuro</strong>ns receive multiple excitatory and inhibitory inputs. Temporal<br />

summation occurs when a series of subthreshold impulses in<br />

one excitatory fiber produces an action potential in the postsynaptic<br />

cell (panel C). Spatial summation occurs when subthreshold<br />

impulses from two or more different fibers trigger an action potential<br />

(panel D). Both temporal and spatial summation can be modulated<br />

by simultaneous inhibitory input (panel E). Inhibitory and<br />

excitatory neurons use a wide variety of neurotransmitters, some of<br />

which are summarized here.<br />

60


Cerebrospinal Fluid (CSF): Brain Ventricles and CSF Composition<br />

NEUROPHYSIOLOGY<br />

Left lateral phantom view<br />

Right lateral ventricle<br />

Frontal (anterior) horn<br />

Central part<br />

Temporal (inferior) horn<br />

Occipital (posterior) horn<br />

Left<br />

lateral<br />

ventricle<br />

Cerebral aqueduct (Sylvius)<br />

4th ventricle<br />

Left lateral aperture<br />

(foramen of Luschka)<br />

Left interventricular<br />

foramen (Monro)<br />

3rd ventricle<br />

Left lateral recess<br />

Median aperture<br />

(foramen of Magendie)<br />

Central canal of spinal cord<br />

©<br />

CHART 2.2<br />

CSF COMPOSITION<br />

CSF<br />

Blood Plasma<br />

Na (mEq/L) 140–145 135–147<br />

K (mEq/L) 3 3.5–5.0<br />

Cl − (mEq/L) 115–120 95–105<br />

HCO 3− (mEq/L) 20 22–28<br />

Glucose (mg/dL) 50–75 70–110<br />

Protein (g/dL) 0.05–0.07 6.0–7.8<br />

pH 7.3 7.35–7.45<br />

FIGURE 2.10<br />

BRAIN VENTRICLES AND CSF COMPOSITION •<br />

CSF circulates through the four brain ventricles (two lateral ventricles<br />

and a third and fourth ventricle) and in the subarachnoid<br />

space surrounding the brain and spinal cord. The electrolyte composition<br />

of the CSF is regulated by the choroid plexus, which<br />

secretes the CSF. Importantly, the CSF has a lower [HCO 3 ] than<br />

plasma and therefore a lower pH. This allows small changes in<br />

blood PCO 2 to cause changes in CSF pH, which in turn regulates<br />

the rate of respiration (see Chapter 5).<br />

61


NEUROPHYSIOLOGY<br />

Cerebrospinal Fluid (CSF): Circulation of CSF<br />

Dura mater<br />

Choroid plexus of lateral<br />

ventricle (phantom)<br />

Cistern of corpus callosum<br />

Superior sagittal sinus<br />

Subarachnoid space<br />

Arachnoid granulations<br />

Arachnoid<br />

Interventricular<br />

foramen (Monro)<br />

Choroid plexus of 3rd ventricle<br />

Cerebral aqueduct (Sylvius)<br />

Lateral aperture (foramen of Luschka)<br />

Choroid plexus of 4th ventricle<br />

Dura mater<br />

Median aperture<br />

(foramen of Magendie)<br />

Arachnoid<br />

Subarachnoid space<br />

Central canal of spinal cord<br />

©<br />

FIGURE 2.11<br />

CIRCULATION OF CEREBROSPINAL FLUID •<br />

CSF circulates through the four brain ventricles (two lateral ventricles<br />

and a third and fourth ventricle) and in the subarachnoid<br />

space surrounding the brain and spinal cord. Most of the CSF is<br />

reabsorbed into the venous system through the arachnoid granulations<br />

and through the walls of the capillaries of the central nervous<br />

system and pia mater.<br />

62


Spinal Cord: Ventral Rami<br />

NEUROPHYSIOLOGY<br />

Base of skull<br />

C1 spinal nerve<br />

C8 spinal nerve<br />

T1 spinal nerve<br />

C1 vertebra (atlas)<br />

Cervical plexus<br />

Brachial plexus<br />

Intercostal<br />

nerves<br />

1st rib<br />

Spinal dura mater<br />

Filaments<br />

of spinal<br />

nerve roots<br />

(T7 and T8)<br />

T12 spinal<br />

nerve<br />

12th rib<br />

L1<br />

vertebra<br />

Conus medullaris<br />

L1 spinal nerve<br />

Cauda equina<br />

S1 spinal nerve<br />

Sacrum (cut away)<br />

Termination of<br />

dural sac<br />

Coccygeal nerve<br />

Lumbar plexus<br />

L5 vertebra<br />

Sacral plexus<br />

Sciatic nerve<br />

Coccyx<br />

©<br />

FIGURE 2.12<br />

SPINAL CORD AND VENTRAL RAMI IN SITU •<br />

The spinal cord gives rise to 31 pairs of spinal nerves that distribute<br />

segmentally to the body. These nerves are organized into plexuses<br />

that distribute to the neck (cervical plexus), upper limb (brachial<br />

plexus), and pelvis and lower limb (lumbosacral plexus). Motor<br />

fibers of these spinal nerves innervate skeletal muscle, and sensory<br />

fibers convey information back to the central nervous system from<br />

the skin, skeletal muscles, and joints.<br />

63


NEUROPHYSIOLOGY<br />

Spinal Cord: Membranes and Nerve Roots<br />

Posterior view<br />

Ventral root of spinal nerve<br />

Dorsal root of spinal nerve<br />

Spinal sensory (dorsal root) ganglion<br />

Ventral ramus of spinal nerve<br />

Dorsal ramus of spinal nerve<br />

Dura mater<br />

Arachnoid mater<br />

Subarachnoid space<br />

Pia mater overlying spinal cord<br />

Filaments of dorsal root<br />

Membranes removed: anterior view<br />

(greatly magnified)<br />

Gray matter<br />

White matter<br />

Filaments of dorsal root<br />

Dorsal root of spinal nerve<br />

Filaments of ventral root<br />

Spinal sensory (dorsal<br />

root) ganglion<br />

Dorsal ramus of<br />

spinal nerve<br />

Ventral ramus of<br />

spinal nerve<br />

Ventral root of spinal nerve<br />

Spinal nerve<br />

Gray and white rami<br />

communicantes<br />

©<br />

FIGURE 2.13<br />

SPINAL MEMBRANES AND NERVE ROOTS •<br />

The spinal cord gives rise to 31 pairs of spinal nerves that distribute<br />

segmentally to the body. Motor fibers of these spinal nerves innervate<br />

skeletal muscle, and sensory fibers convey information back<br />

to the central nervous system from the skin, skeletal muscles, and<br />

joints.<br />

The spinal cord is ensheathed in three meningeal coverings: the<br />

outer, tough dura mater; the arachnoid mater; and the pia mater,<br />

which intimately ensheaths the cord itself. CSF bathes the cord and<br />

is found in the subarachnoid space.<br />

64


Peripheral Nervous System<br />

NEUROPHYSIOLOGY<br />

Posterior horn<br />

Dorsal root ganglion<br />

Sensory neuron cell body<br />

Dorsal root<br />

Anterior horn<br />

Motor neuron cell body<br />

Ventral root<br />

Peripheral nerve<br />

Axon<br />

Myelin sheath<br />

Motor neuron<br />

Sensory neuron<br />

<strong>Neuro</strong>muscular<br />

junction<br />

Skin<br />

Muscle<br />

with<br />

©<br />

FIGURE 2.14<br />

PERIPHERAL NERVOUS SYSTEM •<br />

The peripheral nervous system (PNS) consists of all of the neural<br />

elements outside of the CNS (brain and spinal cord) and provides<br />

the connections between the CNS and all other body organ systems.<br />

The PNS consists of somatic and autonomic components. The<br />

somatic component innervates skeletal muscle and skin and is<br />

shown here (see Figure 2.15 for the autonomic nervous system).<br />

The somatic component of the peripheral nerves contains both<br />

motor and sensory axons. Cell bodies of the motor neurons are<br />

found in the anterior horn gray matter, whereas the cell bodies of<br />

sensory neurons are located in the dorsal root ganglia.<br />

65


NEUROPHYSIOLOGY<br />

Autonomic Nervous System: Schema<br />

Oculomotor nerve (III)<br />

Facial nerve (VII)<br />

Glossopharyngeal nerve (IX)<br />

Medulla oblongata<br />

Vagus nerve (X)<br />

Sweat<br />

gland<br />

Peripheral<br />

blood vessel<br />

C1<br />

Arrector (smooth)<br />

muscle of hair follicle<br />

Note: Above three<br />

structures are shown at<br />

only one level but<br />

occur at all levels<br />

C2<br />

C3<br />

C4<br />

C5<br />

C6<br />

C7<br />

C8<br />

T1<br />

T2<br />

T3<br />

T4<br />

T5<br />

T9<br />

T10<br />

T7<br />

T8<br />

T11<br />

T12<br />

T6<br />

L1<br />

L2<br />

L3<br />

L4<br />

L5<br />

Note: Blue-shaded S1<br />

areas indicate zones of<br />

parasympathetic S2<br />

outflow from CNS S3<br />

S4<br />

S5<br />

Coccygeal<br />

Gray rami<br />

communicantes<br />

Gray and white rami communicantes<br />

Gray rami communicantes<br />

Greater<br />

Lesser<br />

Least<br />

Lumbar<br />

splanchnic<br />

nerves<br />

⎧<br />

⎨<br />

⎩<br />

Splanchnic<br />

nerves<br />

Pelvic<br />

splanchnic<br />

nerves<br />

Intracranial vessels<br />

Ciliary ganglion<br />

Eye<br />

Pterygopalatine ganglion<br />

Lacrimal glands<br />

Otic ganglion<br />

Parotid glands<br />

Submandibular ganglion<br />

Sublingual and<br />

submandibular glands<br />

Peripheral cranial<br />

and facial vessels<br />

Larynx<br />

Trachea<br />

Bronchi<br />

Lungs<br />

Heart<br />

Stomach<br />

Liver<br />

Gallbladder<br />

Bile ducts<br />

Pancreas<br />

Suprarenal glands<br />

Kidneys<br />

Intestines<br />

Descending colon<br />

Sigmoid colon<br />

Rectum<br />

Prostate<br />

External genitalia<br />

Urinary bladder<br />

Pulmonary plexus<br />

Cardiac plexus<br />

Celiac ganglion<br />

Aorticorenal ganglion<br />

Superior mesenteric<br />

ganglion<br />

Inferior mesenteric<br />

ganglion<br />

Superior hypogastric<br />

plexus<br />

Inferior<br />

hypogastric<br />

plexus<br />

Sympathetic<br />

fibers<br />

Presynaptic<br />

Postsynaptic<br />

Parasympathetic<br />

fibers<br />

Presynaptic<br />

Postsynaptic<br />

Antidromic<br />

conduction<br />

©<br />

FIGURE 2.15<br />

AUTONOMIC NERVOUS SYSTEM: SCHEMA •<br />

The autonomic nervous system is composed of two divisions: the<br />

parasympathetic division derived from four of the cranial nerves<br />

(CN III, VII, IX, and X) and the S2-S4 sacral spinal cord levels, and the<br />

sympathetic division associated with the thoracic and upper lumbar<br />

spinal cord levels (T1-L2). The autonomic nervous system is a twoneuron<br />

chain, with the preganglionic neuron arising from the central<br />

nervous system and synapsing on a postganglionic neuron located in<br />

66<br />

a peripheral autonomic ganglion. Postganglionic axons of the autonomic<br />

nervous system innervate smooth muscle, cardiac muscle, and<br />

glands. Basically, the sympathetic division mobilizes our body (“fight<br />

or flight”) while the parasympathetic division regulates digestive and<br />

homeostatic functions. Normally, both divisions work in concert to<br />

regulate visceral activity (respiration, cardiovascular function, digestion,<br />

and associated glandular activity).


Autonomic Nervous System: Cholinergic and Adrenergic Synapses<br />

NEUROPHYSIOLOGY<br />

Medulla<br />

oblongata<br />

Glossopharyngeal<br />

nerve (IX)<br />

Internal carotid nerve<br />

Vagus nerve (X)<br />

Parotid<br />

gland<br />

Larynx<br />

Trachea<br />

Bronchi<br />

Lungs<br />

Heart<br />

Cervical<br />

sympathetic<br />

ganglia<br />

Striated muscle<br />

Sweat glands<br />

Thoracic<br />

part of<br />

spinal cord<br />

Gray ramus<br />

communicans<br />

White ramus<br />

communicans<br />

Celiac<br />

ganglion<br />

Hair follicles<br />

Peripheral arteries<br />

Upper<br />

lumbar<br />

part of<br />

spinal cord<br />

(L1-2 [3])<br />

Superior<br />

mesenteric<br />

ganglion<br />

Suprarenal<br />

gland<br />

Visceral<br />

arteries<br />

Gastrointestinal<br />

tract<br />

Inferior<br />

mesenteric ganglion<br />

Sacral<br />

part of<br />

spinal cord<br />

Pelvic splanchnic nerves<br />

C Cholinergic synapses<br />

A Adrenergic synapses<br />

Urinary bladder<br />

Urethra<br />

Prostate<br />

Sympathetic<br />

fibers<br />

Presynaptic<br />

Postsynaptic<br />

Parasympathetic<br />

fibers<br />

Presynaptic<br />

Postsynaptic<br />

Somatic fibers<br />

Antidromic conduction<br />

©<br />

FIGURE 2.16<br />

CHOLINERGIC AND ADRENERGIC SYNAPSES: SCHEMA •<br />

The autonomic nervous system (ANS) is a two-neuron chain, with<br />

the preganglionic neuron arising from the central nervous system<br />

and synapsing on a postganglionic neuron located in a peripheral<br />

autonomic ganglion. Acetylcholine is the neurotransmitter in both<br />

the sympathetic and parasympathetic ganglia. The parasympathetic<br />

division of the ANS releases acetylcholine at its postganglionic<br />

synapses and is characterized as having cholinergic (C) effects,<br />

whereas the sympathetic division releases predominantly noradrenaline<br />

(norepinephrine) at its postganglionic synapses, causing<br />

adrenergic (A) effects (except on sweat glands, where acetylcholine<br />

is released). Although acetylcholine and noradrenaline are the<br />

chief transmitter substances, other neuroactive peptides often are<br />

colocalized with them and include such substances as gammaaminobutyric<br />

acid (GABA), substance P, enkephalins, histamine,<br />

glutamic acid, neuropeptide Y, and others.<br />

67


NEUROPHYSIOLOGY<br />

Hypothalamus<br />

Lateral<br />

ventricle<br />

Septum<br />

pellucidum<br />

Fornix<br />

Corpus callosum<br />

Medial<br />

forebrain<br />

bundle<br />

Lateral<br />

preoptic<br />

nucleus<br />

Anterior<br />

commissure<br />

Medial<br />

preoptic<br />

nucleus<br />

From<br />

Thalamus<br />

hippocampal<br />

formation<br />

Interthalamic<br />

Lateral<br />

adhesion<br />

hypothalamic area<br />

Paraventricular nucleus<br />

Anterior hypothalamic area<br />

Dorsal hypothalamic area<br />

Dorsomedial nucleus<br />

Mamillothalamic tract<br />

Posterior area<br />

Periventricular<br />

nucleus<br />

Nucleus<br />

intercalatus<br />

Olfactory<br />

tract<br />

Optic (II)<br />

nerve<br />

Optic chiasm<br />

Anterior<br />

lobe of<br />

pituitary<br />

Fornix<br />

Ventromedial<br />

nucleus<br />

Mamillary<br />

complex<br />

Tuberohypophyseal tract<br />

Red nucleus<br />

Oculomotor (III) nerve<br />

Supraoptic nucleus<br />

Supraopticohypophyseal<br />

tract<br />

Posterior lobe of pituitary<br />

Cerebral<br />

peduncle<br />

Dorsal<br />

longitudinal<br />

fasciculus<br />

Descending<br />

hypothalamic<br />

connections<br />

Pons<br />

Reticular<br />

formation<br />

©<br />

CHART 2.3<br />

MAJOR FUNCTIONS OF THE HYPOTHALAMUS<br />

Hypothalamic Area<br />

Preoptic and anterior<br />

Posterior<br />

Lateral<br />

Ventromedial<br />

Supraoptic (subfornical organ and organum vasculosum)<br />

Paraventricular<br />

Periventricular<br />

*Stimulation of the center causes the responses listed.<br />

Major Functions*<br />

Heat loss center: cutaneous vasodilation and sweating<br />

Heat conservation center: cutaneous vasoconstriction and shivering<br />

Feeding center: eating behavior<br />

Satiety center: inhibits eating behavior<br />

ADH and oxytocin secretion (sensation of thirst)<br />

ADH and oxytocin secretion<br />

Releasing hormones for the anterior pituitary<br />

FIGURE 2.17<br />

SCHEMATIC RECONSTRUCTION OF THE HYPOTHALAMUS •<br />

The hypothalamus, part of the diencephalon, controls a number of<br />

important homeostatic systems within the body, including temperature<br />

regulation, food intake, water intake, many of the endocrine<br />

systems (see Chapter 8), motivation, and emotional behavior. It<br />

receives inputs from the reticular formation (sleep/wake cycle<br />

information), the thalamus (pain), the limbic system (emotion, fear,<br />

anger, smell), the medulla oblongata (blood pressure and heart<br />

rate), and the optic system, and it integrates these inputs for regulation<br />

of the functions listed.<br />

68


Limbic System<br />

NEUROPHYSIOLOGY<br />

Genu of corpus callosum<br />

Head of caudate nucleus<br />

Columns of fornix<br />

Body of fornix<br />

Thalamus<br />

Uncus<br />

Crura of fornix<br />

Fimbria of hippocampus<br />

Hippocampus<br />

Commissure of fornix<br />

Splenium of corpus callosum<br />

Lateral ventricle<br />

Columns<br />

of fornix<br />

Body of fornix<br />

Commissure<br />

of fornix<br />

Crura of fornix<br />

Mamillary<br />

bodies<br />

Amygdaloid bodies<br />

Hippocampus<br />

with fimbria ©<br />

FIGURE 2.18<br />

HIPPOCAMPUS AND FORNIX •<br />

The limbic system includes the hypothalamus and a collection of<br />

interconnected structures in the telencephalon (cingulate, parahippocampal,<br />

and subcallosal gyri), as well as the amygdala and hippocampal<br />

formation. The limbic system functions in linking emotion<br />

and motivation (amygdala), learning and memory (hippocampal<br />

formation), and sexual behavior (hypothalamus).<br />

69


NEUROPHYSIOLOGY<br />

The Cerebral Cortex<br />

Premotor; orientation;<br />

eye and head<br />

movements<br />

Motor<br />

Ms I<br />

Ms II<br />

Sm I<br />

Sm II<br />

Sensory<br />

Sensory<br />

analysis<br />

Prefrontal;<br />

inhibitory control<br />

of behavior;<br />

higher<br />

intelligence<br />

Visual III<br />

Visual II<br />

Visual I<br />

Motor control<br />

of speech<br />

Language;<br />

reading; speech<br />

Auditory I<br />

Auditory II<br />

Premotor<br />

Motor<br />

Ms I<br />

Ms II<br />

Sm I<br />

Sm III<br />

?<br />

Sensory<br />

Prefrontal;<br />

inhibitory control<br />

of behavior;<br />

higher<br />

intelligence<br />

Visual III<br />

Visual II<br />

Visual I<br />

Cingulate gyrus<br />

(emotional behavior)<br />

and cingulum<br />

Corpus callosum<br />

Hippocampal commissure<br />

©<br />

Olfactory<br />

Anterior commissure<br />

FIGURE 2.19<br />

CEREBRAL CORTEX: LOCALIZATION OF FUNCTION AND ASSOCIATION PATHWAYS •<br />

The cerebral cortex is organized into functional regions. In addition<br />

to specific areas devoted to sensory and motor functions, there<br />

are areas that integrate information from multiple sources. The<br />

cerebral cortex participates in advanced intellectual functions,<br />

including aspects of memory storage and recall, language, higher<br />

cognitive functions, conscious perception, sensory integration, and<br />

planning/execution of complex motor activity. General cortical<br />

areas associated with these functions are illustrated.<br />

70


Descending Motor Pathways<br />

NEUROPHYSIOLOGY<br />

Motor<br />

cortex<br />

Internal<br />

capsule<br />

Hip<br />

Knee<br />

Ankle<br />

Toes<br />

Trunk<br />

Shoulder<br />

Elbow<br />

Wrist<br />

Fingers<br />

Thumb<br />

Neck<br />

Brow<br />

Eyelid<br />

Nares<br />

Lips<br />

Tongue<br />

Larynx<br />

Lateral aspect of<br />

cerebral cortex to show<br />

topographic projection<br />

of motor centers on<br />

precentral gyrus<br />

Midbrain<br />

Pons<br />

Medulla<br />

Basis<br />

pedunculi<br />

Basis<br />

pontis<br />

Pyramids<br />

Motor system<br />

Fibers originate in motor cortex and<br />

descend via posterior limb of internal<br />

capsule to basis pedunculi of midbrain<br />

Longitudinal bundles branch upon<br />

entering basis pontis and rejoin to<br />

enter pyramids of medulla<br />

At lower medulla, bulk of fibers cross<br />

median plane to form lateral<br />

corticospinal tract; some fibers<br />

continue downward in ipsilateral<br />

lateral corticospinal tract; others<br />

descending ipsilateral anterior<br />

corticospinal tract<br />

Medulla<br />

Above midthoracic<br />

level<br />

Decussation<br />

of pyramids<br />

Synapse occurs at spinal level: Lateral<br />

corticospinal fibers synapse on<br />

ipsilateral anterior horn cells; anterior<br />

corticospinal fibers synapse on<br />

contralateral anterior horn cells<br />

Motor<br />

endplate<br />

Spinal<br />

cord<br />

Below midthoracic<br />

level<br />

Anterior corticospinal tract<br />

Lateral corticospinal tract<br />

Motor<br />

endplate<br />

©<br />

FIGURE 2.20<br />

CORTICOSPINAL TRACTS •<br />

The corticospinal, or pyramidal, tract is the major motor tract that<br />

controls voluntary movement of the skeletal muscles, especially<br />

skilled movements of distal muscles of the limbs. All structures<br />

from the cerebral cortex to the anterior horn cells in the spinal<br />

cord constitute the upper portion of the system (upper motor neuron).<br />

The anterior horn cells and their associated axons constitute<br />

the lower portion of the system (lower motor neuron).<br />

71


NEUROPHYSIOLOGY<br />

Cerebellum: Afferent Pathways<br />

Superior cerebellar peduncle<br />

Middle cerebellar peduncle<br />

Cortical input<br />

Nucleus<br />

reticularis<br />

tegmenti<br />

pontis<br />

Pontine nuclei<br />

(contralateral)<br />

Spinal input<br />

Inferior olive<br />

Leg<br />

Arm Face<br />

To contralateral cerebellar cortex<br />

Primary fissure<br />

Upper part<br />

of medulla<br />

oblongata<br />

Spinal input<br />

Vestibular nerve<br />

and ganglion<br />

Lower part<br />

of medulla<br />

oblongata<br />

Cortical input<br />

Lateral reticular<br />

nucleus<br />

Spinal input<br />

Cervical part<br />

of spinal cord<br />

Motor interneuron<br />

Rostral<br />

spinocerebellar<br />

tract<br />

Spinal border cells<br />

Motor interneuron<br />

Lumbar part<br />

of spinal cord<br />

Clarke’s column<br />

Ventral spinocerebellar<br />

tract<br />

Vestibular<br />

nuclei<br />

To nodule and flocculus<br />

Inferior cerebellar peduncle<br />

Reticulocerebellar<br />

tract<br />

Cuneocerebellar<br />

tract<br />

Gracile nucleus<br />

Main cuneate<br />

nucleus (relay<br />

for cutaneous<br />

information)<br />

External cuneate nucleus<br />

(relay for proprioceptive<br />

information)<br />

From skin (touch<br />

and pressure)<br />

From muscle (spindles<br />

and Golgi tendon organs)<br />

From skin and<br />

deep tissues<br />

(pain and Golgi<br />

tendon organs)<br />

From skin (touch<br />

and pressure)<br />

and from muscle<br />

(spindles and<br />

Golgi tendon<br />

organs)<br />

Dorsal spinocerebellar tract<br />

Leg zone<br />

Arm zone<br />

Face zone<br />

2nd spinal<br />

projection<br />

area (gracile<br />

lobule)<br />

Archicerebellum<br />

(vestibulocerebellum)<br />

Paleocerebellum<br />

(spinocerebellum)<br />

Functional Subdivisions of Cerebellum<br />

Hemisphere Vermis<br />

Intermediate<br />

Lateral<br />

part part<br />

Lingula<br />

Flocculus<br />

Nodule<br />

Neocerebellum<br />

(pontocerebellum)<br />

Uvula<br />

Pyramid<br />

Vermis<br />

Middle vermis<br />

Hemisphere<br />

Anterior lobe<br />

Primary<br />

fissure<br />

Middle<br />

(posterior)<br />

lobe<br />

Posterolateral<br />

fissure<br />

Flocculonodular<br />

lobe<br />

Schema of<br />

theoretical<br />

“unfolding”<br />

of cerebellar<br />

surface in<br />

derivation of<br />

above diagram<br />

FIGURE 2.21<br />

CEREBELLAR AFFERENT PATHWAYS •<br />

©<br />

72<br />

The cerebellum plays an important role in coordinating movement. It<br />

receives sensory information and then influences descending motor<br />

pathways to produce fine, smooth, and coordinated motion. The<br />

cerebellum is divided into three general areas: archicerebellum (also<br />

called vestibulocerebellum) paleocerebellum (also called spinocerebellum)<br />

and the neocerebellum (also called the cerebrocerebellum).<br />

The archicerebellum is primarily involved in controlling posture and<br />

balance, as well as the movement of the head and eyes. It receives<br />

afferent signals from the vestibular apparatus and then sends efferent<br />

fibers to the appropriate descending motor pathways. The paleocerebellum<br />

primarily controls movement of the proximal portions of the<br />

limbs. It receives sensory information on limb position and muscle<br />

tone and then modifies and coordinates these movements through<br />

efferent pathways to the appropriate descending motor pathways. The<br />

neocerebellum is the largest portion of the cerebellum, and it coordinates<br />

the movement of the distal portions of the limbs. It receives<br />

input from the cerebral cortex and thus helps in the planning of<br />

motor activity (e.g., seeing a pencil and then planning and executing<br />

the movement of the arm and hand to pick it up).


Cerebellum: Efferent Pathways<br />

NEUROPHYSIOLOGY<br />

Excitatory<br />

endings<br />

Inhibitory<br />

endings of<br />

Purkinje<br />

cells<br />

Motor and<br />

premotor<br />

cerebral<br />

cortex<br />

Ventral anterior and<br />

ventral lateral nuclei<br />

of thalamus<br />

Mesencephalic reticular formation<br />

Dentate nucleus<br />

Cerebellar<br />

cortex<br />

Globose nuclei<br />

Emboliform nucleus<br />

Red nucleus<br />

Fastigial nucleus<br />

Internal capsule<br />

Cerebral peduncle<br />

Decussation of superior<br />

cerebellar peduncles<br />

Descending fibers from<br />

superior cerebellar<br />

peduncles<br />

Hook bundle of Russell<br />

Section<br />

A–B<br />

viewed<br />

from<br />

below<br />

Vestibular<br />

nuclei<br />

Section<br />

B–C<br />

viewed<br />

from<br />

above<br />

Inferior cerebellar<br />

peduncle<br />

Inferior olive<br />

Lateral reticular nucleus<br />

Medulla oblongata<br />

Pontomedullary reticular formation<br />

A<br />

Planes of<br />

section:<br />

red arrows<br />

indicate<br />

C<br />

direction<br />

of view<br />

B<br />

©<br />

FIGURE 2.22<br />

CEREBELLAR EFFERENT PATHWAYS •<br />

The cerebellum plays an important role in coordinating movement.<br />

It influences descending motor pathways to produce fine, smooth,<br />

and coordinated motion. The archicerebellum is primarily involved<br />

in controlling posture and balance and movement of the head and<br />

eyes. It sends efferent fibers to the appropriate descending motor<br />

pathways. The paleocerebellum primarily controls movement of<br />

the proximal portions of the limbs. It modifies and coordinates<br />

these movements through efferent pathways to the appropriate<br />

descending motor pathways. The neocerebellum coordinates the<br />

movement of the distal portions of the limbs. It helps in the planning<br />

of motor activity (e.g., seeing a pencil and then planning and<br />

executing the movement of the arm and hand to pick it up).<br />

73


NEUROPHYSIOLOGY<br />

Cutaneous Sensory Receptors<br />

Basal<br />

epithelial<br />

cells<br />

Hair follicle<br />

Free nerve endings<br />

Hair shaft<br />

Melanocyte<br />

Arrector muscle of hair<br />

Sebaceous gland<br />

Cuticle<br />

Internal sheath<br />

External sheath<br />

Glassy<br />

membrane<br />

Connective<br />

tissue layer<br />

Hair cuticle<br />

Sweat gland<br />

Hair matrix<br />

Papilla of hair follicle<br />

Pacinian<br />

corpuscle<br />

Artery<br />

Detail of Merkel’s disc<br />

Meissner’s corpuscle<br />

Pore of sweat gland<br />

Vein<br />

Sensory nerves<br />

Elastic fibers<br />

Skin ligaments<br />

(retinacula cutis)<br />

Motor<br />

(autonomic)<br />

nerve<br />

Desmosomes<br />

Cutaneous<br />

nerve<br />

Stratum corneum<br />

Stratum<br />

lucidum<br />

Stratum<br />

spinosum<br />

Dermal<br />

papilla<br />

(of papillary<br />

layer)<br />

Reticular<br />

layer<br />

Stratum<br />

granulosum<br />

Subcutaneous<br />

artery and vein<br />

Cross section<br />

Stratum<br />

basale<br />

Epidermis Dermis Subcutaneous tissue<br />

Basement membrane<br />

Axon terminal<br />

Mitochondrion<br />

Schwann cell<br />

Cytoplasmic<br />

protrusion<br />

Merkel<br />

cell<br />

Mitochondria<br />

Lobulated<br />

nucleus<br />

Expanded<br />

axon terminal<br />

Granulated<br />

vesicles<br />

Axon<br />

©<br />

Schwann<br />

cell<br />

Schwann cells<br />

Detail of free nerve ending<br />

FIGURE 2.23<br />

SKIN AND CUTANEOUS RECEPTORS •<br />

Cutaneous receptors respond to touch (mechanoreceptors), pain<br />

(nociceptors), and temperature (thermoreceptors). Several different<br />

types of receptors are present in skin. Meissner’s corpuscles have<br />

small receptive fields and respond best to stimuli that are applied<br />

at low frequency (i.e., flutter). The pacinian corpuscles are located<br />

in the subcutaneous tissue and have large receptive fields. They<br />

respond best to high-frequency stimulation (i.e., vibration).<br />

Merkel’s discs have small receptive fields and respond to touch and<br />

pressure (i.e., indenting the skin). Ruffini’s corpuscles have large<br />

receptive fields, and they also respond to touch and pressure. Free<br />

nerve endings respond to pain and temperature.<br />

74


Cutaneous Receptors: Pacinian Corpuscle<br />

NEUROPHYSIOLOGY<br />

Pacinian Corpuscle<br />

as Pressure Transducer<br />

To amplifier<br />

Pressure<br />

Generator potential<br />

Action potential<br />

A. Sharp “on and off” changes in pressure at start and end<br />

1st node<br />

Pressure Na + of pulse applied to lamellated capsule are transmitted to<br />

Myelin sheath central axon and provoke generator potentials, which in<br />

Lamellated capsule<br />

turn may trigger action potentials; there is no response to a<br />

slow change in pressure gradient. Pressure at central core<br />

Central core<br />

Unmyelinated axon terminal<br />

and, accordingly, generator potentials are rapidly dissipated<br />

by viscoelastic properties of capsule (Action potentials may<br />

be blocked by pressure at a node or by drugs)<br />

Pressure<br />

To amplifier<br />

Generator potential<br />

B. In absence of capsule, axon responds to slow as well<br />

as to rapid changes in pressure. Generator potential<br />

dissipates slowly, and there is no “off” response<br />

Action potential<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Pressure applied to axon terminal directly or<br />

via capsule causes increased permeability of<br />

membrane to Na + , thus setting up ionic<br />

generator current through 1st node<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

If resultant depolarization at 1st node is great<br />

enough to reach threshold, an action potential<br />

appears which is propagated along nerve fiber<br />

©<br />

FIGURE 2.24<br />

PACINIAN CORPUSCLE •<br />

Pacinian corpuscles are mechanoreceptors that transduce mechanical<br />

forces (displacement, pressure, vibration) into action potentials<br />

that are conveyed centrally by afferent nerve fibers. As the viscoelastic<br />

lamellae are displaced, the unmyelinated axon terminal<br />

membrane’s ionic permeability is increased until it is capable of<br />

producing a “generator potential.” As demonstrated in the figure,<br />

pacinian corpuscles respond to the beginning and end of a<br />

mechanical force while the concentric lamellae dissipate slow<br />

changes in pressure. In the absence of the capsule, the generator<br />

potential decays slowly and yields only a single action potential.<br />

75


NEUROPHYSIOLOGY<br />

Proprioception and Reflex Pathways: I<br />

Spinal Effector Mechanisms<br />

Dorsal horn<br />

interneuron<br />

From motor neuron<br />

Proprioceptive fibers<br />

Dorsal horn interneuron<br />

From<br />

cutaneous<br />

receptor<br />

From<br />

muscle<br />

spindle<br />

Flexor reflex interneuron<br />

Dorsal horn interneuron<br />

Dorsal root<br />

ganglion<br />

Ventral root<br />

To motor neuron<br />

motor axon<br />

To motor neuron<br />

Schematic representation of motor neurons<br />

In cervical<br />

enlargement of<br />

spinal cord<br />

Flex ors<br />

Extensors<br />

In lumbar<br />

enlargement<br />

of spinal cord<br />

Fle<br />

xors<br />

Exte nsors<br />

©<br />

FIGURE 2.25<br />

PROPRIOCEPTION: SPINAL EFFECTOR MECHANISM •<br />

Position sense or proprioception involves input from cutaneous<br />

mechanoreceptors, Golgi tendon organs, and muscle spindles<br />

(middle figure of upper panel). Both monosynaptic reflex pathways<br />

(middle figure of upper panel) and polysynaptic pathways involving<br />

several spinal cord segments (top and bottom figures of upper<br />

panel) initiate muscle contraction reflexes. The lower panel shows<br />

the somatotopic distribution of the motor neuron cell bodies in the<br />

ventral horn of the spinal cord that innervate limb muscles (flexor<br />

and extensor muscles of upper and lower limbs).<br />

76


Proprioception and Reflex Pathways: II<br />

NEUROPHYSIOLOGY<br />

Alpha motor neurons to extrafusal<br />

striated muscle end plates<br />

Gamma motor neurons to intrafusal<br />

striated muscle end plates<br />

Ia (A) fibers from annulospiral<br />

endings (proprioception)<br />

II (A) fibers from flower spray<br />

endings (proprioception);<br />

from paciniform corpuscles (pressure)<br />

and pacinian corpuscles (pressure)<br />

III (A) fibers from free nerve endings<br />

and from some specialized endings<br />

(pain and some pressure)<br />

IV (unmyelinated) fibers from free<br />

nerve endings (pain)<br />

Ib (A) fibers from Golgi tendon<br />

organs (proprioception)<br />

Alpha motor neuron to extrafusal<br />

muscle fiber end plates<br />

A fibers from<br />

Golgi-type<br />

endings<br />

A fibers from<br />

paciniform corpuscles<br />

and Ruffini terminals<br />

A and C fibers<br />

from free nerve<br />

endings<br />

Gamma motor neuron to intrafusal<br />

muscle fiber and plates<br />

II (A) fiber from flower spray endings<br />

Ia (A) fiber from annulospiral endings<br />

Detail of<br />

muscle spindle<br />

Sheath<br />

Lymph space<br />

Nuclear bag fiber<br />

Nuclear chain fiber<br />

Extrafusal<br />

muscle fiber<br />

Intrafusal<br />

muscle fibers<br />

©<br />

Efferent fibers<br />

Afferent fibers<br />

FIGURE 2.26<br />

MUSCLE AND JOINT RECEPTORS •<br />

Muscle spindles and Golgi tendon organs send afferent signals to<br />

the brain to convey the position of limbs and help coordinate muscle<br />

movement. Muscle spindles convey information on muscle tension<br />

and contraction (dynamic forces) and muscle length (static<br />

forces). The nuclear bag fibers respond to both dynamic and static<br />

forces, whereas the nuclear chain fibers respond to static forces.<br />

Intrafusal fibers maintain appropriate tension on the nuclear bag<br />

and nuclear chain fibers. If the muscle tension is too great (e.g.,<br />

overstretching of muscle or too heavy a load), activation of the<br />

Golgi tendon organ causes a reflex relaxation of the muscle.<br />

77


NEUROPHYSIOLOGY<br />

Proprioception and Reflex Pathways: III<br />

Ib fibers<br />

Ia fibers <br />

Extrafusal muscle fiber<br />

Intrafusal muscle fiber<br />

Alpha motor neurons <br />

Gamma motor neurons<br />

Golgi<br />

tendon<br />

organ<br />

A. Passive stretch. Both intrafusal and extrafusal muscle fibers stretched;<br />

spindles activated. Reflex via Ia fibers and alpha motor neurons causes<br />

secondary contraction (basis of stretch reflexes, such as knee jerk).<br />

Stretch is too weak to activate Golgi tendon organs<br />

Ib fibers <br />

Ia fibers<br />

Alpha activation<br />

from brain<br />

Extrafusal muscle fiber<br />

Intrafusal muscle fiber<br />

Inhibitory interneuron<br />

Alpha motor neurons <br />

Gamma motor neurons<br />

Golgi<br />

tendon<br />

organ<br />

B. Active contraction. Central excitation of alpha motor neurons<br />

only causes contraction of extrafusal muscle fibers with consequent<br />

relaxation of intrafusal fibers; spindles not activated. Tension is low;<br />

does not adjust to increased resistance. Tendon organ activated,<br />

causing relaxation<br />

Alpha and<br />

Ib fibers <br />

gamma<br />

activation<br />

from brain<br />

Ia fibers <br />

Extrafusal muscle fiber<br />

Intrafusal muscle fiber<br />

Alpha motor neurons <br />

Gamma motor neurons <br />

Golgi<br />

tendon<br />

organ<br />

C. Active contraction with gamma coactivation. Intrafusal as well as<br />

extrafusal fibers contract; spindles activated, reinforcing contraction<br />

stimulus via Ia fibers in accord with resistance. Tendon organ<br />

activated, causing relaxation if load is too great<br />

©<br />

FIGURE 2.27<br />

PROPRIOCEPTIVE REFLEX CONTROL OF MUSCLE TENSION •<br />

Interaction of the muscle spindle and Golgi tendon organ during passive stretch of a muscle (panel A) and during a contraction (panels B<br />

and C).<br />

78


Proprioception and Reflex Pathways: IV<br />

NEUROPHYSIOLOGY<br />

A. Afferent inhibition<br />

From extensor spindle<br />

receptor (Ia, II fibers)<br />

From flexor spindle<br />

(Ia, II fibers)<br />

Axoaxonic presynaptic<br />

inhibitory synapse<br />

To extensors<br />

B. Stretch reflex<br />

(reciprocal inhibition)<br />

From extensor spindle<br />

receptor (Ia, II fibers)<br />

Axosomatic or<br />

axodendritic<br />

inhibitory<br />

synapse<br />

Excitatory<br />

synapse<br />

To extensors<br />

To flexors<br />

C. Recurrent inhibition<br />

D. Tendon organ reflex<br />

From extensor tendon<br />

organ (Ib fibers)<br />

Inhibitory synapse<br />

Renshaw cells<br />

Collaterals<br />

To synergistic<br />

muscles<br />

Excitatory synapse<br />

To extensors<br />

To flexors<br />

E. Flexor withdrawal reflex<br />

Nociceptive fibers<br />

Ipsilateral<br />

flexion<br />

Contralateral<br />

extension<br />

Inhibitory synapse<br />

Excitatory synapse<br />

To extensors<br />

To flexors<br />

Excitatory synapse<br />

Inhibitory synapse<br />

To extensors<br />

To flexors<br />

©<br />

FIGURE 2.28<br />

SPINAL REFLEX PATHWAYS •<br />

Summary of the spinal reflex pathways.<br />

79


NEUROPHYSIOLOGY<br />

Sensory Pathways: I<br />

Cerebral cortex:<br />

postcentral gyrus<br />

Posterior limb of<br />

internal capsule<br />

Ventral posterolateral<br />

(VPL) nucleus of<br />

thalamus<br />

Mesencephalon<br />

(cerebral peduncles)<br />

Medial lemniscus<br />

Spinothalamic tract<br />

Gracile nucleus<br />

Cuneate nucleus<br />

Lower part of<br />

medulla oblongata<br />

Reticular formation<br />

Cervical part<br />

of spinal cord<br />

Lateral<br />

spinothalamic tract:<br />

pain, temperature<br />

Ventral (anterior)<br />

spinothalamic tract:<br />

touch, pressure<br />

Fasciculus gracilis<br />

Fasciculus cuneatus<br />

Dorsal (posterior) spinal<br />

root ganglion<br />

Proprioception,<br />

position<br />

Touch,<br />

pressure,<br />

vibration<br />

Pain,<br />

temperature<br />

Lateral cervical nucleus<br />

Spinocervical tract<br />

Large<br />

myelinated<br />

fibers<br />

Small<br />

myelinated<br />

and unmyelinated<br />

fibers<br />

Lumbar part<br />

of spinal cord<br />

©<br />

FIGURE 2.29<br />

SOMESTHETIC SYSTEM OF THE BODY •<br />

Pain, temperature, and pressure sensations below the head ultimately<br />

are conveyed to the primary somatosensory cortex (postcentral<br />

gyrus) by the anterolateral system (spinothalamic and spinoreticular<br />

tracts). The fasciculus gracilis and cuneatus of the spinal<br />

lemniscal system convey proprioceptive, vibratory, and tactile sensations<br />

to the thalamus (ventral posterolateral nucleus), whereas<br />

the lateral cervical system mediates some touch, vibratory, and<br />

proprioceptive sensations (blue and purple lines show these dual<br />

pathways). Ultimately, these fibers ascend as parallel pathways to<br />

the thalamus, synapse, and ascend to the cortex.<br />

80


Sensory Pathways: II<br />

NEUROPHYSIOLOGY<br />

Cerebral cortex:<br />

postcentral gyrus<br />

Ventral posteromedial (VPM)<br />

nucleus of thalamus<br />

Internal capsule<br />

Midbrain<br />

(cerebral<br />

peduncles)<br />

Ventral<br />

trigeminal<br />

lemniscus<br />

Pontine<br />

reticular<br />

formation<br />

Pons<br />

Dorsal trigeminal lemniscus<br />

Trigeminal mesencephalic nucleus<br />

Trigeminal motor nucleus<br />

Principal sensory trigeminal nucleus<br />

Touch, pressure<br />

Pain, temperature<br />

Proprioception<br />

Trigeminal (semilunar) ganglion<br />

Ophthalmic n.<br />

Maxillary n.<br />

Sensory root<br />

and<br />

Motor root of mandibular n.<br />

Medullary<br />

reticular<br />

formation<br />

Spinal<br />

trigeminal<br />

tract<br />

Spinal<br />

trigeminal<br />

nucleus<br />

Cervical<br />

part of<br />

spinal<br />

cord<br />

Facial (VII) n.<br />

Vagus (X) n.<br />

Dorsolateral fasciculus (of Lissauer)<br />

Substantia gelatinosa (Iamina II)<br />

©<br />

FIGURE 2.30<br />

SOMESTHETIC SYSTEM OF THE HEAD •<br />

Nerve cells bodies for touch, pressure, pain, and temperature in<br />

the head are in the trigeminal (semilunar) ganglion of the trigeminal<br />

(CN V) nerve (blue and red lines in figure). <strong>Neuro</strong>nal cell bodies<br />

mediating proprioception reside in the mesencephalic nucleus<br />

of CN V (purple fibers). Most relay neurons project to the contralateral<br />

VPM nucleus of the thalamus and thence to the postcentral<br />

gyrus of the cerebral cortex, where they are somatotopically<br />

represented.<br />

81


NEUROPHYSIOLOGY<br />

Sensory Pathways: III<br />

C2<br />

C3<br />

C4<br />

C5<br />

T1<br />

T2<br />

T3<br />

T4<br />

T5<br />

T6<br />

T7<br />

T8<br />

T9<br />

T10<br />

T11<br />

T12<br />

L1<br />

S2, 3<br />

L2<br />

L3<br />

L4<br />

T1<br />

C8<br />

C6<br />

Schematic demarcation of<br />

dermatomes shown as distinct<br />

segments. There is actually<br />

considerable overlap between<br />

any two adjacent dermatomes<br />

C5<br />

C7<br />

C6<br />

C7<br />

C6<br />

C7<br />

C8<br />

S3<br />

S4<br />

S5<br />

C7 C8<br />

C8<br />

L5<br />

L1<br />

L2<br />

L3<br />

C2<br />

C3<br />

C4<br />

C5<br />

C6<br />

T1<br />

T2<br />

T3<br />

T4<br />

T5<br />

T6<br />

T7<br />

T8<br />

T9<br />

T10<br />

T11<br />

T12<br />

L1<br />

L2<br />

L3<br />

L4<br />

L5<br />

S1<br />

S2<br />

S1<br />

S2<br />

L5<br />

S1 S2<br />

L5<br />

S1<br />

L4<br />

L4<br />

S1<br />

L5<br />

L4<br />

Levels of principal dermatomes<br />

C5 Clavicles<br />

C5, 6, 7 Lateral parts of upper limbs<br />

C8, T1 Medial sides of upper limbs<br />

C6 Thumb<br />

C6, 7, 8 Hand<br />

C8 Ring and little fingers<br />

T4 Level of nipples<br />

T10 Level of umbilicus<br />

T12 Inguinal or groin regions<br />

L1, 2, 3, 4 Anterior and inner surfaces of lower limbs<br />

L4, 5, S1 Foot<br />

L4 Medial side of great toe<br />

S1, 2, L5 Posterior and outer surfaces of lower limbs<br />

S1 Lateral margin of foot and little toe<br />

S2, 3, 4 Perineum<br />

©<br />

FIGURE 2.31<br />

DERMATOMES •<br />

Sensory information below the head is localized to specific areas<br />

of the body, which reflect the distribution of peripheral sensory<br />

fibers that convey sensations to the spinal cord through the dorsal<br />

roots (sensory nerve cell bodies reside in the corresponding dorsal<br />

root ganglion). The area of skin subserved by afferent fibers of one<br />

dorsal root is called a dermatome. This figure shows the dermatome<br />

segments and lists key dermatome levels used by clinicians.<br />

Variability and overlap occur, so all dermatome segments<br />

are only approximations.<br />

82


Visual System: Receptors<br />

NEUROPHYSIOLOGY<br />

A. Eyeball<br />

Suspensory<br />

ligament<br />

Iris Lens<br />

Cornea<br />

Ciliary<br />

body<br />

B. Section<br />

through retina<br />

Inner limiting<br />

membrane<br />

Axons at surface<br />

of retina passing<br />

via optic nerve,<br />

chiasm, and tract<br />

to lateral<br />

geniculate body<br />

Ora<br />

serrata<br />

Anterior<br />

chamber<br />

Posterior<br />

chamber<br />

containing<br />

aqueous humor<br />

Vitreous humor<br />

Retina<br />

Choroid<br />

Sclera<br />

Fovea<br />

Optic nerve<br />

Ganglion cell<br />

Müller cell<br />

(supporting glial<br />

cell)<br />

Amacrine cell<br />

Bipolar cell<br />

Horizontal cell<br />

Rod<br />

Cone<br />

Pigment cells<br />

of choroid<br />

Synaptic<br />

ending<br />

depolarized<br />

C. Rod in dark D. Rod in light<br />

Synaptic<br />

ending<br />

fully<br />

polarized<br />

Synaptic bar<br />

Photons<br />

of light<br />

Nucleus<br />

Rhodopsin<br />

Lumirhodopsin<br />

Current<br />

flow<br />

Na +<br />

permeability<br />

increased<br />

Retinene<br />

+<br />

Opsin<br />

Vitamin A<br />

Metabolic<br />

energy<br />

Circulation<br />

Metarhodopsin<br />

Retinene<br />

+<br />

Opsin<br />

Vitamin A<br />

Centriole<br />

(basal body)<br />

Na +<br />

permeability<br />

decreased<br />

©<br />

FIGURE 2.32<br />

VISUAL RECEPTORS •<br />

The rods and cones of the retina transduce light into electrical signals.<br />

As illustrated for the rod, light is absorbed by rhodopsin, and<br />

through the second messenger cGMP (not shown), Na channels<br />

in the membrane close and the cell hyperpolarizes. Thus, in the<br />

dark the cell is depolarized, but it is hyperpolarized in the light.<br />

This electrical response to light is distinct from other receptor<br />

responses, in which the response to a stimulus results in a depolarization<br />

of the receptor cell membrane.<br />

83


NEUROPHYSIOLOGY<br />

Visual System: Visual Pathway<br />

G<br />

A<br />

B<br />

H<br />

G<br />

B<br />

A<br />

H<br />

Overlapping<br />

visual fields<br />

Central<br />

darker<br />

circle<br />

represents<br />

macular<br />

zone<br />

Lightest<br />

shades<br />

represent<br />

monocular<br />

fields<br />

Each<br />

quadrant<br />

a different<br />

color<br />

R R C<br />

C<br />

Projection on<br />

left retina<br />

Projection on<br />

right retina<br />

P<br />

P<br />

Choroid Choroid<br />

Periphery Macula<br />

Structure of retina (schematic):<br />

A Amacrine cells<br />

B Bipolar cells<br />

C Cones<br />

G Ganglion cells<br />

H Horizontal cells<br />

P Pigment cells<br />

R Rods<br />

Projection on left<br />

dorsal lateral<br />

geniculate nucleus<br />

Optic<br />

(II) nerves<br />

Optic chiasm<br />

Optic tracts<br />

Lateral<br />

geniculate<br />

bodies<br />

Projection on right<br />

dorsal lateral<br />

geniculate nucleus<br />

Calcarine<br />

fissure<br />

Projection<br />

on left<br />

occipital lobe<br />

Projection<br />

on right<br />

occipital lobe<br />

©<br />

FIGURE 2.33<br />

RETINOGENICULOSTRIATE VISUAL PATHWAY •<br />

The retina has two types of photoreceptors: cones that mediate<br />

color vision and rods that mediate light perception but with low<br />

acuity. The greatest acuity is found in the region of the macula of<br />

the retina, where only cones are found (upper left panel). Visual<br />

signals are conveyed by the ganglion cells whose axons course in<br />

the optic nerves. Visual signals from the nasal retina cross in the<br />

optic chiasm while information from the temporal retina remains in<br />

the ipsilateral optic tract. Fibers synapse in the lateral geniculate<br />

nucleus (visual field is topographically represented here and<br />

inverted), and signals are conveyed to the visual cortex on the<br />

medial surface of the occipital lobe.<br />

84


Auditory System: Cochlea<br />

NEUROPHYSIOLOGY<br />

A. Membranous<br />

labyrinth within<br />

bony labyrinth<br />

(path of sound<br />

waves)<br />

Cochlear nerve<br />

Utricle<br />

Saccule<br />

Semicircular<br />

canals<br />

Scala vestibuli<br />

Cochlear duct<br />

(scala media)<br />

Scala tympani<br />

B. Section<br />

through turn<br />

of cochlea<br />

Efferent<br />

nerve fibers<br />

Afferent<br />

nerve fibers<br />

Spiral ganglion<br />

Round window<br />

Scala vestibuli<br />

(perilymph);<br />

weakly<br />

positive +80 mV<br />

Scala tympani<br />

(perilymph); 0 mV<br />

Oval window and stapes<br />

Vestibular (Reissner’s)<br />

membrane<br />

Cochlear duct (scala media;<br />

endolymph)<br />

Tectorial membrane<br />

Spiral ligament<br />

Bone<br />

Outer hair cells; 60 mV<br />

Basilar membrane<br />

Inner hair cell; 60 mV<br />

C. Spiral organ<br />

of Corti<br />

Hair cells<br />

Inner Outer<br />

Tectorial membrane<br />

Stereocilia<br />

Rods<br />

and<br />

tunnel<br />

of Corti<br />

Basilar membrane<br />

Supporting cells<br />

Spiral lamina Afferent nerve fibers<br />

Spiral ganglion<br />

Efferent nerve fibers<br />

As basilar membrane moves up, hairs are deflected outward, causing<br />

depolarization of hair cells and increased firing of afferent nerve fibers<br />

©<br />

FIGURE 2.34<br />

COCHLEAR RECEPTORS •<br />

The cochlea transduces sound into electrical signals. This is<br />

accomplished by the hair cells, which depolarize in response to<br />

vibration of the basilar membrane. The basilar membrane moves in<br />

response to pressure changes imparted on the oval window of the<br />

cochlea in response to vibrations of the tympanic membrane.<br />

85


NEUROPHYSIOLOGY<br />

Auditory System: Pathways<br />

Acoustic area of<br />

temporal lobe cortex<br />

Medial geniculate body<br />

Brachium of<br />

inferior<br />

colliculus<br />

Inferior<br />

colliculus<br />

Midbrain<br />

Lateral<br />

lemnisci<br />

Medulla<br />

oblongata<br />

Nuclei of<br />

lateral<br />

lemnisci<br />

Correspondence<br />

between cochlea<br />

and acoustic area<br />

of cortex:<br />

Low tones<br />

Middle tones<br />

High tones<br />

Dorsal cochlear nucleus<br />

Inferior cerebellar peduncle<br />

Ventral cochlear nucleus<br />

Cochlear division of<br />

vestibulocochlear nerve<br />

Dorsal<br />

acoustic stria<br />

Reticular formation<br />

Trapezoid body<br />

Intermediate acoustic stria<br />

Superior olivary complex<br />

Inner Outer<br />

Spiral ganglion<br />

Hair cells<br />

©<br />

FIGURE 2.35<br />

AUDITORY PATHWAYS •<br />

The cochlea transduces sound into electrical signals. Axons convey<br />

these signals to the dorsal and ventral cochlear nuclei, where it is<br />

tonotopically organized. Following a series of integrated relay<br />

pathways, the ascending pathway projects to the thalamus (medial<br />

geniculate bodies) and then the acoustic cortex in the transverse<br />

gyrus of the temporal lobe, where information is tonotopically represented<br />

(low, middle, and high tones).<br />

86


Vestibular System: Receptors<br />

NEUROPHYSIOLOGY<br />

Vestibular ganglion<br />

Vestibular<br />

and cochlear<br />

divisions of<br />

vestibulocochlear n.<br />

Maculae<br />

Saccule<br />

Utricle<br />

Cochlear duct<br />

(scala media)<br />

A. Membranous labyrinth<br />

Superior semicircular<br />

canal<br />

Cristae within<br />

ampullae<br />

Horizontal semicircular<br />

canal<br />

Posterior semicircular<br />

canal<br />

B. Section of crista<br />

Opposite wall<br />

of ampulla<br />

Gelatinous cupula<br />

Hair tufts<br />

Hair cells<br />

Nerve fibers<br />

Basement<br />

membrane<br />

C. Section of macula<br />

Otoconia<br />

Gelatinous otolithic<br />

membrane<br />

Hair tuft<br />

Hair cells<br />

Supporting cells<br />

Basement membrane<br />

Nerve fibers<br />

D. Structure and innervation<br />

of hair cells<br />

Hair cell (type I)<br />

Supporting cells<br />

Afferent nerve<br />

calyx<br />

Efferent nerve<br />

ending<br />

Basement<br />

membrane<br />

Kinocilium<br />

Stereocilia<br />

Cuticle<br />

Excitation<br />

Inhibition<br />

Basal body<br />

Cuticle<br />

Kinocilium<br />

Stereocilia<br />

Basal body<br />

Hair cell (type II)<br />

Supporting cell<br />

Efferent nerve<br />

endings<br />

Afferent nerve<br />

endings<br />

Myelin sheath<br />

Myelin sheath<br />

©<br />

FIGURE 2.36<br />

VESTIBULAR RECEPTORS •<br />

The vestibular apparatus detects movement of the head in the form<br />

of linear and angular acceleration. This information is important for<br />

the control of eye movements so that the retina can be provided<br />

with a stable visual image. It is also important for the control of<br />

posture. The utricle and saccule respond to linear acceleration,<br />

such as the pull of gravity. The three semicircular canals are<br />

aligned so that the angular movement of the head can be sensed in<br />

all planes. The sensory hair cells are located in the maculae of the<br />

utricle and saccule and in the cristae within each ampullae.<br />

87


NEUROPHYSIOLOGY<br />

Vestibular System: Vestibulospinal Tracts<br />

Excitatory<br />

endings<br />

Inhibitory<br />

endings<br />

Ascending fibers in medial<br />

longitudinal fasciculi<br />

Superior<br />

Medial<br />

Lateral<br />

Inferior<br />

Vestibular nuclei<br />

Upper<br />

limb<br />

Rostral<br />

Trunk<br />

Ventral<br />

Dorsal<br />

To<br />

cerebellum<br />

Caudal<br />

Lower<br />

limb<br />

Somatotopical<br />

pattern in lateral<br />

vestibular nucleus<br />

Motor neuron<br />

(controlling<br />

neck muscles)<br />

Vestibular<br />

ganglion<br />

and<br />

nerve<br />

Medial vestibulospinal<br />

fibers in medial<br />

longitudinal fasciculi<br />

Lateral<br />

vestibulospinal<br />

tract<br />

Fibers from cristae<br />

(rotational stimuli)<br />

Excitatory<br />

endings<br />

to back<br />

muscles<br />

? ?<br />

Excitatory<br />

interneuron<br />

Inhibitory<br />

interneuron<br />

Fibers from maculae<br />

(gravitational stimuli)<br />

Lower<br />

part of<br />

cervical<br />

spinal cord<br />

To axial<br />

muscles<br />

Lumbar part of<br />

spinal cord<br />

?<br />

Inhibitory<br />

ending<br />

To flexor muscles<br />

To extensor muscles<br />

Inhibitory ending<br />

?<br />

To axial muscles<br />

Excitatory ending<br />

Lateral vestibulospinal tract<br />

Inhibitory interneuron<br />

Excitatory synapse<br />

To flexor muscles<br />

To extensor muscles<br />

©<br />

FIGURE 2.37<br />

VESTIBULOSPINAL TRACTS •<br />

Sensory input from the vestibular apparatus is used to maintain stability<br />

of the head and to maintain balance and posture. Axons convey<br />

vestibular information to the vestibular nuclei in the pons, and<br />

then secondary axons distribute this information to five sites: spinal<br />

cord (muscle control), cerebellum (vermis), reticular formation<br />

(vomiting center), extraocular muscles, and cortex (conscious perception).<br />

This figure shows only the spinal cord pathways.<br />

88


Gustatory (Taste) System: Receptors<br />

NEUROPHYSIOLOGY<br />

A. Tongue<br />

Foliate<br />

papillae<br />

B. Section<br />

through<br />

vallate<br />

papilla<br />

Taste buds<br />

Duct of<br />

gustatory<br />

(Ebner’s)<br />

gland<br />

Fungiform<br />

papillae<br />

Vallate papillae<br />

Microvilli<br />

Taste pore<br />

Taste cells<br />

C. Taste bud<br />

Epithelium<br />

Basement membrane<br />

Nerve plexus<br />

Nerve fibers<br />

emerging from<br />

taste buds<br />

Desmosomes<br />

Epithelium<br />

Large nerve fiber<br />

Granules<br />

Basement membrane<br />

Small nerve fiber<br />

Fibroblast<br />

Schwann cell<br />

Microvilli<br />

Intercellular space Large nerve fiber<br />

Collagen<br />

D. Detail of taste pore E. Detail of base of receptor cells<br />

©<br />

FIGURE 2.38<br />

TASTE RECEPTORS •<br />

Taste buds on the tongue respond to various chemical stimuli. Taste<br />

cells, like neurons, normally have a net negative charge internally<br />

and are depolarized by stimuli, thus releasing transmitters that depolarize<br />

neurons connected to the taste cells. A single taste bud can<br />

respond to more than one stimulus. The four traditional taste qualities<br />

that are sensed are sweet, salty, sour, and bitter.<br />

89


NEUROPHYSIOLOGY<br />

Gustatory (Taste) System: Pathways<br />

Ventral posteromedial (VPM)<br />

nucleus of thalamus<br />

Sensory cortex (just below<br />

face area)<br />

Lateral hypothalamic area<br />

Amygdala<br />

Mesencephalic<br />

nucleus<br />

and<br />

Motor nucleus<br />

of trigeminal n.<br />

Pontine taste area<br />

Trigeminal (V) n.<br />

Maxillary n.<br />

Mandibular n.<br />

Pons<br />

Greater petrosal n.<br />

Geniculate ganglion<br />

Pterygopalatine<br />

ganglion<br />

Facial (VII) n.<br />

and<br />

Nervus inermedius<br />

Rostral part of nucleus<br />

of solitary tract<br />

Glossopharyngeal (IX) n.<br />

Lower<br />

part of<br />

medulla<br />

oblongata<br />

Otic<br />

ganglion<br />

Chorda<br />

tympani<br />

Fungiform papillae<br />

Foliate papillae<br />

Valiate papillae<br />

Lingual n.<br />

Petrosal (inferior)<br />

ganglion of<br />

glossopharyngeal n.<br />

Epiglottis<br />

Larynx<br />

Nodose (inferior)<br />

ganglion of vagus n.<br />

Vagus (X) n.<br />

Superior laryngeal n.<br />

©<br />

FIGURE 2.39<br />

TASTE PATHWAYS •<br />

Depicted here are the afferent pathways leading from the taste receptors to the brainstem and, ultimately, to the sensory cortex in the<br />

postcentral gyrus.<br />

90


Olfactory System: Receptors<br />

NEUROPHYSIOLOGY<br />

Olfactory<br />

bulb<br />

A. Distribution<br />

of olfactory<br />

epithelium<br />

(blue area)<br />

Cribriform plate<br />

of ethmoid bone<br />

Lateral nasal wall<br />

Septum<br />

B. Schema of<br />

section through<br />

olfactory mucosa<br />

Cribriform plate<br />

Schwann cell<br />

Olfactory gland<br />

Unmyelinated<br />

olfactory axons<br />

Basement<br />

membrane<br />

Sustentacular<br />

cells<br />

Endoplasmic<br />

reticulum<br />

Nucleus<br />

Olfactory cells<br />

Dendrites<br />

Terminal bars<br />

(desmosomes)<br />

Olfactory rod<br />

(vesicle)<br />

Villi<br />

Cilia<br />

Mucus<br />

©<br />

FIGURE 2.40<br />

OLFACTORY RECEPTORS •<br />

The sensory cells that make up the olfactory epithelium respond to<br />

odorants by depolarizing. Like taste buds, an olfactory cell can<br />

respond to more than one odorant. There are six general odor<br />

qualities that can be sensed: floral, ethereal (e.g., pears), musky,<br />

camphor (e.g., eucalyptus), putrid, and pungent (e.g., vinegar, peppermint).<br />

91


NEUROPHYSIOLOGY<br />

Olfactory System: Pathway<br />

Efferent fibers<br />

Afferent fibers<br />

Granule cell (excited by<br />

and inhibiting to mitral<br />

and tufted cells)<br />

Mitral cell<br />

Recurrent process<br />

Tufted cell<br />

Periglomerular<br />

cell<br />

Glomerulus<br />

Olfactory<br />

nerve fibers<br />

Fibers from contralateral olfactory bulb<br />

Fibers to contralateral olfactory bulb<br />

Anterior commissure<br />

Medial olfactory stria<br />

Olfactory trigone and<br />

olfactory tubercle<br />

Anterior perforated<br />

substance<br />

Lateral olfactory<br />

stria<br />

Lateral olfactory<br />

tract nucleus<br />

Piriform lobe<br />

Uncus<br />

Amygdala<br />

(in phantom)<br />

Entorhinal area<br />

Olfactory epithelium<br />

Olfactory nerves<br />

Olfactory bulb<br />

Olfactory tract<br />

Anterior olfactory nucleus<br />

Cribriform plate of ethmoid bone<br />

©<br />

FIGURE 2.41<br />

OLFACTORY PATHWAY •<br />

Olfactory stimuli are detected by the nerve fibers of the olfactory<br />

epithelium and conveyed to the olfactory bulb (detailed local circuitry<br />

shown in upper left panel). Integrated signals pass along the<br />

olfactory tract and centrally diverge to pass to the anterior commissure<br />

(some efferent projections course to the contralateral olfactory<br />

bulb, blue lines) or terminate in the ipsilateral olfactory trigone<br />

(olfactory tubercle). Axons then project to the primary olfactory<br />

cortex (piriform cortex), entorhinal cortex, and amygdala.<br />

92


Installing Adobe Acrobat Reader<br />

The images and text included in this atlas are contained in a Portable Document Format (pdf)<br />

file and can be viewed with Adobe Acrobat Reader. A copy of Acrobat Reader 6.0 is included<br />

on this CD. You will need to install or upgrade to Acrobat Reader 5.0 or later in order to<br />

have full functionality.<br />

Please follow these instructions:<br />

Windows<br />

1. Choose Run from the Start menu and then click Browse.<br />

2. Navigate to the Acrobat Reader folder on the <strong>Neuro</strong><strong>Atlas</strong> CD.<br />

3. Double-click the setup.exe file to open the Acrobat Reader Installer.<br />

4. Follow the onscreen instructions.<br />

Macintosh OS X<br />

1. Double-click the Acrobat Reader folder on the <strong>Neuro</strong><strong>Atlas</strong> CD.<br />

2. Copy the Adobe Reader 6.0 folder to the Applications folder.<br />

3. To complete the installation, double-click the Adobe Reader 6.0 file in your Applications<br />

folder.<br />

Note: If you are using Macintosh 9.2 or earlier, you should go to the following URL to download the Adobe<br />

Acrobat Reader. http://www.adobe.com/products/acrobat/readstep2.html<br />

Running the <strong>Atlas</strong> of <strong>Neuro</strong>anatomy and <strong>Neuro</strong>physiology<br />

Windows<br />

1. Insert the CD into the CD-ROM drive.<br />

2. If Acrobat Reader 5.0 or greater is not already installed on your computer, follow the installation<br />

instructions above.<br />

3. Choose Run from the Start menu and type x:\ (where x is the letter of your CD-ROM drive).<br />

4. Under Files of Type, click All Files.<br />

5. Double-click the <strong>Neuro</strong> <strong>Atlas</strong>.pdf file to open the program.<br />

6. For best viewing results in Acrobat Reader 5.0, use the Edit menu to access the Preferences.<br />

Select General and open the Display preferences to activate the Smooth Line Art option.<br />

Macintosh<br />

1. Insert the CD into the CD-ROM drive.<br />

2. If Acrobat Reader 5.0 or greater is not already installed on your computer, follow the installation<br />

instructions above.<br />

3. Double-click the <strong>Neuro</strong> <strong>Atlas</strong>.pdf file to open the program.<br />

4. For best viewing results in Acrobat Reader 5.0, use the Edit menu to access the Preferences.<br />

Select General and open the Display preferences to activate the Smooth Line Art option.<br />

All rights reserved. No material on this CD-ROM may be reproduced in any electronic format, including information<br />

storage and retrieval systems, without permission in writing from the publisher. Send requests for permissions<br />

to Permissions Editor, Icon Custom Communications, 295 North St., Teterboro NJ 07608, or visit<br />

http://store.netterart.com/requestform1.htm.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!