14.07.2014 Views

Stochastic Volatility and Seasonality in ... - Interconti, Limited

Stochastic Volatility and Seasonality in ... - Interconti, Limited

Stochastic Volatility and Seasonality in ... - Interconti, Limited

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>and</strong><br />

∑K ν<br />

ν(t) = (ν k cos (2πkt) + νk ∗ s<strong>in</strong> (2πkt)) (8)<br />

k=1<br />

where K α <strong>and</strong> K ν determ<strong>in</strong>e the number of terms <strong>in</strong> the sums <strong>and</strong> α 0 , α k , αk ∗, k = 1, . . . , Kα ,<br />

<strong>and</strong> ν k , νk ∗, k = 1, . . . , Kν are constant parameters to be estimated. The specific functional<br />

form of the determ<strong>in</strong>istic seasonal components were orig<strong>in</strong>ally suggested by Hannan, Terrell,<br />

<strong>and</strong> Tuckwell (1970) as an alternative to st<strong>and</strong>ard dummy variable methods <strong>in</strong> econometric<br />

model<strong>in</strong>g of seasonality. Due to the cont<strong>in</strong>uous time feature of our analysis this is a flexible<br />

<strong>and</strong> natural choice of model<strong>in</strong>g the seasonal aspects of commodity price behavior which is also<br />

applied <strong>in</strong> Sørensen (2001).<br />

2.2 Futures prices<br />

Follow<strong>in</strong>g Cox, Ingersoll <strong>and</strong> Ross (1981), the futures price at time t on a futures contract<br />

for delivery at time T ≥ t can be obta<strong>in</strong>ed by tak<strong>in</strong>g the relevant expectations of the future<br />

spot price, F t (T ) = E Q t [P T ]. Equivalently, by us<strong>in</strong>g the Feynman-Kac formula, F t (T ) =<br />

F (P t , δ t , v t , t; T ) where F (·) can be found as the solution to a partial differential equation on<br />

the form<br />

1<br />

2 e2ν(t) vP 2 ∂2 F<br />

+ 1 ∂P 2 2 σ2 δ e2ν(t) v ∂2 F<br />

∂δ 2<br />

+ ρ 23 σ δ σ v e ν(t) v ∂2 F<br />

∂F<br />

∂δ∂v<br />

+ (r − δ)P<br />

∂P<br />

+ 1 2 σ2 vv ∂2 F<br />

∂v 2<br />

+ ρ 12 σ δ e 2ν(t) vP ∂2 F<br />

∂P ∂δ + ρ 13σ v e ν(t) vP ∂2 F<br />

∂P ∂v<br />

+ (α(t) − βδ)<br />

∂F<br />

∂δ<br />

+ (θ − κv)<br />

∂F<br />

∂v + ∂F<br />

∂t<br />

= 0<br />

(9)<br />

with term<strong>in</strong>al condition F (P, δ, v, T ; T ) = P .<br />

For a given <strong>and</strong> fixed expiration date T , the solution to the partial differential equation <strong>in</strong><br />

(9) is given by<br />

F (P, δ, v, t; T ) = P e A(t;T )+B(t;T )v+D(t;T )δ (10)<br />

where<br />

D(t; T ) = − 1 β<br />

(<br />

1 − e −β(T −t)) (11)<br />

<strong>and</strong> A(t; T ) <strong>and</strong> B(t; T ) are the solutions to the ord<strong>in</strong>ary differential equations<br />

1<br />

2 σ2 δ e2ν(t) (D(t; T )) 2 + ρ 12 σ δ e 2ν(t) D(t; T ) + 1 2 σ2 v (B(t; T )) 2<br />

+ (ρ 13 σ v e ν(t) + ρ 23 σ δ σ v e ν(t) D(t; T ) − κ)B(t; T ) + B ′ (t; T ) = 0 , B(T ; T ) = 0<br />

(12)<br />

<strong>and</strong><br />

r + α(t)D(t; T ) + θB(t; T ) + A ′ (t; T ) = 0 , A(T ; T ) = 0 (13)<br />

6

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!