15.07.2014 Views

Harald Hasselblad, Volvo PV Optimeringsdriven design vid Volvo PV

Harald Hasselblad, Volvo PV Optimeringsdriven design vid Volvo PV

Harald Hasselblad, Volvo PV Optimeringsdriven design vid Volvo PV

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ProOpt Workshop<br />

on Optimization Driven Design<br />

Structural Optimization in Early Design Phase<br />

@ <strong>Volvo</strong> Cars<br />

<strong>Harald</strong> <strong>Hasselblad</strong><br />

, <br />

Issue date: 10/14/2010<br />

Page 1


Background<br />

Background<br />

• Industrial research 1999-2005<br />

• PhD dissertation by <strong>Harald</strong> <strong>Hasselblad</strong><br />

• PhD dissertation by Nicklas Bylund<br />

2005 -Today<br />

• Applied optimization at body engineering<br />

Optimization has been identified as a key to<br />

meet future demands.<br />

Future strategy<br />

• Continue optimization work within projects.<br />

• Simplified load cases and models to support<br />

analysis driven engineering.<br />

• PhD student focused on robust analysis and<br />

optimization. Finansed by FFI. Part of the<br />

research group ProOpt.<br />

, <br />

Issue date: 10/14/2010<br />

Page 2


• FrameOpt by <strong>Hasselblad</strong><br />

• Optistruct by Altair<br />

• Optistruct by Altair<br />

• modeFRONTIER<br />

• SFE-Concept<br />

• …<br />

• modeFRONTIER<br />

• NASTRAN<br />

• CATIA V5<br />

• …<br />

Global Req.<br />

and ideas<br />

Earlier cars<br />

Work Flow<br />

Architecture<br />

Studies<br />

Advanced<br />

Engeineering.<br />

Robust and<br />

Optimized<br />

Approximative<br />

Body Structure<br />

Detailed<br />

Models<br />

Detailed models of<br />

Complete Vehicle<br />

Structure<br />

Pre-Concept<br />

Analysis model<br />

Concept<br />

FE-model<br />

System<br />

FE-model<br />

Pre-Concept<br />

analysis and<br />

Optimization<br />

Concept<br />

analysis and<br />

Optimization<br />

Complete<br />

Vehicle Analysis<br />

and Optimization<br />

Studies<br />

• Architecture studies<br />

• Load path analysis<br />

• Advanced engineering<br />

• Core and System dev.<br />

• Load path analysis<br />

• Late concept work<br />

and projects<br />

, <br />

Issue date: 10/14/2010<br />

Page 3


Structural Optimization @ Advanced Engineering<br />

Frame Topology<br />

Thickness Optimization<br />

Thickness Optimization<br />

Thickness Optimization<br />

modeFRONTIER<br />

modeFRONTIER<br />

Nastran<br />

FrameOpt<br />

Shape Optimization<br />

Topology Optimization<br />

Optistruct<br />

modeFRONTIER<br />

Frame Topology<br />

Frame Topology<br />

Optistruct<br />

Topography Optimization<br />

Optistruct<br />

FrameOpt<br />

, <br />

Issue date: 10/14/2010<br />

Page 4


Convertible Architecture Study<br />

Closing the tunnel<br />

Mazda MX-5 MIATA<br />

Big sill section<br />

Diagonal beams<br />

Nissan 350Z<br />

Nissan 350Z<br />

Strong tunnel<br />

Mazda MX-5 MIATA<br />

Diagonal rods<br />

Connection to sill<br />

KARMANN Concept<br />

Diagonal rods<br />

Ver 008 with closed tunnel<br />

Rigid subframe<br />

SAAB 9 3<br />

<strong>Volvo</strong> C70<br />

Rigid subframe<br />

VW EOS<br />

Diagonal rods<br />

Opel Tigra<br />

MB SLK<br />

Mini Cabrio<br />

, <br />

Issue date: 10/14/2010<br />

Page 5


Convertible Architecture Study<br />

, <br />

Issue date: 10/14/2010<br />

Page 6


Architecture Study using Topology Optimization<br />

Using Optistruct by Altair Engineering<br />

Styling model Sketch Interior volume identification<br />

Shell model<br />

Load cases:<br />

• Front crash*<br />

• Rear crash*<br />

• Side crash* (x2)<br />

• Torsion Stiffness (x2)<br />

*Stiffness representation<br />

Topology optimization result<br />

Optimization:<br />

Min Weighted Compliance<br />

s.t. Volume fraction < 0.0125% 327 kg<br />

# Load Cases: 6<br />

# Constraints: 1<br />

# DV: 922 893 thetra elements<br />

Analysis model in Optistruct<br />

, <br />

Issue date: 10/14/2010<br />

Page 7


Benchmarking<br />

Vanderplaats R&D<br />

Mercedes-Benz bionic car<br />

Chrysler<br />

BMW<br />

Source<br />

Chrysler & Daimler<br />

Source<br />

VW Eco-Racer Concept<br />

Source<br />

Porsche<br />

University of Missouri<br />

Source<br />

Source<br />

Magna<br />

Source<br />

Alcoa Auto<br />

Source<br />

Source<br />

Source<br />

, <br />

Issue date: 10/14/2010<br />

Page 8


Robustness Analysis of Body Side Concept<br />

using modeFRONTIER<br />

DOE Study Based on ~200 Simulations.<br />

• 23 Design Variables<br />

Thicknesses (+/- 0.1 mm)<br />

• 13 Responser<br />

B-plr Velocity (6)<br />

B-plr Deformation (6)<br />

Total Mass<br />

• 1 Load Case<br />

IIHS<br />

, <br />

Issue date: 10/14/2010<br />

Page 9


Multi-Criteria Decisions Making<br />

Objective Weights<br />

“Optimal Design”<br />

Small deformation<br />

Low velocity<br />

Heigh weight<br />

∑=1<br />

Deformation<br />

Weight<br />

Velocity<br />

Ranking<br />

Diameter = Velocity<br />

Large deformation<br />

High velocity<br />

Low weight<br />

Verification Run<br />

, <br />

Issue date: 10/14/2010<br />

Page 10


Verification of “Optimal Design”<br />

Node Diff [%] Diff [%]<br />

Def. rsm/FE ref/FE<br />

720 8,70 -7,27<br />

721 0,09 0,45<br />

722 1,96 0,96<br />

723 2,56 1,71<br />

724 3,57 1,83<br />

725 6,22 1,89<br />

Vel.<br />

720 1,26 -0,13<br />

721 3,45 0,60<br />

722 0,00 3,65<br />

723 0,00 -0,97<br />

724 1,79 1,10<br />

725 1,64 0,38<br />

Weight [kg] [kg]<br />

-1,30 -1,80<br />

Bifurcation!<br />

RSM optimal <strong>design</strong><br />

1.3kg<br />

3.6%<br />

FE verification run<br />

-1.8kg<br />

1.8%<br />

Reference<br />

724<br />

, <br />

Issue date: 10/14/2010<br />

Page 11


Rear Floor Optimization<br />

modeFRONTIER project<br />

Intrusion<br />

Z-lift<br />

Door defirmation<br />

Rear Floor Design Variables<br />

9 PID´s: 13 variables<br />

FMVSS 301<br />

ODB 55 mph 70% Offset<br />

, <br />

Issue date: 10/14/2010<br />

Page 12


Convergence and Results<br />

Result:<br />

-5 kg<br />

More stable deformation mode<br />

However:<br />

No improvement in robustness<br />

, <br />

Issue date: 10/14/2010<br />

Page 13


Multi Objective Optimization<br />

• # Design Variables: 17<br />

Thicknesses (+/- 0.2 mm) in<br />

0.1 mm steps<br />

• # Load Case: 4<br />

IIHS<br />

ODB<br />

Roof Drop<br />

Global Stiffness<br />

Uniform Distribution<br />

Latin Hypercube (LH)<br />

gives negligible interactions<br />

between factors.


Single Load Case Analysis Based on DOE<br />

mF project Correlation Effect analysis Single Objective Effect Analysis<br />

IIHS<br />

250 sim á 11h<br />

ODB<br />

Roof Drop<br />

250 sim á 21h<br />

250 sim á 8h<br />

Response Distr.<br />

, <br />

Issue date: 10/14/2010<br />

Page 15


Multidisciplinary Optimization<br />

MDO based on KPI can be performed using the<br />

RSM based modeFrontier model.<br />

Example:<br />

Min: Mass, KPI Front , KPI Side , KPI Roof<br />

s.t: Performance constraints.<br />

RSM based Pareto optimization using a genetic<br />

algorithm<br />

5000 sim ~3.5h<br />

, <br />

Issue date: 10/14/2010<br />

Page 16


Spape Optimization of Beam Triggers<br />

Using SFE-Concept and modeFRONTIER<br />

Define geometrical triggers and use <strong>design</strong> variable on trigger location (3,4)<br />

and shape (1,2) to find an optimum triggering setup to minimize stopping<br />

distance and deflection.<br />

Depth<br />

Position<br />

V 0<br />

Min Deflection<br />

Bad <strong>design</strong><br />

Min Stopp-dist<br />

M<br />

Min Deflection<br />

“Optimum”<br />

t=1.2mm<br />

Mat: 1464<br />

Min Stopp-dist<br />

, <br />

Issue date: 10/14/2010<br />

Page 17


Optimization of Beam Triggers<br />

Design variables: Shape and location of triggers<br />

15 <strong>design</strong> variables: Trigger shape and location.<br />

Optimization<br />

Objective:<br />

• Minimize deflection in y- and z-direction.<br />

s.t.<br />

• Deformation constraints<br />

SFEC model<br />

Final FE-model<br />

, <br />

Issue date: 10/14/2010<br />

Page 18


Topography Optimization Example<br />

Using Optistruct by Altair<br />

Rigid Boundary Cond.<br />

Optimization:<br />

Max 1st dyn. mode<br />

s.t. Bead fraction < 10%<br />

1st dynamic mode<br />

37.5 Hz<br />

Constraint on beeds:<br />

• Max Hight=10 mm<br />

• Min Width=10 mm<br />

• Max Angle=60 deg<br />

Final freq 187.7 Hz<br />

1st dynamic mode<br />

187.7 Hz<br />

Optimized Topography<br />

, <br />

Issue date: 10/14/2010<br />

Page 19


Optimization Challenges<br />

• CPU time<br />

• Design Changes<br />

• Parameterization<br />

• Objective, Constraints & Design Variables<br />

• Multi Disciplinary/Objective Environment<br />

Cite:<br />

“The MDO is normally started with an initial model already well developed….”<br />

“The problem is already pre-optimized…”<br />

“In this case the model pushed near to highly non-linear regions…”<br />

“ …depend on a robustness analysis of the optimum…”<br />

Fabian Duddeck**; Str.Multidisc. Optim. (2008)<br />

* *Queen Mary university of London. Former BMW employee<br />

• PhD in Robust Optimization @ <strong>Volvo</strong> Cars<br />

, <br />

Issue date: 10/14/2010<br />

Page 20


Back Up Slides<br />

, <br />

Issue date: 10/14/2010<br />

Page 21


Thinking Optimization Helps Defining the Task<br />

Component analysis:<br />

System analysis:<br />

Responses:<br />

Parameter:<br />

Varables:<br />

Constraint:<br />

Objective:<br />

Robustness ??<br />

Rigid Wall<br />

0-20 deg. angle on wall around z-axis<br />

Rigid wall with x deg. angle on wall around z-axis<br />

Energy: Box<br />

Deformation. Stopping dist.<br />

Force in box. Max and mean.<br />

Barrier force<br />

Mass<br />

Wall angle around z<br />

Box thickenss<br />

Cell thickness<br />

mass

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!