20.07.2014 Views

Experimental - Spectroscopy

Experimental - Spectroscopy

Experimental - Spectroscopy

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

42 <strong>Spectroscopy</strong> 26(6) June 2011<br />

www.spectroscopyonline.com<br />

(d)<br />

Intensity (a.u)<br />

60<br />

40<br />

20<br />

0<br />

(c)<br />

60<br />

Intensity (a.u)<br />

(b)<br />

Intensity (a.u)<br />

(a)<br />

Intensity (a.u)<br />

40<br />

20<br />

0<br />

12<br />

8<br />

4<br />

0<br />

12<br />

8<br />

4<br />

0<br />

1140<br />

1140<br />

1140<br />

1140<br />

1195<br />

1195<br />

1193<br />

1174<br />

1191<br />

1222<br />

1310<br />

1311<br />

1310<br />

1310<br />

1368<br />

1368<br />

1368<br />

1370<br />

1407<br />

1406<br />

1408<br />

1441<br />

1463<br />

1407<br />

1441<br />

nation (6). The UV–vis absorption spectra<br />

shown in Figure 2 indicate that the contribution<br />

of molecular resonance to the SERS<br />

is small. The surface plasmon resonance is<br />

excited by laser radiation and may result<br />

from the aggregations of silver nanoscale<br />

particles. Some new lines appear in the<br />

SERS spectra, indicating strong chargetransfer<br />

effects between the molecules and<br />

the silver surface. Therefore, the enhancement<br />

of SERS signals is determined mainly<br />

by surface plasmon resonance, chargetransfer<br />

resonance, and their combination.<br />

The change in SERS intensities with<br />

variations in the pH may result from the<br />

change in the contributions of the various<br />

resonances. At high pH levels (pH 4–7), the<br />

azo form of methyl yellow molecules predominates,<br />

because these molecules adsorb<br />

onto the silver surface through Ag-N bonding.<br />

At low pH levels (pH 2–3), the hydrazo<br />

form predominates, because these molecules<br />

are adsorbed on silver surface through<br />

the bridge of N + -Cl - -Ag + . The adsorption<br />

1463<br />

1441<br />

1462<br />

1442<br />

1463<br />

1492<br />

1598<br />

1619<br />

1598<br />

1619<br />

1597<br />

1619<br />

1596<br />

1619<br />

1200 1400 1600 1800<br />

Raman shift (cm -1 )<br />

Figure 5: SERS spectra of methyl yellow (5 ×<br />

10 -5 M) in 1100–1800 cm -1 range at pH (a) 2,<br />

(b) 3, (c) 4, and (d) 7.<br />

Intensity (a.u)<br />

change of the molecules may make the molecular<br />

orientation change, thus causing the<br />

intensities to change. This is consistent with<br />

the surface selection rules based on surface<br />

plasmon resonance (6). The interaction of<br />

molecules with a silver surface may change<br />

primarily as a result of the charge of the<br />

methyl yellow molecule (MYH + ).<br />

Conclusion<br />

The SERS spectra of methyl yellow in<br />

varied pH solutions were studied. The enhancement<br />

of SERS signals is determined<br />

mainly by surface plasmon resonance,<br />

charge-transfer resonance, and their<br />

combination. A relative intensity analysis<br />

of the Raman bands indicated that the<br />

intensities change primarily when the pH<br />

changes from 4 to 3. This may be a result<br />

of a change in the contributions of their<br />

combined system, such as the charge of<br />

methyl yellow molecules and adsorption<br />

of molecules on the silver surface.<br />

References<br />

(1) M. Fleischman, P.J. Hendra, and A.J. McQuillian,<br />

Chem. Phys. Lett. 26, 163–166 (1974).<br />

(2) K. Kneipp, H. Kneipp, V.B. Kartha, R. Manoharan,<br />

G. Deinum, I. Itzkan, R.R. Dasari, and<br />

M.S. Feld, Phys. Rev. E 57, R6281–R6284<br />

(1998).<br />

(3) S. Nie, and S.R. Emory, Science 275, 1102–1106<br />

(1997).<br />

(a) (b) (c)<br />

1800<br />

1200<br />

600<br />

0<br />

(4) A. Sackmann and A. Materny, J. Raman Spectrosc.<br />

37, 305–310 (2006).<br />

(5) P.W. Barber, R.K. Chang, and H. Massoudi, Phys.<br />

Rev. Lett. 50, 997–1000 (1983).<br />

(6) J.R. Lombardi and R.L. Birke, J. Phys. Chem. C<br />

112, 5605–5617 (2008).<br />

(7) J.R. Lombardi, R.L. Brike, T. Lu, and J. Xu, J. Chem.<br />

Phys. 84, 4174–4180 (1986).<br />

(8) J.F. Arenas, I. Lopez Tacon, M.S. Wooley, J. Cotero,<br />

and J.I. Marcos, J. Raman Spectrosc. 29,<br />

673–678 (1998).<br />

300<br />

200<br />

100<br />

0<br />

0<br />

2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7<br />

pH<br />

Figure 6: Relative intensity variation of methyl yellow SERS bands at (a) 1140, (b) 1408, and (c)<br />

824 cm -1 with pH variation from 2 to 7.<br />

(9) A.K. Ojha, A. Singha, S. Dasgupta, R.K. Singh,<br />

pH<br />

and A. Roy, Chem. Phys. Lett. 431, 121–126<br />

(2006).<br />

(10) A.K. Ojha, Chem. Phys. 340, 69–78 (2007).<br />

(11) L. Wang, X.J. Pan, and F. Wang, Dyes and Pigments<br />

76, 636–645 (2008).<br />

(12) F.A. Pasha, M. Muddassar, H.W. Chung, S.J. Cho,<br />

and H. Cho, J. Mol. Model. 14, 293–302 (2008).<br />

(13) H. Destaillats, A.G. Turjanski, D.A. Estrin, and<br />

M.R. Hoffmann, J. Phys. Org. Chem. 15, 287–<br />

292 (2002).<br />

50<br />

40<br />

30<br />

20<br />

10<br />

(14) H. Zollinger, Color Chemistry, Syntheses, Properties,<br />

and Applications of Organic Dyes and Pigments<br />

(VCH, New York, 1987), pp.1436–1451.<br />

(15) F.B. James and B.Y. Ernest, J. Phys. Chem. 85,<br />

1005–1014 (1981).<br />

(16) P.C. Lee and D. Meisel, J. Phys. Chem. 86, 3391–<br />

3395 (1982).<br />

(17) Z.L. Zhang, Y.F. Yin, J.W. Jiang, and Y.J. Mo, J. Mol.<br />

Stru. 920, 297–300 (2009).<br />

(18) M. Michl, B. Vlckova, and P. Mojzes, J. Mol. Stru.<br />

482, 217–223 (1999).<br />

(19) K. Machida, B.K. Kim, Y. Saito, K. Igarashi, and T.<br />

Uno, Bull. Chem. Soc. Jpn. 47, 78–82 (1974).<br />

(20) B. Nandita and U. Siva, J. Phys. Chem. A 104,<br />

2734–2745 (2000).<br />

(21) M.M. Miranda and G. Sbrana, J. Raman Spectrosc.<br />

27, 105–110 (1996).<br />

(22) W.S. Oh, M.S. Kim, and S.W. Suh, J. Raman Spectrosc.<br />

18, 253–258 (1987).<br />

(23) K.A. Bunding, R.L. Birke, and J.R. Lombardi,<br />

Chem. Phys. 54, 115–120 (1980).<br />

Zhen Long Zhang and Yu Jun Mo<br />

are with the School of Physics and Electronics<br />

at Henan University, in Kaifeng, China.<br />

Da Hu Chang is with the Department<br />

of Mathematics and Science at the Luoyang<br />

Institute of Science and Technology, in<br />

Luoyang, China. ◾<br />

pH<br />

For more information on this topic,<br />

please visit our homepage at:<br />

www.spectroscopyonline.com

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!