24.07.2014 Views

Aerodynamic Stability and Performance of Next-Generation ...

Aerodynamic Stability and Performance of Next-Generation ...

Aerodynamic Stability and Performance of Next-Generation ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

V w<br />

=<br />

V 2 2<br />

c<br />

+ R <br />

cp<br />

θ 2 − 2V c<br />

R "<br />

cp<br />

θ cos π 2 + sign ( θ %<br />

)θ<br />

#<br />

$<br />

&<br />

' (19.2)<br />

With V w , V t , <strong>and</strong> γ known, the dynamic angle <strong>of</strong> attack correction Δα can be calculated via the Law <strong>of</strong> Sines as in<br />

Eq. (20). The angle <strong>of</strong> attack is then the sum <strong>of</strong> the geometric pitch angle <strong>and</strong> the dynamic correction, as in Eq. (21).<br />

Downloaded by GEORGIA INST OF TECHNOLOGY on April 1, 2013 | http://arc.aiaa.org | DOI: 10.2514/6.2013-1356<br />

#<br />

%<br />

Δα = sin −1 %<br />

%<br />

%<br />

$<br />

sin Δα<br />

= sinγ θ<br />

(20.1)<br />

V tθ<br />

V wθ<br />

&<br />

sin π (<br />

#<br />

2 + sgn ( θ &(<br />

)θ<br />

$<br />

%<br />

'<br />

(<br />

(20.2)<br />

(<br />

(<br />

'<br />

α =θ + Δα (21)<br />

R cp θ<br />

V 2 2<br />

c<br />

+ R <br />

cp<br />

θ 2 − 2V c<br />

R #<br />

cp<br />

θ cos π 2 + sgn ( θ &<br />

)θ<br />

$<br />

%<br />

'<br />

(<br />

Angle correction in the yaw plane is similar to the correction in the pitch plane. Therefore, the aerodynamic<br />

sideslip angle <strong>and</strong> its dynamic correction are given Eq. (22).<br />

#<br />

%<br />

Δβ = sin −1 %<br />

%<br />

%<br />

$<br />

&<br />

R cp<br />

ψ<br />

V 2 c<br />

+ R 2<br />

cp<br />

ψ 2 − 2V c<br />

R cp<br />

ψ cos π sin π (<br />

#<br />

#<br />

2 + sgn & 2 + sgn &<br />

ψ<br />

(<br />

( )ψ<br />

$<br />

%<br />

'<br />

(<br />

(22.1)<br />

(<br />

( ψ )ψ<br />

$<br />

%<br />

'<br />

(<br />

(<br />

'<br />

β = ψ + Δβ (22.2)<br />

The total angle <strong>of</strong> attack, accounting for both static <strong>and</strong> dynamic contributions, is given in Eq. (23). Note that the<br />

total angle <strong>of</strong> attack is always positive due to its physical definition.<br />

cosα T<br />

= cosα cosβ (23.1)<br />

α T<br />

= cos −1<br />

[ cosα cosβ] (23.2)<br />

B. Calculating Derivatives <strong>of</strong> the Total Angle <strong>of</strong> Attack<br />

The derivative <strong>of</strong> the total angle <strong>of</strong> attack can be calculated by taking the derivative <strong>of</strong> Eq. (23.1).<br />

α T<br />

= α sinα cosβ + β cosα sin β<br />

sinα T<br />

(24)<br />

The derivative <strong>of</strong> the angle <strong>of</strong> attack <strong>and</strong> the sideslip angle are equal to the sum <strong>of</strong> the derivatives <strong>of</strong> the static<br />

<strong>and</strong> dynamic components, as in Eq. (25). Derivatives <strong>of</strong> the dynamic contributions are given in Eq. (26).<br />

V<br />

Δ α = tθ<br />

V wθ<br />

−V tθ<br />

V wθ<br />

2<br />

V wθ<br />

α = θ + Δ α (25.1)<br />

β = ψ + Δ β (25.2)<br />

sinγ θ<br />

cosΔα + V t θ<br />

V wθ<br />

cosγ θ<br />

cosΔα γ θ (26.1)<br />

Δ β =<br />

V tψ<br />

V wψ<br />

−V tψ<br />

V wψ<br />

2<br />

V wψ<br />

sinγ<br />

ψ<br />

cosΔβ + V t ψ<br />

cosγ<br />

ψ<br />

V wψ<br />

cosΔβ γ ψ<br />

(26.2)<br />

17<br />

American Institute <strong>of</strong> Aeronautics <strong>and</strong> Astronautics<br />

This material is declared a work <strong>of</strong> the U.S. Government <strong>and</strong> is not subject to copyright protection in the United States.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!