01.11.2012 Views

Spider Dragline Silk Applications in Polymer Science - Duke University

Spider Dragline Silk Applications in Polymer Science - Duke University

Spider Dragline Silk Applications in Polymer Science - Duke University

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Spider</strong> <strong>Dragl<strong>in</strong>e</strong> <strong>Silk</strong> <strong>Applications</strong><br />

<strong>in</strong> <strong>Polymer</strong> <strong>Science</strong><br />

Hieu T. Nhan<br />

April 12, 2004<br />

<strong>Duke</strong> <strong>University</strong>


Outl<strong>in</strong>e<br />

•<strong>Spider</strong>s and <strong>Spider</strong> <strong>Silk</strong><br />

•<strong>Polymer</strong>s (Polycarbonate)<br />

•<strong>Applications</strong>


Introduction<br />

•<strong>Spider</strong> silk evolution—400 million years<br />

–Tough stuff!<br />

–Entire genetic makeup unknown.<br />

–Bulk production?


<strong>Spider</strong> Anatomy


<strong>Spider</strong> Anatomy


<strong>Silk</strong> Composition<br />

•All prote<strong>in</strong>s are made of am<strong>in</strong>o acids<br />

–<strong>Spider</strong> silk is composed primarily of the<br />

three simplest forms of am<strong>in</strong>o acids:<br />

(1) Glyc<strong>in</strong>e<br />

(2) Alan<strong>in</strong>e<br />

(3) Ser<strong>in</strong>e


<strong>Silk</strong> Composition


<strong>Silk</strong> Composition


<strong>Silk</strong> Composition<br />

•α-helices primarily comb<strong>in</strong>ed with other materials<br />

– Provides only some of the needed properties<br />

•β-sheets constitute the majority of silk prote<strong>in</strong>s<br />

– Provides most of the needed properties


Sequenc<strong>in</strong>g<br />

•Various silk prote<strong>in</strong>s studied and four types of shared<br />

am<strong>in</strong>o acid motifs have been found<br />

– (1) GPGGX/GPGQQ<br />

– (2) GGX<br />

– (3) poly-Ala/poly-Gly-Ala<br />

– (4) ‘spacer’ sequence which do not conform to<br />

typical am<strong>in</strong>o acid sequences of spider silks


•GPGGX/GPGQQ<br />

Sequenc<strong>in</strong>g<br />

– Suggested conformation: β-spiral<br />

– Spr<strong>in</strong>g-like structure gives the elastic properties<br />

– Only ampullate and flagelliform silks conta<strong>in</strong> this<br />

sequence


•poly-Ala<br />

• Suggested conformation: L<strong>in</strong>ked β-sheet<br />

• Presumed to be the crystall<strong>in</strong>e areas which b<strong>in</strong>d<br />

prote<strong>in</strong> molecules together, provid<strong>in</strong>g tensile<br />

strength<br />

•poly-Gly-Ala<br />

Sequenc<strong>in</strong>g<br />

• Suggested conformation: L<strong>in</strong>ked β-sheet<br />

• Lower b<strong>in</strong>d<strong>in</strong>g energy, therefore lower tensile<br />

strength than poly-Ala


Sequenc<strong>in</strong>g


Mechanical Properties


Mechanical Properties


Mechanical Properties<br />

The material is elastic and only<br />

breaks at between 2 - 4 times its<br />

length. In the pictures a strand of<br />

a social spider, stegodyphus<br />

saras<strong>in</strong>orum, is shown as normal<br />

size, stretched 5 times and 20<br />

times its orig<strong>in</strong>al length.


•Why PC?<br />

Polycarbonate<br />

• Polycarbonate is tough.<br />

• Has great optical properties.<br />

• Used <strong>in</strong> the area of safety (helmets, glasses, etc.)<br />

• Military uses


•Goal: Increase toughness<br />

– Two ways to do it:<br />

Polycarbonate<br />

(1) Increase strength<br />

(2) Increase the extensibility


•Which do we choose?<br />

Polycarbonate<br />

Property <strong>Spider</strong> <strong>Silk</strong> Polycarbonate<br />

Ultimate Tensile Strength 1.1 GPa 72 GPa<br />

Elongation at yield ~27% ~6%


Fabrication<br />

•Why not just reproduce spider silk?<br />

• Entire genetic makeup of silk is complicated.<br />

• Optical properties of pure spider silk not optimal<br />

like PC.<br />

• Mass production on a mechanical level has not<br />

been done.<br />

• Nexia, US Army, and……goats?


Fabrication<br />

•Methods already used <strong>in</strong> PC to <strong>in</strong>crease toughness<br />

– Increas<strong>in</strong>g molecular weight<br />

– Addition of ‘other’ polymers<br />

Similar idea to Acrylonitrile/butidiene/styrene<br />

(ABS) co-polymer system


Synthesis Proposal<br />

•Addition of known basic am<strong>in</strong>o acid cha<strong>in</strong>s to PC<br />

• Choose GPGGX sequence (adds elasticity)<br />

• Synthetic chemistry


Summary<br />

•Evolution of spider silk occurred over 400 million years<br />

•A lot has been learned, but a lot left unknown<br />

•Synthesis of silk --> mammalian epithelial cells<br />

•Use knowledge to alter other polymeric systems


Questions<br />

?


Reference<br />

s<br />

1) Alberts, Bray, Dennis Bray, Alexander Johnson, Julian Lewis, Mart<strong>in</strong> Raff, Keith Roberts, Peter Walter,<br />

Essential Cell Biology, An Introduction to Molecular Biology of the Cell, 1997, Garland Publish<strong>in</strong>g, Inc.,<br />

pp. 140-148<br />

2) Bottenbruch, Ludwig, Eng<strong>in</strong>eer<strong>in</strong>g Thermoplastics—Polycarbonates, Polyacetals, Polyesters, Cellulose<br />

Esters, 1996, Hanser/Gardner Publications, Inc., C<strong>in</strong>c<strong>in</strong>atti<br />

3) Christopher, William F., Daniel W. Fox, Polycarbonates, 1962, Re<strong>in</strong>hold Publish<strong>in</strong>g Corporation, New York<br />

4) Clark, Cather<strong>in</strong>e L., <strong>Spider</strong>webs and <strong>Silk</strong>—Trac<strong>in</strong>g Evolution from Molecules to Genes to Phenotypes, 2003,<br />

Oxford <strong>University</strong> Press<br />

5) Foelix, Ra<strong>in</strong>er F., Biology of <strong>Spider</strong>s, 1996, Oxford <strong>University</strong> Press, pp. 110-149<br />

6) Gosl<strong>in</strong>e, J.M., P.A. Guerette, C.S. Ortlepp, K.N. Savage, The Mechanical Design of <strong>Spider</strong> <strong>Silk</strong>: From<br />

Fibro<strong>in</strong> Sequence to Mechanical Function, 16 November 1999, Journal of Experimental Biology, 202, 325-<br />

3303<br />

7) Hayashi, Cheryl Y., Nichola H. Shipley, Randolph V. Lewis, Hypotheses That Correlate the Sequence,<br />

Structure, and Mechanical Properties of <strong>Spider</strong> <strong>Silk</strong> Prote<strong>in</strong>s, 1999, International Journal of Biological<br />

Macromolecules, 24, pp. 271-275<br />

8) H<strong>in</strong>man, Michael B. Just<strong>in</strong> A. Jones, Randolph V. Lewis, Synthetic <strong>Spider</strong> <strong>Silk</strong>: A Modular Fiber,<br />

September 2000, Tibtech, Vol. 18, pp. 374-379<br />

9) Nieuwenhuys, Ed, <strong>Spider</strong> <strong>Silk</strong>, http://www.xs4all.nl/~ednieuw/<strong>Spider</strong>s/Info/sp<strong>in</strong>draad.htm, Accessed 03<br />

March 2004, Available


Reference<br />

s<br />

11) Fedic, Robert, Michal Zurovec, Frantisek Sehnal, Correlation between Fibro<strong>in</strong> Am<strong>in</strong>o Acid Sequence and<br />

Physical <strong>Silk</strong> Properties, 12 September 2003, Vol. 278, No. 37, pp 35255-35264<br />

12) Hayashi, Cheryl Y., Randolph V. Lewis, Molecular Architecture and Evolution of a Modular <strong>Spider</strong> <strong>Silk</strong><br />

Prote<strong>in</strong> Gene, 25 February 2000, <strong>Science</strong>, Vol. 287, pp. 1477-1479<br />

13) Stupp, Samuel I., Paul V. Braun, Molecular Manipulation of Microstructures: Biomaterials, Ceramics, and<br />

Semiconductors, 29 August 1997, <strong>Science</strong>, Vol. 277, pp. 1242-1248<br />

14) Lazaris, Anthoula, Steven Arcidiacono, Yue Huang, Jiang-Feng Zhou, Francois Duguay, Nathalie Chretien,<br />

Elizabeth A. Walsh, Jason W. Soares, Costas N. Karatzas, <strong>Spider</strong> <strong>Silk</strong> Fibers Spun from Soluble<br />

Recomb<strong>in</strong>ant <strong>Silk</strong> Produced <strong>in</strong> Mammalian Cells, 18 January 2002, <strong>Science</strong>, Vol. 295, pp. 472-476<br />

15) van Beek, J.D., S. Hess, F. Vollrath, B.H. Meier, The Molecular Structure of <strong>Spider</strong> <strong>Dragl<strong>in</strong>e</strong> <strong>Silk</strong>: Fold<strong>in</strong>g<br />

and Orientation of the Prote<strong>in</strong> Backbone<br />

16) Witt, Peter N., Charles F. Reed, David B. Peakall, A <strong>Spider</strong>’s Web—Problems <strong>in</strong> Regulatory Biology, 1968,<br />

Spr<strong>in</strong>ger Verlag New York Inc.


•GGX<br />

Sequenc<strong>in</strong>g<br />

– Suggested conformation: Helical<br />

– Could serve as l<strong>in</strong>k between crystall<strong>in</strong>e β-sheet<br />

regions and less rigid prote<strong>in</strong> structures<br />

•‘Spacer’ Sequence<br />

•Suggested conformation: Unknown<br />

•Could serve as alternative structure for pre-drawn, liquid<br />

form


Mechanical Properties

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!