A guide for the preparation and use of buffers in biological systems
A guide for the preparation and use of buffers in biological systems
A guide for the preparation and use of buffers in biological systems
Transform your PDFs into Flipbooks and boost your revenue!
Leverage SEO-optimized Flipbooks, powerful backlinks, and multimedia content to professionally showcase your products and significantly increase your reach.
Buffers<br />
A <strong>guide</strong> <strong>for</strong> <strong>the</strong> <strong>preparation</strong> <strong>and</strong> <strong>use</strong> <strong>of</strong><br />
<strong>buffers</strong> <strong>in</strong> <strong>biological</strong> <strong>systems</strong><br />
Advanc<strong>in</strong>g your life science discoveries
Buffers<br />
A <strong>guide</strong> <strong>for</strong> <strong>the</strong> <strong>preparation</strong> <strong>and</strong> <strong>use</strong> <strong>of</strong><br />
<strong>buffers</strong> <strong>in</strong> <strong>biological</strong> <strong>systems</strong><br />
By<br />
Ch<strong>and</strong>ra Mohan, Ph.D.<br />
A br<strong>and</strong> <strong>of</strong> EMD Biosciences, Inc.<br />
Copyright © 2003 EMD Biosciences, Inc., An Affiliate <strong>of</strong> Merck KGaA, Darmstadt, Germany.<br />
All Rights Reserved.
A Word to Our Customers<br />
We are pleased to present to you <strong>the</strong> newest edition <strong>of</strong> Buffers: A Guide <strong>for</strong> <strong>the</strong><br />
Preparation <strong>and</strong> Use <strong>of</strong> Buffers <strong>in</strong> Biological Systems. This practical resource has<br />
been especially revamped <strong>for</strong> <strong>use</strong> by researchers <strong>in</strong> <strong>the</strong> <strong>biological</strong> sciences. This<br />
publication is a part <strong>of</strong> our cont<strong>in</strong>u<strong>in</strong>g commitment to provide <strong>use</strong>ful product<br />
<strong>in</strong><strong>for</strong>mation <strong>and</strong> exceptional service to you, our customers. You will f<strong>in</strong>d this<br />
booklet a highly <strong>use</strong>ful resource, whe<strong>the</strong>r you are just beg<strong>in</strong>n<strong>in</strong>g your research<br />
work or tra<strong>in</strong><strong>in</strong>g <strong>the</strong> newest researchers <strong>in</strong> your laboratory.<br />
Over <strong>the</strong> past several years, Calbiochem® Biochemicals has clearly emerged as a<br />
world leader <strong>in</strong> provid<strong>in</strong>g highly <strong>in</strong>novative products <strong>for</strong> your research needs <strong>in</strong><br />
Signal Transduction, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> areas <strong>of</strong> Cancer Biology, Alzheimer’s Disease,<br />
Diabetes <strong>and</strong> Hypertension, Prote<strong>in</strong> K<strong>in</strong>ase, G-Prote<strong>in</strong>, Apoptosis, <strong>and</strong> Nitric<br />
Oxide related phenomena. Please call us today <strong>for</strong> a free copy <strong>of</strong> our LATEST<br />
Signal Transduction Catalog <strong>and</strong> Technical Resource <strong>and</strong>/or our Apoptosis<br />
Catalog.<br />
If you have <strong>use</strong>d Calbiochem® products <strong>in</strong> <strong>the</strong> past, we thank you <strong>for</strong> your<br />
support <strong>and</strong> confidence <strong>in</strong> our products, <strong>and</strong> if you are just beg<strong>in</strong>n<strong>in</strong>g your<br />
research career, please call us <strong>and</strong> give us <strong>the</strong> opportunity to demonstrate our<br />
exceptional customer <strong>and</strong> technical service.<br />
Please call us <strong>and</strong> ask <strong>for</strong> a current list<strong>in</strong>g <strong>of</strong> our ever exp<strong>and</strong><strong>in</strong>g Technical<br />
Resource Library, now with over 60 Calbiochem® publications. Or check out our<br />
website at http://www.calbiochem.com <strong>for</strong> even more <strong>use</strong>ful <strong>in</strong><strong>for</strong>mation.<br />
Marie Bergstrom<br />
Market<strong>in</strong>g Manager<br />
CALBIOCHEM® <strong>and</strong> Oncogene Research Products<br />
CALBIOCHEM ®<br />
A name synonymous with commitment to high quality <strong>and</strong> exceptional service.<br />
ii
Table <strong>of</strong> Contents:<br />
Why Does Calbiochem® Biochemicals Publish a Booklet on Buffers? . . . . . . . . . .1<br />
Water, The Fluid <strong>of</strong> Life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2<br />
Ionization <strong>of</strong> Water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3<br />
Dissociation Constants <strong>of</strong> Weak Acids <strong>and</strong> Bases . . . . . . . . . . . . . . . . . . . . . . . . . .4<br />
Henderson-Hasselbach Equation: pH <strong>and</strong> pK a<br />
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .5<br />
Determ<strong>in</strong>ation <strong>of</strong> pK a<br />
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6<br />
pK a<br />
Values <strong>for</strong> Commonly Used Biological Buffers . . . . . . . . . . . . . . . . . . . . . . . . .7<br />
Buffers, Buffer Capacity, <strong>and</strong> Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8<br />
Biological Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10<br />
Buffer<strong>in</strong>g <strong>in</strong> Cells <strong>and</strong> Tissues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10<br />
Effect <strong>of</strong> Temperature on pH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12<br />
Effect <strong>of</strong> Buffers on Factors O<strong>the</strong>r than pH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13<br />
Use <strong>of</strong> Water-Miscible Organic Solvents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14<br />
Solubility Equilibrium: Effect <strong>of</strong> pH on Solubility . . . . . . . . . . . . . . . . . . . . . . . .14<br />
pH Measurements: Some Useful Tips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15<br />
Choos<strong>in</strong>g a Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16<br />
Preparation <strong>of</strong> Some Common Buffers <strong>for</strong> Use<br />
<strong>in</strong> Biological Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18<br />
Commonly Used Buffer Media <strong>in</strong> Biological Research . . . . . . . . . . . . . . . . . . . . .22<br />
Isoelectric Po<strong>in</strong>t <strong>of</strong> Selected Prote<strong>in</strong>s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24<br />
Isoelectric Po<strong>in</strong>t <strong>of</strong> Selected Plasma Prote<strong>in</strong>s . . . . . . . . . . . . . . . . . . . . . . . . . . . .26<br />
Approximate pH <strong>and</strong> Bicarbonate Concentration <strong>in</strong><br />
Extracellular Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26<br />
Ionization Constants K <strong>and</strong> pK a<br />
<strong>for</strong> Selected Acids <strong>and</strong><br />
Bases <strong>in</strong> Water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27<br />
Physical Properties <strong>of</strong> Some Commonly Used Acids . . . . . . . . . . . . . . . . . . . . . . .27<br />
Some Useful Tips <strong>for</strong> Calculation <strong>of</strong> Concentrations <strong>and</strong><br />
Spectrophotometric Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28<br />
CALBIOCHEM® Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30<br />
iii
Why Does Calbiochem® Biochemicals Publish a<br />
Booklet on Buffers?<br />
We are frequently asked questions on <strong>the</strong> <strong>use</strong> <strong>of</strong> <strong>buffers</strong> that we <strong>of</strong>fer to research<br />
laboratories. This booklet is designed to help answer several basic questions<br />
about <strong>the</strong> <strong>use</strong> <strong>of</strong> <strong>buffers</strong> <strong>in</strong> <strong>biological</strong> <strong>systems</strong>. The discussion presented here is<br />
by no means complete, but we hope it will help <strong>in</strong> <strong>the</strong> underst<strong>and</strong><strong>in</strong>g <strong>of</strong> general<br />
pr<strong>in</strong>ciples <strong>in</strong>volved <strong>in</strong> <strong>the</strong> <strong>use</strong> <strong>of</strong> <strong>buffers</strong>.<br />
Almost all <strong>biological</strong> processes are pH dependent. Even a slight change <strong>in</strong> pH can<br />
result <strong>in</strong> metabolic acidosis or alkalosis, result<strong>in</strong>g <strong>in</strong> severe metabolic complications.<br />
The purpose <strong>of</strong> a buffer <strong>in</strong> <strong>biological</strong> system is to ma<strong>in</strong>ta<strong>in</strong> <strong>in</strong>tracellular<br />
<strong>and</strong> extracellular pH with<strong>in</strong> a very narrow range <strong>and</strong> resist changes <strong>in</strong> pH <strong>in</strong> <strong>the</strong><br />
presence <strong>of</strong> <strong>in</strong>ternal <strong>and</strong> external <strong>in</strong>fluences. Be<strong>for</strong>e we beg<strong>in</strong> a discussion <strong>of</strong><br />
<strong>buffers</strong> <strong>and</strong> how <strong>the</strong>y control hydrogen ion concentrations, a brief explanation<br />
<strong>of</strong> <strong>the</strong> role <strong>of</strong> water <strong>and</strong> equilibrium constants <strong>of</strong> weak acids <strong>and</strong> bases is<br />
necessary.<br />
1
Water: The Fluid <strong>of</strong> Life<br />
Water constitutes about 70% <strong>of</strong> <strong>the</strong> mass <strong>of</strong> most liv<strong>in</strong>g creatures. All <strong>biological</strong><br />
reactions occur <strong>in</strong> an aqueous medium. All aspects <strong>of</strong> cell structure <strong>and</strong> function<br />
are adapted to <strong>the</strong> physical <strong>and</strong> chemical properties <strong>of</strong> water. Hence, it is<br />
essential to underst<strong>and</strong> some basic properties <strong>of</strong> water <strong>and</strong> its ionization<br />
products, i.e., H + <strong>and</strong> OH¯. Both H + <strong>and</strong> OH¯ <strong>in</strong>fluence <strong>the</strong> structure, assembly,<br />
<strong>and</strong> properties <strong>of</strong> all macromolecules <strong>in</strong> <strong>the</strong> cell.<br />
Water is a polar solvent that dissolves most charged molecules. Water dissolves<br />
most salts by hydrat<strong>in</strong>g <strong>and</strong> stabiliz<strong>in</strong>g <strong>the</strong> cations <strong>and</strong> anions by weaken<strong>in</strong>g<br />
<strong>the</strong>ir electrostatic <strong>in</strong>teractions (Figure 1). Compounds that readily dissolve <strong>in</strong><br />
water are known as HYDROPHILIC compounds. Nonpolar compounds such as<br />
chloro<strong>for</strong>m <strong>and</strong> e<strong>the</strong>r do not <strong>in</strong>teract with water <strong>in</strong> any favorable manner <strong>and</strong> are<br />
known as HYDROPHOBIC compounds. These compounds <strong>in</strong>terfere with<br />
hydrogen bond<strong>in</strong>g among water molecules.<br />
Figure 1: Electrostatic <strong>in</strong>teraction <strong>of</strong> Na + <strong>and</strong> Cl¯ ions <strong>and</strong> water molecules.<br />
Several <strong>biological</strong> molecules, such as prote<strong>in</strong>, certa<strong>in</strong> vitam<strong>in</strong>s, steroids, <strong>and</strong><br />
phospholipids conta<strong>in</strong> both polar <strong>and</strong> nonpolar regions. They are known as<br />
AMPHIPATHIC molecules. The hydrophilic region <strong>of</strong> <strong>the</strong>se molecules are<br />
arranged <strong>in</strong> a manner that permits maximum <strong>in</strong>teraction with water molecules.<br />
However, <strong>the</strong> hydrophobic regions assemble toge<strong>the</strong>r expos<strong>in</strong>g only <strong>the</strong> smallest<br />
area to water.<br />
2
Ionization <strong>of</strong> Water<br />
Water molecules undergo reversible ionization to yield H + <strong>and</strong> OH¯ as per <strong>the</strong><br />
follow<strong>in</strong>g equation.<br />
H 2<br />
O → ← H + + OH¯<br />
The degree <strong>of</strong> ionization <strong>of</strong> water at equilibrium is fairly small <strong>and</strong> is given by<br />
<strong>the</strong> follow<strong>in</strong>g equation where K eq<br />
is <strong>the</strong> equilibrium constant.<br />
K eq<br />
[H + ][OH¯]<br />
= ______________<br />
[H 2<br />
O]<br />
At 25°C, <strong>the</strong> concentration <strong>of</strong> pure water is 55.5 M (1000 ÷ 18; M.W. 18.0).<br />
Hence, we can rewrite <strong>the</strong> above equation as follows:<br />
K eq<br />
[H + ][OH¯]<br />
= ______________<br />
55.5 M<br />
or<br />
(55.5)(K eq<br />
) = [H+][OH¯]<br />
For pure water electrical conductivity experiments give a K eq<br />
value <strong>of</strong> 1.8 x<br />
10 -16 M at 25°C.<br />
Hence,<br />
(55.5 M)(1.8 x 10 -16 M) = [H + ][OH¯]<br />
or<br />
99.9 x 10 -16 M 2 = [H + ][OH¯]<br />
or<br />
1.0 x 10 -14 M 2 = [H + ][OH¯]<br />
[H + ][OH¯], ion product <strong>of</strong> water, is always equal to 1.0 x 10 -14 M 2 at 25°C. When<br />
[H + ] <strong>and</strong> [OH¯] are present <strong>in</strong> equal amounts <strong>the</strong>n <strong>the</strong> solution gives a neutral pH.<br />
Here [H + ][OH¯] = [H + ] 2<br />
or<br />
[H + ] = 1 x 10 -14 M 2<br />
<strong>and</strong><br />
[H + ] = [OH¯] = 10 -7 M<br />
As <strong>the</strong> total concentration <strong>of</strong> H + <strong>and</strong> OH¯ is constant, an <strong>in</strong>crease <strong>in</strong> one ion is<br />
compensated by a decrease <strong>in</strong> <strong>the</strong> concentration <strong>of</strong> o<strong>the</strong>r ion. This <strong>for</strong>ms <strong>the</strong><br />
basis <strong>for</strong> <strong>the</strong> pH scale.<br />
3
Dissociation Constants <strong>of</strong> Weak Acids <strong>and</strong> Bases<br />
Strong acids (hydrochloric acid, sulfuric acid, etc.) <strong>and</strong> bases (sodium hydroxide,<br />
potassium hydroxide, etc.) are those that are completely ionized <strong>in</strong> dilute<br />
aqueous solutions.<br />
In <strong>biological</strong> <strong>systems</strong> one generally encounters only weak acids <strong>and</strong> bases. Weak<br />
acids <strong>and</strong> bases do not completely dissociate <strong>in</strong> solution. They exist <strong>in</strong>stead as an<br />
equilibrium mixture <strong>of</strong> undissociated <strong>and</strong> dissociated species. For example, <strong>in</strong><br />
aqueous solution, acetic acid is an equilibrium mixture <strong>of</strong> acetate ion, hydrogen<br />
ion, <strong>and</strong> undissociated acetic acid. The equilibrium between <strong>the</strong>se species can be<br />
expressed as:<br />
CH 3<br />
COOH<br />
k 1<br />
→ ←<br />
H + + CH 3<br />
COO¯<br />
k 2<br />
where k 1<br />
represents <strong>the</strong> rate constant <strong>of</strong> dissociation <strong>of</strong> acetic acid to acetate <strong>and</strong><br />
hydrogen ions, <strong>and</strong> k 2<br />
represents <strong>the</strong> rate constant <strong>for</strong> <strong>the</strong> association <strong>of</strong> acetate<br />
<strong>and</strong> hydrogen ions to <strong>for</strong>m acetic acid. The rate <strong>of</strong> dissociation <strong>of</strong> acetic acid,<br />
-d[CH 3<br />
COOH ]/dt, is dependent on <strong>the</strong> rate constant <strong>of</strong> dissociation (k 1<br />
) <strong>and</strong> <strong>the</strong><br />
concentration <strong>of</strong> acetic acid [CH 3<br />
COOH] <strong>and</strong> can be expressed as:<br />
____________________<br />
d [CH 3<br />
COOH]<br />
dt<br />
= k 1<br />
[CH 3<br />
COOH]<br />
Similarly, <strong>the</strong> rate <strong>of</strong> association to <strong>for</strong>m acetic acid, d[HAc]/dt, is dependent on<br />
<strong>the</strong> rate constant <strong>of</strong> association (k 2<br />
) <strong>and</strong> <strong>the</strong> concentration <strong>of</strong> acetate <strong>and</strong><br />
hydrogen ions <strong>and</strong> can be expressed as:<br />
d [CH 3<br />
COOH ]<br />
__________________<br />
dt<br />
= k 2<br />
[H + ] [CH 3<br />
COO¯]<br />
S<strong>in</strong>ce <strong>the</strong> rates <strong>of</strong> dissociation <strong>and</strong> reassociation are equal under equilibrium<br />
conditions:<br />
k 1<br />
[CH 3<br />
COOH ] = k 2<br />
[H + ] [CH 3<br />
COO¯]<br />
or<br />
k 1<br />
[H + ] [CH 3<br />
COO¯]<br />
_______ = ____________________<br />
[CH 3<br />
COOH]<br />
<strong>and</strong><br />
where<br />
4<br />
k 2<br />
k _______ 1<br />
k 2<br />
[H + ] [CH 3<br />
COO¯]<br />
K a<br />
= ___________________<br />
[CH 3<br />
COOH]<br />
=K a<br />
(Equilibrium constant)
This equilibrium expression can now be rearranged to<br />
[CH 3<br />
COOH]<br />
[H + ] = K a<br />
_______________<br />
[CH 3<br />
COO¯]<br />
where <strong>the</strong> hydrogen ion concentration is expressed <strong>in</strong> terms <strong>of</strong> <strong>the</strong> equilibrium<br />
constant <strong>and</strong> <strong>the</strong> concentrations <strong>of</strong> undissociated acetic acid <strong>and</strong> acetate ion. The<br />
equilibrium constant <strong>for</strong> ionization reactions is called <strong>the</strong> ionization constant or<br />
dissociation constant.<br />
Henderson-Hasselbach Equation: pH <strong>and</strong> pK a<br />
The relationship between pH, pK a<br />
, <strong>and</strong> <strong>the</strong> buffer<strong>in</strong>g action <strong>of</strong> any weak acid <strong>and</strong><br />
its conjugate base is best expla<strong>in</strong>ed by <strong>the</strong> Henderson-Hasselbach equation. In<br />
<strong>biological</strong> experiments, [H + ] varies from 10 -1 M to about 10 -10 M. S.P.L.<br />
Sorenson, a Danish chemist, co<strong>in</strong>ed <strong>the</strong> “p” value <strong>of</strong> any quantity as <strong>the</strong> negative<br />
logarithm <strong>of</strong> <strong>the</strong> hydrogen ion concentration. Hence, <strong>for</strong> [H + ] one can write <strong>the</strong><br />
follow<strong>in</strong>g equation:<br />
pH = – log [H + ]<br />
Similarly pK a<br />
can be def<strong>in</strong>ed as – log K a<br />
. If <strong>the</strong> equilibrium expression is<br />
converted to – log <strong>the</strong>n<br />
[CH 3<br />
COOH]<br />
– log [H + ] = – log K a<br />
– log ______________<br />
[CH 3<br />
COO¯]<br />
<strong>and</strong> pH <strong>and</strong> pK a<br />
substituted:<br />
[CH 3<br />
COOH]<br />
pH = pK a<br />
– log ________________<br />
[CH 3<br />
COO¯]<br />
pH =<br />
or<br />
[CH 3<br />
COO¯]<br />
pK a<br />
+ log _______________<br />
[CH 3<br />
COOH]<br />
When <strong>the</strong> concentration <strong>of</strong> acetate ions equals <strong>the</strong> concentration <strong>of</strong> acetic acid,<br />
log [CH 3<br />
COO¯]/[CH 3<br />
COOH] approaches zero (<strong>the</strong> log <strong>of</strong> 1) <strong>and</strong> pH equals pK a<br />
(<strong>the</strong><br />
pK a<br />
<strong>of</strong> acetic acid is 4.745). Acetic acid <strong>and</strong> acetate ion <strong>for</strong>m an effective<br />
buffer<strong>in</strong>g system centered around pH 4.75. Generally, <strong>the</strong> pK a<br />
<strong>of</strong> a weak acid or<br />
base <strong>in</strong>dicates <strong>the</strong> pH <strong>of</strong> <strong>the</strong> center <strong>of</strong> <strong>the</strong> buffer<strong>in</strong>g region.<br />
The terms pK <strong>and</strong> pK a<br />
are frequently <strong>use</strong>d <strong>in</strong>terchangeably <strong>in</strong> <strong>the</strong> literature. The<br />
term pK a<br />
(“a” refers to acid) is <strong>use</strong>d <strong>in</strong> circumstances where <strong>the</strong> system is be<strong>in</strong>g<br />
considered as an acid <strong>and</strong> <strong>in</strong> which hydrogen ion concentration or pH is <strong>of</strong><br />
5
<strong>in</strong>terest. Sometimes <strong>the</strong> term pK b<br />
is <strong>use</strong>d. pK b<br />
(“b” refers to base) is <strong>use</strong>d when <strong>the</strong><br />
system is be<strong>in</strong>g considered as a base <strong>and</strong> <strong>the</strong> hydroxide ion concentration or pOH<br />
is <strong>of</strong> greater <strong>in</strong>terest.<br />
Determ<strong>in</strong>ation <strong>of</strong> pK a<br />
pKa values are generally determ<strong>in</strong>ed by titration. A carefully calibrated,<br />
automated, record<strong>in</strong>g titrator is <strong>use</strong>d, <strong>the</strong> free acid <strong>of</strong> <strong>the</strong> material to be measured<br />
is titrated with a suitable base, <strong>and</strong> <strong>the</strong> titration curve is recorded. The pH <strong>of</strong> <strong>the</strong><br />
solution is monitored as <strong>in</strong>creas<strong>in</strong>g quantities <strong>of</strong> base are added to <strong>the</strong> solution.<br />
Figure 2 shows <strong>the</strong> titration curve <strong>for</strong> acetic acid. The po<strong>in</strong>t <strong>of</strong> <strong>in</strong>flection<br />
<strong>in</strong>dicates <strong>the</strong> pK a<br />
value. Frequently, automatic titrators record <strong>the</strong> first derivative<br />
<strong>of</strong> <strong>the</strong> titration curve, giv<strong>in</strong>g more accurate pK a<br />
values.<br />
Polybasic buffer <strong>systems</strong> can have more than one <strong>use</strong>ful pK a<br />
value. Figure 3<br />
shows <strong>the</strong> titration curve <strong>for</strong> phosphoric acid, a tribasic acid. Note that <strong>the</strong> curve<br />
has five po<strong>in</strong>ts <strong>of</strong> <strong>in</strong>flection. Three <strong>in</strong>dicate pK a1<br />
, pK a2<br />
<strong>and</strong> pK a3<br />
, <strong>and</strong> two<br />
additional po<strong>in</strong>ts <strong>in</strong>dicate where H 2<br />
PO 4 – <strong>and</strong> HPO 4 – exist as <strong>the</strong> sole species.<br />
8<br />
6<br />
pK a = 4.76<br />
pH<br />
4<br />
2<br />
0<br />
NaOH<br />
Figure 2: Titration Curve <strong>for</strong> Acetic Acid<br />
12<br />
pK a3 = 12.32<br />
10<br />
8<br />
pH<br />
6<br />
pK a2 = 7.21<br />
4<br />
2<br />
pK a1 = 2.12<br />
NaOH<br />
Figure 3: Titration Curve <strong>for</strong> Phosphoric Acid<br />
6
Table 1: pK a<br />
Values <strong>for</strong> Commonly Used Biological Buffers <strong>and</strong> Buffer Constituents<br />
Product Cat. No. M.W.<br />
ADA, Sodium Salt 114801 212.2 6.60<br />
2-Am<strong>in</strong>o-2-methyl-1,3-propanediol 164548 105.1 8.83<br />
BES, ULTROL® Grade 391334 213.2 7.15<br />
Bic<strong>in</strong>e, ULTROL® Grade 391336 163.2 8.35<br />
BIS-Tris, ULTROL® Grade 391335 209.2 6.50<br />
BIS-Tris Propane, ULTROL® Grade 394111 282.4 6.80<br />
Boric Acid, Molecular Biology Grade 203667 61.8 9.24<br />
Cacodylic Acid 205541 214.0 6.27<br />
CAPS, ULTROL® Grade 239782 221.3 10.40<br />
CHES, ULTROL® Grade 239779 207.3 9.50<br />
Citric Acid, Monohydrate, Molecular Biology Grade 231211 210.1 4.76<br />
Glyc<strong>in</strong>e 3570 75.1 2.34 1<br />
Glyc<strong>in</strong>e, Molecular Biology Grade 357002 75.1 2.34 1<br />
Glycylglyc<strong>in</strong>e, Free Base 3630 132.1 8.40<br />
HEPES, Free Acid, Molecular Biology Grade 391340 238.3 7.55<br />
HEPES, Free Acid, ULTROL® Grade 391338 238.3 7.55<br />
HEPES, Free Acid Solution 375368 238.3 7.55<br />
HEPES, Sodium Salt, ULTROL® Grade 391333 260.3 7.55<br />
HEPPS, ULTROL® Grade 391339 252.3 8.00<br />
Imidazole, ULTROL® Grade 4015 68.1 7.00<br />
MES, Free Acid, ULTROL® Grade 475893 195.2 6.15<br />
MES, Sodium Salt, ULTROL® Grade 475894 217.2 6.15<br />
MOPS, Free Acid, ULTROL® Grade 475898 209.3 7.20<br />
MOPS, Sodium Salt, ULTROL® Grade 475899 231.2 7.20<br />
PIPES, Free Acid, Molecular Biology Grade 528133 302.4 6.80<br />
PIPES, Free Acid, ULTROL® Grade 528131 302.4 6.80<br />
PIPES, Sodium Salt, ULTROL® Grade 528132 325.3 6.80<br />
PIPPS 528315 330.4 3.73 2<br />
Potassium Phosphate, Dibasic, Trihydrate, Molecular Biology Grade 529567 228.2 7.21 3<br />
Potassium Phosphate, Monobasic 529565 136.1 7.21 3<br />
Potassium Phosphate, Monobasic, Molecular Biology Grade 529568 136.1 7.21 3<br />
Sodium Phosphate, Dibasic 567550 142.0 7.21 3<br />
Sodium Phosphate, Dibasic, Molecular Biology Grade 567547 142.0 7.21 3<br />
Sodium Phosphate, Monobasic 567545 120.0 7.21 3<br />
Sodium Phosphate, Monobasic, Monohydrate, Molecular Biology Grade 567549 138.0 7.21 3<br />
TAPS, ULTROL® Grade 394675 243.2 8.40<br />
TES, Free Acid, ULTROL® Grade 39465 229.3 7.50<br />
TES, Sodium Salt, ULTROL® Grade 394651 251.2 7.50<br />
Tric<strong>in</strong>e, ULTROL® Grade 39468 179.2 8.15<br />
Triethanolam<strong>in</strong>e, HCl 641752 185.7 7.66<br />
Tris Base, Molecular Biology Grade 648310 121.1 8.30<br />
Tris Base, ULTROL® Grade 648311 121.1 8.30<br />
Tris, HCl, Molecular Biology Grade 648317 157.6 8.30<br />
Tris, HCl, ULTROL® Grade 648313 157.6 8.30<br />
Trisodium Citrate, Dihydrate 567444 294.1 —<br />
Trisodium Citrate, Dihydrate, Molecular Biology Grade 567446 294.1 —<br />
1. pK a1<br />
= 2.34; pK a2<br />
= 9.60<br />
2. pK a1<br />
= 3.73; pK a2<br />
= 7.96 (100 mM aqueous solution, 25°C).<br />
3. Phosphate <strong>buffers</strong> are normally prepared from a comb<strong>in</strong>ation <strong>of</strong> <strong>the</strong> monobasic <strong>and</strong> dibasic salts, titrated aga<strong>in</strong>st<br />
each o<strong>the</strong>r to <strong>the</strong> correct pH. Phosphoric acid has three pK a<br />
values: pK a1<br />
= 2.12; pK a2<br />
= 7.21; pK a3<br />
= 12.32<br />
pK a<br />
at 20°C<br />
7
Buffers, Buffer Capacity <strong>and</strong> Range<br />
Buffers are aqueous <strong>systems</strong> that resist changes <strong>in</strong> pH when small amounts <strong>of</strong><br />
acid or base are added. Buffer solutions are composed <strong>of</strong> a weak acid (<strong>the</strong> proton<br />
donor) <strong>and</strong> its conjugate base (<strong>the</strong> proton acceptor). Buffer<strong>in</strong>g results from two<br />
reversible reaction equilibria <strong>in</strong> a solution where<strong>in</strong> <strong>the</strong> concentration <strong>of</strong> proton<br />
donor <strong>and</strong> its conjugate proton acceptor are equal. For example, <strong>in</strong> a buffer<br />
system when <strong>the</strong> concentration <strong>of</strong> acetic acid <strong>and</strong> acetate ions are equal, addition<br />
<strong>of</strong> small amounts <strong>of</strong> acid or base do not have any detectable <strong>in</strong>fluence on <strong>the</strong> pH.<br />
This po<strong>in</strong>t is commonly known as <strong>the</strong> isoelectric po<strong>in</strong>t. At this po<strong>in</strong>t <strong>the</strong>re is no<br />
net charge <strong>and</strong> pH at this po<strong>in</strong>t is equal to pK a<br />
.<br />
[CH3COO¯]<br />
pH = pK a<br />
+ log ________________<br />
[CH3COOH]<br />
At isoelectric po<strong>in</strong>t [CH 3<br />
COO¯] = [CH 3<br />
COOH] hence, pH = pK a<br />
Buffer capacity is a term <strong>use</strong>d to describe <strong>the</strong> ability <strong>of</strong> a given buffer to resist<br />
changes <strong>in</strong> pH on addition <strong>of</strong> acid or base. A buffer capacity <strong>of</strong> 1 is when 1 mol<br />
<strong>of</strong> acid or alkali is added to 1 liter <strong>of</strong> buffer <strong>and</strong> pH changes by 1 unit. The buffer<br />
capacity <strong>of</strong> a mixed weak acid-base buffer is much greater when <strong>the</strong> <strong>in</strong>dividual<br />
pK a<br />
values are <strong>in</strong> close proximity with each o<strong>the</strong>r. It is important to note that <strong>the</strong><br />
buffer capacity <strong>of</strong> a mixture <strong>of</strong> <strong>buffers</strong> is additive.<br />
Buffers have both <strong>in</strong>tensive <strong>and</strong> extensive properties. The <strong>in</strong>tensive property is a<br />
function <strong>of</strong> <strong>the</strong> pK a<br />
value <strong>of</strong> <strong>the</strong> buffer acid or base. Most simple <strong>buffers</strong> work<br />
effectively <strong>in</strong> <strong>the</strong> pH scale <strong>of</strong> pK a<br />
± 1.0. The extensive property <strong>of</strong> <strong>the</strong> <strong>buffers</strong> is<br />
also known as <strong>the</strong> buffer capacity. It is a measure <strong>of</strong> <strong>the</strong> protection a buffer <strong>of</strong>fers<br />
aga<strong>in</strong>st changes <strong>in</strong> pH. Buffer capacity generally depends on <strong>the</strong> concentration<br />
<strong>of</strong> buffer solution. Buffers with higher concentrations <strong>of</strong>fer higher buffer<strong>in</strong>g<br />
capacity. On <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, pH is dependent not on <strong>the</strong> absolute concentrations<br />
<strong>of</strong> buffer components but on <strong>the</strong>ir ratio.<br />
Us<strong>in</strong>g <strong>the</strong> above equation we know that when pH = pK a<br />
<strong>the</strong> concentrations <strong>of</strong><br />
acetic acid <strong>and</strong> acetate ion are equal. Us<strong>in</strong>g a hypo<strong>the</strong>tical buffer system <strong>of</strong> HA<br />
(pK a<br />
= 7.0) <strong>and</strong> [A – ], we can demonstrate how <strong>the</strong> hydrogen ion concentration,<br />
[H + ], is relatively <strong>in</strong>sensitive to external <strong>in</strong>fluence beca<strong>use</strong> <strong>of</strong> <strong>the</strong> buffer<strong>in</strong>g<br />
action.<br />
For example:<br />
If 100 ml <strong>of</strong> 10 mM (1x 10 -2 M) HCl are added to 1.0 liter <strong>of</strong> 1.0 M NaCl at pH 7.0,<br />
<strong>the</strong> hydrogen ion concentration, [H + ], <strong>of</strong> <strong>the</strong> result<strong>in</strong>g 1.1 liter <strong>of</strong> solution can be<br />
calculated by us<strong>in</strong>g <strong>the</strong> follow<strong>in</strong>g equation:<br />
8
[H + ] x Vol = [H + ] o<br />
x Vol o<br />
where<br />
Vol o<br />
= <strong>in</strong>itial volume <strong>of</strong> HCl solution (<strong>in</strong> liters)<br />
[H + ] o<br />
= <strong>in</strong>itial hydrogen ion concentration (M)<br />
Vol = f<strong>in</strong>al volume <strong>of</strong> HCl + NaCl solutions (<strong>in</strong> liters)<br />
[H + ] = f<strong>in</strong>al hydrogen ion concentration <strong>of</strong> HCl + NaCl solution (M)<br />
Solv<strong>in</strong>g <strong>for</strong> [H + ]:<br />
[H + ] x 1.1 liter = 1.0 x 10 -2 x 0.1 = 1 x 10 -3<br />
[H + ] = 9.09 x 10 -4<br />
or pH = 3.04<br />
Thus, <strong>the</strong> addition <strong>of</strong> 1.0 x 10 -3 mol <strong>of</strong> hydrogen ion resulted <strong>in</strong> a pH change <strong>of</strong><br />
approximately 4 pH units (from 7.0 to 3.04).<br />
If a buffer is <strong>use</strong>d <strong>in</strong>stead <strong>of</strong> sodium chloride, a 1.0 M solution <strong>of</strong> HA at pH 7.0<br />
will <strong>in</strong>itially have:<br />
[HA] = [A] = 0.5 M<br />
[A]<br />
pH = pK + log ______<br />
[HA]<br />
0.5<br />
pH = 7.0 + log ______ 0.5<br />
or pH = 7.0<br />
When 100 ml <strong>of</strong> 1.0 x 10 -2 M (10 mM) HCl is added to this system, 1.0 x 10 -3 mol<br />
<strong>of</strong> A – is converted to 1.0 x 10 -3 mol <strong>of</strong> HA, with <strong>the</strong> follow<strong>in</strong>g result:<br />
0.499/1.1<br />
pH = 7.0 + log _______________<br />
0.501/1.1<br />
pH = 7.0 - 0.002 or pH = 6.998<br />
Hence, it is clear that <strong>in</strong> <strong>the</strong> absence <strong>of</strong> a suitable buffer system <strong>the</strong>re was a pH<br />
change <strong>of</strong> 4 pH units, whereas <strong>in</strong> a buffer system only a trivial change <strong>in</strong> pH was<br />
observed <strong>in</strong>dicat<strong>in</strong>g that <strong>the</strong> buffer system had successfully resisted a change <strong>in</strong><br />
pH. Generally, <strong>in</strong> <strong>the</strong> range from [A]/[HA] = 0.1 to [A]/[HA] = 10.0, effective<br />
buffer<strong>in</strong>g exists. However, beyond this range, <strong>the</strong> buffer<strong>in</strong>g capacity may be<br />
significantly reduced.<br />
9
Biological Buffers<br />
Biological <strong>buffers</strong> should meet <strong>the</strong> follow<strong>in</strong>g general criteria:<br />
• Their pK a<br />
should reside between 6.0 to 8.0.<br />
• They should exhibit high water solubility <strong>and</strong> m<strong>in</strong>imal solubility <strong>in</strong> organic<br />
solvents.<br />
• They should not permeate cell membranes.<br />
• They should not exhibit any toxicity towards cells.<br />
• The salt effect should be m<strong>in</strong>imum, however, salts can be added as required.<br />
• Ionic composition <strong>of</strong> <strong>the</strong> medium <strong>and</strong> temperature should have m<strong>in</strong>imal<br />
effect <strong>of</strong> buffer<strong>in</strong>g capacity.<br />
• Buffers should be stable <strong>and</strong> resistant to enzymatic degradation.<br />
• Buffer should not absorb ei<strong>the</strong>r <strong>in</strong> <strong>the</strong> visible or <strong>in</strong> <strong>the</strong> UV region.<br />
Most <strong>of</strong> <strong>the</strong> <strong>buffers</strong> <strong>use</strong>d <strong>in</strong> cell cultures, isolation <strong>of</strong> cells, enzyme assays, <strong>and</strong><br />
o<strong>the</strong>r <strong>biological</strong> applications must possess <strong>the</strong>se dist<strong>in</strong>ctive characteristics.<br />
Good's zwitterionic <strong>buffers</strong> meet <strong>the</strong>se criteria. They exhibit pK a<br />
values at or near<br />
physiological pH. They exhibit low <strong>in</strong>terference with <strong>biological</strong> processes due to<br />
<strong>the</strong> fact that <strong>the</strong>ir anionic <strong>and</strong> cationic sites are present as non-<strong>in</strong>teract<strong>in</strong>g<br />
carboxylate or sulfonate <strong>and</strong> cationic ammonium groups respectively.<br />
Buffer<strong>in</strong>g <strong>in</strong> Cells <strong>and</strong> Tissues<br />
A brief discussion <strong>of</strong> hydrogen ion regulation <strong>in</strong> <strong>biological</strong> <strong>systems</strong> highlights<br />
<strong>the</strong> importance <strong>of</strong> buffer<strong>in</strong>g <strong>systems</strong>. Am<strong>in</strong>o acids present <strong>in</strong> prote<strong>in</strong>s <strong>in</strong> cells <strong>and</strong><br />
tissues conta<strong>in</strong> functional groups that act as weak acid <strong>and</strong> bases. Nucleotides<br />
<strong>and</strong> several o<strong>the</strong>r low molecular weight metabolites that undergo ionization also<br />
contribute effectively to buffer<strong>in</strong>g <strong>in</strong> <strong>the</strong> cell. However, phosphate <strong>and</strong> bicarbonate<br />
buffer <strong>systems</strong> are most predom<strong>in</strong>ant <strong>in</strong> <strong>biological</strong> <strong>systems</strong>.<br />
The phosphate buffer system has a pK a<br />
<strong>of</strong> 6.86. Hence, it provides effective<br />
buffer<strong>in</strong>g <strong>in</strong> <strong>the</strong> pH range <strong>of</strong> 6.4 to 7.4. The bicarbonate buffer system plays an<br />
important role <strong>in</strong> buffer<strong>in</strong>g <strong>the</strong> blood system where <strong>in</strong> carbonic acid acts as a<br />
weak acid (proton donor) <strong>and</strong> bicarbonate acts as <strong>the</strong> conjugate base (proton<br />
acceptor). Their relationship can be expressed as follows:<br />
[H + ][HCO 3¯]<br />
K 1<br />
= ______________<br />
[H 2<br />
CO 3<br />
]<br />
In this system carbonic acid (H 2<br />
CO 3<br />
) is <strong>for</strong>med from dissolved carbon dioxide<br />
<strong>and</strong> water <strong>in</strong> a reversible manner. The pH <strong>of</strong> <strong>the</strong> bicarbonate system is dependent<br />
on <strong>the</strong> concentration <strong>of</strong> carbonic acid <strong>and</strong> bicarbonate ion. S<strong>in</strong>ce carbonic acid<br />
10
concentration is dependent upon <strong>the</strong> amount <strong>of</strong> dissolved carbon dioxide <strong>the</strong><br />
ultimate buffer<strong>in</strong>g capacity is dependent upon <strong>the</strong> amount <strong>of</strong> bicarbonate <strong>and</strong><br />
<strong>the</strong> partial pressure <strong>of</strong> carbon dioxide.<br />
+ _<br />
H + HCO 3<br />
H 2<br />
CO 2<br />
H 2<br />
OCO 2<br />
H 2<br />
O<br />
CO 2<br />
Blood<br />
Lung<br />
Air Space<br />
Figure 4: Relationship between bicarbonate buffer system <strong>and</strong> carbon dioxide.<br />
In air breath<strong>in</strong>g animals, <strong>the</strong> bicarbonate buffer system ma<strong>in</strong>ta<strong>in</strong>s pH near 7.4.<br />
This is possible due to <strong>the</strong> fact that carbonic acid <strong>in</strong> <strong>the</strong> blood is <strong>in</strong> equilibrium<br />
with <strong>the</strong> carbon dioxide present <strong>in</strong> <strong>the</strong> air. Figure 4 highlights <strong>the</strong> mechanism<br />
<strong>in</strong>volved <strong>in</strong> blood pH regulation by <strong>the</strong> bicarbonate buffer system. Any <strong>in</strong>crease<br />
<strong>in</strong> partial pressure <strong>of</strong> carbon dioxide (as <strong>in</strong> case <strong>of</strong> impaired ventilation) lowers<br />
<strong>the</strong> ratio <strong>of</strong> bicarbonate to pCO 2<br />
result<strong>in</strong>g <strong>in</strong> a decrease <strong>in</strong> pH (acidosis). The<br />
acidosis is reversed gradually when kidneys <strong>in</strong>crease <strong>the</strong> absorption <strong>of</strong> bicarbonate<br />
at <strong>the</strong> expense <strong>of</strong> chloride. Metabolic acidosis result<strong>in</strong>g from <strong>the</strong> loss <strong>of</strong><br />
bicarbonate ions (such as <strong>in</strong> severe diarrhea or due to <strong>in</strong>creased keto acid<br />
<strong>for</strong>mation) leads to severe metabolic complications warrant<strong>in</strong>g <strong>in</strong>travenous<br />
bicarbonate <strong>the</strong>rapy.<br />
Dur<strong>in</strong>g hyperventilation, when excessive amounts <strong>of</strong> carbon dioxide are<br />
elim<strong>in</strong>ated from <strong>the</strong> system (<strong>the</strong>reby lower<strong>in</strong>g <strong>the</strong> pCO 2<br />
), pH <strong>of</strong> <strong>the</strong> blood<br />
<strong>in</strong>creases result<strong>in</strong>g <strong>in</strong> alkalosis. This is commonly seen <strong>in</strong> conditions such as<br />
pulmonary embolism <strong>and</strong> hepatic failure. Metabolic alkalosis generally results<br />
when bicarbonate levels are higher <strong>in</strong> <strong>the</strong> blood. This is commonly observed after<br />
vomit<strong>in</strong>g <strong>of</strong> acidic gastric secretions. Kidneys compensate <strong>for</strong> alkalosis by<br />
<strong>in</strong>creas<strong>in</strong>g <strong>the</strong> excretion <strong>of</strong> bicarbonate ions. However, an obligatory loss <strong>of</strong><br />
sodium occurs under <strong>the</strong>se circumstances.<br />
In case <strong>of</strong> severe alkalosis <strong>the</strong> body is depleted <strong>of</strong> water, H + , Cl¯ <strong>and</strong> to some<br />
extent Na + . A detailed account <strong>of</strong> metabolic acidosis <strong>and</strong> alkalosis is beyond <strong>the</strong><br />
scope <strong>of</strong> this booklet. Readers are advised to consult a suitable text book <strong>of</strong><br />
physiology <strong>for</strong> more detailed <strong>in</strong><strong>for</strong>mation on <strong>the</strong> mechanisms <strong>in</strong>volved.<br />
11
Effect <strong>of</strong> Temperature on pH<br />
Generally when we consider <strong>the</strong> <strong>use</strong> <strong>of</strong> <strong>buffers</strong> we make follow<strong>in</strong>g two assumptions.<br />
(a) The activity coefficients <strong>of</strong> <strong>the</strong> buffer ions is approximately equal to 1<br />
over <strong>the</strong> <strong>use</strong>ful range <strong>of</strong> buffer concentrations<br />
(b) The value <strong>of</strong> K a<br />
is constant over <strong>the</strong> work<strong>in</strong>g range <strong>of</strong> temperature.<br />
However, <strong>in</strong> real practice one observes that pH changes slightly with change <strong>in</strong><br />
temperature. This might be very critical <strong>in</strong> <strong>biological</strong> <strong>systems</strong> where a precise<br />
hydrogen ion concentration is required <strong>for</strong> reaction <strong>systems</strong> to operate with<br />
maximum efficiency. Figure 5 presents <strong>the</strong> effect <strong>of</strong> temperature on <strong>the</strong> pH <strong>of</strong><br />
phosphate buffer. The difference might appear to be slight but it has significant<br />
<strong>biological</strong> importance. Although <strong>the</strong> ma<strong>the</strong>matical relationship <strong>of</strong> activity <strong>and</strong><br />
temperature may be complicated, <strong>the</strong> actual change <strong>of</strong> pK a<br />
with temperature<br />
(∆pK a<br />
/°C) is approximately l<strong>in</strong>ear. Table 2 presents <strong>the</strong> pK a<br />
<strong>and</strong> ∆pK a<br />
/°C <strong>for</strong> several<br />
selected zwitterionic <strong>buffers</strong> commonly <strong>use</strong>d <strong>in</strong> <strong>biological</strong> experimentation.<br />
6.7<br />
6.8<br />
pH<br />
6.9<br />
7.0<br />
0 10 20 30 40<br />
Temperature, ºC<br />
Figure 5: Effect <strong>of</strong> Temperature on pH <strong>of</strong> Phosphate Buffer<br />
12
Table 2: pK a<br />
<strong>and</strong> DpK a<br />
/°C <strong>of</strong> Selected Buffers<br />
Buffer<br />
M.W.<br />
pK a<br />
pK a<br />
DpK a<br />
/°C B<strong>in</strong>d<strong>in</strong>g to<br />
(20°C) (37°C) Metal Ions<br />
MES 195.2 6.15 5.97 -0.011 Negligible metal ion b<strong>in</strong>d<strong>in</strong>g<br />
ADA 212.2 6.60 6.43 -0.011 Cu 2+ , Ca 2+ , Mn 2+ . Weaker<br />
b<strong>in</strong>d<strong>in</strong>g with Mg 2+ .<br />
BIS-Tris Propane* 282.4 6.80 — -0.016 —<br />
PIPES 302.4 6.80 6.66 -0.009 Negligible metal ion b<strong>in</strong>d<strong>in</strong>g<br />
ACES 182.2 6.90 6.56 -0.020 Cu 2+ . Does not b<strong>in</strong>d Mg 2+ ,<br />
Ca 2+ , or Mn 2+ .<br />
BES 213.3 7.15 6.88 -0.016 Cu 2+ . Does not b<strong>in</strong>d<br />
Mg 2+ , Ca 2+ , or Mn 2+ .<br />
MOPS 209.3 7.20 6.98 -0.006 Negligible metal ion b<strong>in</strong>d<strong>in</strong>g<br />
TES 229.3 7.50 7.16 -0.020 Slightly to Cu 2+ . Does not b<strong>in</strong>d<br />
Mg 2+ , Ca 2+ , or Mn 2+ .<br />
HEPES 238.3 7.55 7.30 -0.014 None<br />
HEPPS 252.3 8.00 7.80 -0.007 None<br />
Tric<strong>in</strong>e 179.2 8.15 7.79 -0.021 Cu 2+ . Weaker b<strong>in</strong>d<strong>in</strong>g<br />
with Ca 2+ , Mg 2+ , <strong>and</strong> Mn 2+ .<br />
Tris* 121.1 8.30 7.82 -0.031 Negligible metal ion b<strong>in</strong>d<strong>in</strong>g<br />
Bic<strong>in</strong>e 163.2 8.35 8.04 -0.018 Cu 2+ . Weaker b<strong>in</strong>d<strong>in</strong>g<br />
with Ca 2+ , Mg 2+ , <strong>and</strong> Mn 2+ .<br />
Glycylglyc<strong>in</strong>e 132.1 8.40 7.95 -0.028 Cu 2+ . Weaker<br />
b<strong>in</strong>d<strong>in</strong>g with Mn 2+ .<br />
CHES 207.3 9.50 9.36 -0.009 —<br />
CAPS 221.32 10.40 10.08 -0.009 —<br />
* Not a zwitterionic buffer<br />
Effects <strong>of</strong> Buffers on Factors O<strong>the</strong>r than pH<br />
It is <strong>of</strong> utmost importance that researchers establish <strong>the</strong> criteria <strong>and</strong> determ<strong>in</strong>e<br />
<strong>the</strong> suitability <strong>of</strong> a particular buffer system. Some weak acids <strong>and</strong> bases may<br />
<strong>in</strong>terfere with <strong>the</strong> reaction system. For example, citrate <strong>and</strong> phosphate <strong>buffers</strong> are<br />
not recommended <strong>for</strong> <strong>systems</strong> that are highly calcium-dependent. Citric acid <strong>and</strong><br />
its salts are powerful calcium chelators. Phosphates react with calcium produc<strong>in</strong>g<br />
<strong>in</strong>soluble calcium phosphate that precipitates out <strong>of</strong> <strong>the</strong> system. Phosphate ions<br />
<strong>in</strong> <strong>buffers</strong> can <strong>in</strong>hibit <strong>the</strong> activity <strong>of</strong> some enzymes, such as carboxypeptidase,<br />
fumarease, carboxylase, <strong>and</strong> phosphoglucomutase.<br />
Tris(hydroxy-methyl)am<strong>in</strong>omethane can chelate copper <strong>and</strong> also acts as a<br />
competitive <strong>in</strong>hibitor <strong>of</strong> some enzymes. O<strong>the</strong>r <strong>buffers</strong> such as ACES, BES, <strong>and</strong><br />
TES, have a tendency to b<strong>in</strong>d copper. Tris-based <strong>buffers</strong> are not recommended<br />
when study<strong>in</strong>g <strong>the</strong> metabolic effects <strong>of</strong> <strong>in</strong>sul<strong>in</strong>. Buffers such as HEPES <strong>and</strong><br />
HEPPS are not suitable when a prote<strong>in</strong> assay is per<strong>for</strong>med by us<strong>in</strong>g Fol<strong>in</strong><br />
reagent. Buffers with primary am<strong>in</strong>e groups, such as Tris, may <strong>in</strong>terfere with <strong>the</strong><br />
Brad<strong>for</strong>d dye-b<strong>in</strong>d<strong>in</strong>g method <strong>of</strong> prote<strong>in</strong> assay. Borate <strong>buffers</strong> are not suitable <strong>for</strong><br />
gel electrophoresis <strong>of</strong> prote<strong>in</strong>, <strong>the</strong>y can ca<strong>use</strong> spread<strong>in</strong>g <strong>of</strong> <strong>the</strong> zones if polyols<br />
are present <strong>in</strong> <strong>the</strong> medium.<br />
13
Use <strong>of</strong> Water-Miscible Organic Solvents<br />
Most pH measurements <strong>in</strong> <strong>biological</strong> <strong>systems</strong> are per<strong>for</strong>med <strong>in</strong> <strong>the</strong> aqueous<br />
phase. However, sometimes mixed aqueous-water-miscible solvents, such as<br />
methanol or ethanol, are <strong>use</strong>d <strong>for</strong> dissolv<strong>in</strong>g compounds <strong>of</strong> <strong>biological</strong> importance.<br />
These organic solvents have dissociation constants that are very low<br />
compared to that <strong>of</strong> pure water or <strong>of</strong> aqueous <strong>buffers</strong> (<strong>for</strong> example, <strong>the</strong> dissociation<br />
constant <strong>of</strong> methanol at 25°C is 1.45 x 10 -17 , compared to 1.0 x 10 -14 <strong>for</strong><br />
water). Small amounts <strong>of</strong> methanol or ethanol added to <strong>the</strong> aqueous medium will<br />
not affect <strong>the</strong> pH <strong>of</strong> <strong>the</strong> buffer. However, even small traces <strong>of</strong> water <strong>in</strong> methanol<br />
or DMSO can significantly change <strong>the</strong> pH <strong>of</strong> <strong>the</strong>se organic solvents.<br />
Solubility Equilibrium: Effect <strong>of</strong> pH on Solubility<br />
A brief discussion <strong>of</strong> <strong>the</strong> effect <strong>of</strong> pH on solubility is <strong>of</strong> significant importance<br />
when dissolution <strong>of</strong> compounds <strong>in</strong>to solvents is under consideration. Changes <strong>in</strong><br />
pH can affect <strong>the</strong> solubility <strong>of</strong> partially soluble ionic compounds.<br />
Example:<br />
Here<br />
Mg(OH) 2<br />
→ ← Mg 2+ + 2OH¯<br />
[Mg 2+ ] [OH¯ ] 2<br />
K = ________________<br />
[Mg(OH) 2<br />
]<br />
As a result <strong>of</strong> <strong>the</strong> common ion effect, <strong>the</strong> solubility <strong>of</strong> Mg(OH) 2<br />
can be <strong>in</strong>creased<br />
or decreased. When a base is added <strong>the</strong> concentration <strong>of</strong> OH¯ <strong>in</strong>creases <strong>and</strong> shifts<br />
<strong>the</strong> solubility equilibrium to <strong>the</strong> left caus<strong>in</strong>g a dim<strong>in</strong>ution <strong>in</strong> <strong>the</strong> solubility <strong>of</strong><br />
Mg(OH) 2<br />
. When an acid is added to <strong>the</strong> solution, it neutralizes <strong>the</strong> OH¯ <strong>and</strong> shifts<br />
<strong>the</strong> solubility equilibrium to <strong>the</strong> right. This results <strong>in</strong> <strong>in</strong>creased dissolution <strong>of</strong><br />
Mg(OH) 2<br />
.<br />
14
pH Measurements: Some Useful Tips<br />
1. A pH meter may require a warm up time <strong>of</strong> several m<strong>in</strong>utes. When a pH<br />
meter is rout<strong>in</strong>ely <strong>use</strong>d <strong>in</strong> <strong>the</strong> laboratory, it is better to leave it “ON” with <strong>the</strong><br />
function switch at “st<strong>and</strong>by.”<br />
2. Set <strong>the</strong> temperature control knob to <strong>the</strong> temperature <strong>of</strong> your buffer solution.<br />
Always warm or cool your buffer to <strong>the</strong> desired temperature be<strong>for</strong>e check<strong>in</strong>g<br />
f<strong>in</strong>al pH.<br />
3. Be<strong>for</strong>e you beg<strong>in</strong> make sure <strong>the</strong> electrode is well r<strong>in</strong>sed with deionized water<br />
<strong>and</strong> wiped <strong>of</strong>f with a clean absorbent paper.<br />
4. Always r<strong>in</strong>se <strong>and</strong> wipe <strong>the</strong> electrode when switch<strong>in</strong>g from one solution to<br />
ano<strong>the</strong>r.<br />
5. Calibrate your pH meter by us<strong>in</strong>g at least two st<strong>and</strong>ard buffer solutions.<br />
6. Do not allow <strong>the</strong> electrode to touch <strong>the</strong> sides or bottom <strong>of</strong> your conta<strong>in</strong>er.<br />
When us<strong>in</strong>g a magnetic bar to stir <strong>the</strong> solution make sure <strong>the</strong> electrode tip is<br />
high enough to prevent any damage.<br />
7. Do not stir <strong>the</strong> solution while tak<strong>in</strong>g <strong>the</strong> read<strong>in</strong>g.<br />
8. Inspect your electrode periodically. The liquid level should be ma<strong>in</strong>ta<strong>in</strong>ed as<br />
per <strong>the</strong> specification provided with <strong>the</strong> <strong>in</strong>strument .<br />
9. Glass electrodes should not be left immersed <strong>in</strong> solution any longer than<br />
necessary. This is important especially when us<strong>in</strong>g a solution conta<strong>in</strong><strong>in</strong>g<br />
prote<strong>in</strong>s. After several pH measurements <strong>of</strong> solutions conta<strong>in</strong><strong>in</strong>g prote<strong>in</strong>s,<br />
r<strong>in</strong>se <strong>the</strong> electrode <strong>in</strong> a mild alkali solution <strong>and</strong> <strong>the</strong>n wash several times with<br />
deionized water.<br />
10. Water <strong>use</strong>d <strong>for</strong> <strong>preparation</strong> <strong>of</strong> <strong>buffers</strong> should be <strong>of</strong> <strong>the</strong> highest possible purity.<br />
Water obta<strong>in</strong>ed by a method comb<strong>in</strong><strong>in</strong>g deionzation <strong>and</strong> distillation is highly<br />
recommended.<br />
11. To avoid any contam<strong>in</strong>ation do not store water <strong>for</strong> longer than necessary. Store<br />
water <strong>in</strong> tightly sealed conta<strong>in</strong>ers to m<strong>in</strong>imize <strong>the</strong> amount <strong>of</strong> dissolved gases.<br />
12. One may sterile-filter <strong>the</strong> buffer solution to prevent any bacterial or fungal<br />
growth. This is important when large quantities <strong>of</strong> <strong>buffers</strong> are prepared <strong>and</strong><br />
stored over a long period <strong>of</strong> time.<br />
15
CHOOSING A BUFFER<br />
1. Recognize <strong>the</strong> importance <strong>of</strong> <strong>the</strong> pK a<br />
. Select a buffer that has a pK a<br />
value<br />
close to <strong>the</strong> middle <strong>of</strong> <strong>the</strong> range required. If you expect <strong>the</strong> pH to drop dur<strong>in</strong>g<br />
<strong>the</strong> experiment, choose a buffer with a pK a<br />
slightly lower than <strong>the</strong> work<strong>in</strong>g<br />
pH. This will permit <strong>the</strong> buffer<strong>in</strong>g action to become more resistant to changes<br />
<strong>in</strong> hydrogen ion concentration as hydrogen ions are liberated. Conversely, if<br />
you expect <strong>the</strong> pH to rise dur<strong>in</strong>g <strong>the</strong> experiment, choose a buffer with a pK a<br />
slightly higher than <strong>the</strong> work<strong>in</strong>g pH. For best results, <strong>the</strong> pK a<br />
<strong>of</strong> <strong>the</strong> buffer<br />
should not be affected significantly by buffer concentration, temperature,<br />
<strong>and</strong> <strong>the</strong> ionic constitution <strong>of</strong> <strong>the</strong> medium.<br />
2. Adjust pH at desired temperature. The pK a<br />
<strong>of</strong> a buffer, <strong>and</strong> hence <strong>the</strong> pH,<br />
changes slightly with temperature. It is best to adjust <strong>the</strong> f<strong>in</strong>al pH at <strong>the</strong><br />
desired temperature.<br />
3. Prepare <strong>buffers</strong> at work<strong>in</strong>g conditions. Always try to prepare your buffer<br />
solution at <strong>the</strong> temperature <strong>and</strong> concentration you plan to <strong>use</strong> dur<strong>in</strong>g <strong>the</strong><br />
experiment. If you prepare stock solutions make dilutions just prior to <strong>use</strong>.<br />
4. Purity <strong>and</strong> cost. Compounds <strong>use</strong>d should be stable <strong>and</strong> be available <strong>in</strong> high<br />
purity <strong>and</strong> at moderate cost.<br />
5. Spectral properties: Buffer materials should have no significant absorbance<br />
between 240 to 700 nm range.<br />
6. Some weak acids (or bases) are unsuitable <strong>for</strong> <strong>use</strong> as <strong>buffers</strong> <strong>in</strong> certa<strong>in</strong><br />
cases. Citrate <strong>and</strong> phosphate <strong>buffers</strong> are not suitable <strong>for</strong> <strong>systems</strong> that are<br />
highly calcium-dependent. Citric acid <strong>and</strong> its salts are chelators <strong>of</strong> calcium<br />
<strong>and</strong> calcium phosphates are <strong>in</strong>soluble <strong>and</strong> will precipitate out. Use <strong>of</strong> <strong>the</strong>se<br />
<strong>buffers</strong> may lower <strong>the</strong> calcium levels required <strong>for</strong> optimum reaction. Tris<br />
(hydroxymethyl) am<strong>in</strong>omethane is known to chelate calcium <strong>and</strong> o<strong>the</strong>r<br />
essential metals.<br />
7. Buffer materials <strong>and</strong> <strong>the</strong>ir salts can be <strong>use</strong>d toge<strong>the</strong>r <strong>for</strong> convenient<br />
buffer <strong>preparation</strong>. Many buffer materials are supplied both as a free acid<br />
(or base) <strong>and</strong> its correspond<strong>in</strong>g salt. This is convenient when mak<strong>in</strong>g a series<br />
<strong>of</strong> <strong>buffers</strong> with different pH’s. For example, solutions <strong>of</strong> 0.1 M HEPES <strong>and</strong> 0.1<br />
M HEPES, sodium salt, can be mixed <strong>in</strong> an <strong>in</strong>f<strong>in</strong>ite number <strong>of</strong> ratios between<br />
10:1 <strong>and</strong> 1:0 to provide 0.1 M HEPES buffer with pH values rang<strong>in</strong>g from<br />
6.55 to 8.55.<br />
16
8. Use stock solutions to prepare phosphate <strong>buffers</strong>. Mix<strong>in</strong>g precalculated<br />
amounts <strong>of</strong> monobasic <strong>and</strong> dibasic sodium phosphates has long been<br />
established as <strong>the</strong> method <strong>of</strong> choice <strong>for</strong> prepar<strong>in</strong>g phosphate buffer. By<br />
mix<strong>in</strong>g <strong>the</strong> appropriate amounts <strong>of</strong> monobasic <strong>and</strong> dibasic sodium phosphate<br />
solutions <strong>buffers</strong> <strong>in</strong> <strong>the</strong> desired pH range can be prepared (see examples on<br />
page 17).<br />
9. Adjust buffer materials to <strong>the</strong> work<strong>in</strong>g pH. Many <strong>buffers</strong> are supplied as<br />
crystall<strong>in</strong>e acids or bases. The pH <strong>of</strong> <strong>the</strong>se buffer materials <strong>in</strong> solution will<br />
not be near <strong>the</strong> pK a<br />
, <strong>and</strong> <strong>the</strong> materials will not exhibit any buffer<strong>in</strong>g<br />
capacity until <strong>the</strong> pH is adjusted. In practice, a buffer material with a pK a<br />
near <strong>the</strong> desired work<strong>in</strong>g pH is selected. If this buffer material is a free acid,<br />
pH is adjusted to desired work<strong>in</strong>g pH level by us<strong>in</strong>g a base such as sodium<br />
hydroxide, potassium hydroxide, or tetramethyl-ammonium hydroxide.<br />
Alternatively, pH <strong>for</strong> buffer materials obta<strong>in</strong>ed as free bases must be adjusted<br />
by add<strong>in</strong>g a suitable acid.<br />
10. Use <strong>buffers</strong> without m<strong>in</strong>eral cations when appropriate. Frequently,<br />
<strong>buffers</strong> without m<strong>in</strong>eral cations are appropriate. Tetramethylammonium<br />
hydroxide fits this criterion. The basicity <strong>of</strong> this organic quaternary am<strong>in</strong>e is<br />
equivalent to that <strong>of</strong> sodium or potassium hydroxide. Buffers prepared with<br />
this base can be supplemented at will with various <strong>in</strong>organic cations dur<strong>in</strong>g<br />
<strong>the</strong> evaluation <strong>of</strong> m<strong>in</strong>eral ion effects on enzymes or o<strong>the</strong>r bioparticulate<br />
activities.<br />
11. Use a graph to calculate buffer composition. Figure 6 shows <strong>the</strong><br />
<strong>the</strong>oretical plot <strong>of</strong> ∆pH versus [A - ]/[HA] on two-cycle semilog paper. As most<br />
commonly <strong>use</strong>d <strong>buffers</strong> exhibit only trivial deviations from <strong>the</strong>oretical value<br />
<strong>in</strong> <strong>the</strong> pH range, this plot can be <strong>of</strong> immense value <strong>in</strong> calculat<strong>in</strong>g <strong>the</strong> relative<br />
amounts <strong>of</strong> buffer components required <strong>for</strong> a particular pH.<br />
For example, suppose one needs 0.1 M MOPS buffer, pH 7.6 at 20°C. At<br />
20°C, <strong>the</strong> pK a<br />
<strong>for</strong> MOPS is 7.2. Thus, <strong>the</strong> work<strong>in</strong>g pH is about 0.4 pH units<br />
above <strong>the</strong> reported pK a<br />
. Accord<strong>in</strong>g to <strong>the</strong> chart presented, this pH corresponds<br />
to a MOPS sodium/MOPS ratio <strong>of</strong> 2.5, <strong>and</strong> 0.1 M solutions <strong>of</strong> MOPS<br />
<strong>and</strong> MOPS sodium mixed <strong>in</strong> this ratio will give <strong>the</strong> required pH. If any<br />
significant deviations from <strong>the</strong>oretical values are observed one should check<br />
<strong>the</strong> proper work<strong>in</strong>g conditions <strong>and</strong> specifications <strong>of</strong> <strong>the</strong>ir pH meter. The<br />
graph can also be <strong>use</strong>d to calculate <strong>the</strong> amount <strong>of</strong> acid (or base) required to<br />
adjust a free base buffer material (or free acid buffer material) to <strong>the</strong> desired<br />
work<strong>in</strong>g pH.<br />
17
10<br />
987<br />
6<br />
5<br />
4<br />
3<br />
2<br />
[A - ]/[HA]<br />
1<br />
0.9<br />
0.8<br />
0.7<br />
0.6<br />
0.5<br />
0.4<br />
0.3<br />
0.2<br />
0.1<br />
0.1 -0.8 -0.6 -0.4 -0.2 pK a 0.2 0.4 0.6 0.8 1.0<br />
∆ pH from pK a<br />
Figure 6: Theoretical plot <strong>of</strong> DpH versus [A - ]/[HA] on two-cycle semilog paper.<br />
Preparation <strong>of</strong> Some Common Buffers <strong>for</strong> Use <strong>in</strong> Biological<br />
Systems<br />
The <strong>in</strong><strong>for</strong>mation provided below is <strong>in</strong>tended only as a general <strong>guide</strong>l<strong>in</strong>e. We<br />
strongly recommend <strong>the</strong> <strong>use</strong> <strong>of</strong> a sensitive pH meter with appropriate temperature<br />
sett<strong>in</strong>g <strong>for</strong> f<strong>in</strong>al pH adjustment. Addition <strong>of</strong> o<strong>the</strong>r chemicals, after adjust<strong>in</strong>g<br />
<strong>the</strong> pH, may change <strong>the</strong> f<strong>in</strong>al pH value to some extent. The buffer concentrations<br />
<strong>in</strong> <strong>the</strong> tables below are <strong>use</strong>d only as examples. You may select higher or<br />
lower concentrations depend<strong>in</strong>g upon your experimental needs.<br />
1. Hydrochloric Acid-Potassium Chloride Buffer (HCl-KCl); pH Range 1.0<br />
to 2.2<br />
(a) 0.1 M Potassium chloride : 7.45 g/l (M.W.: 74.5)<br />
(b) 0.1 M Hydrochloric acid<br />
Mix 50 ml <strong>of</strong> potassium chloride <strong>and</strong> <strong>in</strong>dicated volume <strong>of</strong> hydrochloric acid.<br />
Mix <strong>and</strong> adjust <strong>the</strong> f<strong>in</strong>al volume to 100 ml with deionized water. Adjust <strong>the</strong> f<strong>in</strong>al<br />
pH us<strong>in</strong>g a sensitive pH meter.<br />
ml <strong>of</strong> HCl 97 64.5 41.5 26.3 16.6 10.6 6.7<br />
pH 1.0 1.2 1.4 1.6 1.8 2.0 2.2<br />
18
2. Glyc<strong>in</strong>e-HCl Buffer; pH range 2.2 to 3.6<br />
(a) 0.1 M Glyc<strong>in</strong>e: 7.5 g/l (M.W.: 75.0)<br />
(b) 0.1 M Hydrochloric acid<br />
Mix 50 ml <strong>of</strong> glyc<strong>in</strong>e <strong>and</strong> <strong>in</strong>dicated volume <strong>of</strong> hydrochloric acid. Mix <strong>and</strong> adjust<br />
<strong>the</strong> f<strong>in</strong>al volume to 100 ml with deionized water. Adjust <strong>the</strong> f<strong>in</strong>al pH us<strong>in</strong>g a<br />
sensitive pH meter.<br />
ml <strong>of</strong> HCl 44.0 32.4 24.2 16.8 11.4 8.2 6.4 5.0<br />
pH 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6<br />
3. Citrate Buffer; pH range 3.0 to 6.2<br />
(a) 0.1 M Citric acid: 19.21 g/l (M.W.: 192.1)<br />
(b) 0.1 M Sodium citrate dihydrate: 29.4 g/l (M.W.: 294.0)<br />
Mix citric acid <strong>and</strong> sodium citrate solutions <strong>in</strong> <strong>the</strong> proportions <strong>in</strong>dicated <strong>and</strong><br />
adjust <strong>the</strong> f<strong>in</strong>al volume to 100 ml with deionized water. Adjust <strong>the</strong> f<strong>in</strong>al pH us<strong>in</strong>g<br />
a sensitive pH meter. The <strong>use</strong> <strong>of</strong> pentahydrate salt <strong>of</strong> sodium citrate is not<br />
recommended.<br />
ml <strong>of</strong> Citric acid 46.5 40.0 35.0 31.5 25.5 20.5 16.0 11.8 7.2<br />
ml <strong>of</strong> Sodium citrate 3.5 10.0 15.0 18.5 24.5 29.5 34.0 38.2 42.8<br />
pH 3.0 3.4 3.8 4.2 4.6 5.0 5.4 5.8 6.2<br />
4. Acetate Buffer; pH range 3.6 to 5.6<br />
(a) 0.1 M Acetic acid (5.8 ml made to 1000 ml)<br />
(b) 0.1 M Sodium acetate; 8.2 g/l (anhydrous; M.W. 82.0) or 13.6 g/l<br />
(trihydrate; M.W. 136.0)<br />
Mix acetic acid <strong>and</strong> sodium acetate solutions <strong>in</strong> <strong>the</strong> proportions <strong>in</strong>dicated <strong>and</strong><br />
adjust <strong>the</strong> f<strong>in</strong>al volume to 100 ml with deionized water. Adjust <strong>the</strong> f<strong>in</strong>al pH us<strong>in</strong>g<br />
a sensitive pH meter.<br />
ml <strong>of</strong> Acetic acid 46.3 41.0 30.5 20.0 14.8 10.5 4.8<br />
ml <strong>of</strong> Sodium acetate 3.7 9.0 19.5 30.0 35.2 39.5 45.2<br />
pH 3.6 4.0 4.4 4.8 5.0 5.2 5.6<br />
19
5. Citrate-Phosphate Buffer; pH range 2.6 to 7.0<br />
(a) 0.1 M Citric acid; 19.21 g/l (M.W. 192.1)<br />
(b) 0.2 M Dibasic sodium phosphate; 35.6 g/l (dihydrate; M.W. 178.0)<br />
or 53.6 g/l (heptahydrate; M.W. 268.0)<br />
Mix citric acid <strong>and</strong> sodium phosphate solutions <strong>in</strong> <strong>the</strong> proportions <strong>in</strong>dicated <strong>and</strong><br />
adjust <strong>the</strong> f<strong>in</strong>al volume to 100 ml with deionized water. Adjust <strong>the</strong> f<strong>in</strong>al pH us<strong>in</strong>g<br />
a sensitive pH meter.<br />
ml <strong>of</strong> Citric acid 44.6 39.8 35.9 32.3 29.4 26.7 24.3 22.2 19.7 16.9 13.6 6.5<br />
ml <strong>of</strong> Sodium<br />
phosphate<br />
5.4 10.2 14.1 17.7 20.6 23.3 25.7 27.8 30.3 33.1 36.4 43.6<br />
pH 2.6 3.0 3.4 3.8 4.2 4.6 5.0 5.4 5.8 6.2 6.6 7.0<br />
6. Phosphate Buffer; pH range 5.8 to 8.0<br />
(a) 0.1 M Sodium phosphate monobasic; 13.8 g/l (monohydrate, M.W. 138.0)<br />
(b) 0.1 M Sodium phosphate dibasic; 26.8 g/l (heptahydrate, M.W. 268.0)<br />
Mix Sodium phosphate monobasic <strong>and</strong> dibasic solutions <strong>in</strong> <strong>the</strong> proportions<br />
<strong>in</strong>dicated <strong>and</strong> adjust <strong>the</strong> f<strong>in</strong>al volume to 200 ml with deionized water. Adjust <strong>the</strong><br />
f<strong>in</strong>al pH us<strong>in</strong>g a sensitive pH meter.<br />
ml <strong>of</strong> Sodium<br />
phosphate, Monobasic<br />
92.0 81.5 73.5 62.5 51.0 39.0 28.0 19.0 13.0 8.5 5.3<br />
ml <strong>of</strong> Sodium<br />
phosphate, Dibasic<br />
8.0 18.5 26.5 37.5 49.0 61.0 72.0 81.0 87.0 91.5 94.7<br />
pH 5.8 6.2 6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8 8.0<br />
7. Tris-HCl Buffer, pH range 7.2 to 9.0<br />
(a) 0.1 M Tris(hydroxymethyl)am<strong>in</strong>omethane; 12.1 g/l (M.W.: 121.0)<br />
(b) 0.1 M Hydrochloric acid<br />
Mix 50 ml <strong>of</strong> Tris(hydroxymethyl)am<strong>in</strong>omethane <strong>and</strong> <strong>in</strong>dicated volume <strong>of</strong><br />
hydrochloric acid <strong>and</strong> adjust <strong>the</strong> f<strong>in</strong>al volume to 200 ml with deionized water.<br />
Adjust <strong>the</strong> f<strong>in</strong>al pH us<strong>in</strong>g a sensitive pH meter.<br />
ml <strong>of</strong> HCl 44.2 41.4 38.4 32.5 21.9 12.2 5.0<br />
pH 7.2 7.4 7.6 7.8 8.2 8.6 9.0<br />
20
8. Glyc<strong>in</strong>e-Sodium Hydroxide, pH 8.6 to 10.6<br />
(a) 0.1 M Glyc<strong>in</strong>e; 7.5 g/l (M.W.: 75.0)<br />
(b) 0.1 M Sodium hydroxide; 4.0 g/l (M.W.: 40.0)<br />
Mix 50 ml <strong>of</strong> glyc<strong>in</strong>e <strong>and</strong> <strong>in</strong>dicated volume <strong>of</strong> sodium hydroxide solutions <strong>and</strong><br />
adjust <strong>the</strong> f<strong>in</strong>al volume to 200 ml with deionized water. Adjust <strong>the</strong> f<strong>in</strong>al pH us<strong>in</strong>g<br />
a sensitive pH meter.<br />
ml Sodium hydroxide 4.0 8.8 16.8 27.2 32.0 38.6 45.5<br />
pH 8.6 9.0 9.4 9.8 10.0 10.4 10.6<br />
9. Carbonate-Bicarbonate Buffer, pH range 9.2 to 10.6<br />
(a) 0.1 M Sodium carbonate (anhydrous), 10.6 g/l (M.W.: 106.0)<br />
(b) 0.1 M Sodium bicarbonate, 8.4 g/l (M.W.: 84.0)<br />
Mix sodium carbonate <strong>and</strong> sodium bicarbonate solutions <strong>in</strong> <strong>the</strong> proportions<br />
<strong>in</strong>dicated <strong>and</strong> adjust <strong>the</strong> f<strong>in</strong>al volume to 200 ml with deionized water. Adjust <strong>the</strong><br />
f<strong>in</strong>al pH us<strong>in</strong>g a sensitive pH meter.<br />
ml <strong>of</strong> Sodium carbonate 4.0 9.5 16.0 22.0 27.5 33.0 38.5 42.5<br />
ml <strong>of</strong> Sodium bicarbonate 46.0 40.5 34.0 28.0 22.5 17.0 11.5 7.5<br />
pH 9.2 9.4 9.6 9.8 10.0 10.2 10.4 10.6<br />
CALBIOCHEM®<br />
Your Source <strong>for</strong> High Quality<br />
PROTEIN GRADE®<br />
<strong>and</strong><br />
ULTROL® GRADE<br />
Detergents <strong>for</strong> Over 50 Years.<br />
www.calbiochem.com<br />
21
Commonly Used Buffer Media <strong>in</strong> Biological Research<br />
Krebs-Henseleit bicarbonate buffer, pH 7.4<br />
119 mM NaCl<br />
4.7 mM KCl<br />
2.5 mM CaCl 2<br />
1.2 mM MgSO 4<br />
1.2 mM KH 2<br />
PO 4<br />
25 mM NaHCO 3<br />
pH 7.4 (at 37°C) when equilibrated with 95% O 2<br />
<strong>and</strong> 5% CO 2<br />
. Adjust <strong>the</strong> pH<br />
be<strong>for</strong>e <strong>use</strong>.<br />
Hank’s Biocarbonate Buffer, pH 7.4<br />
137 mM NaCl<br />
5.4 mM KCl<br />
0.25 mM Na 2<br />
HPO 4<br />
0.44 mM KH 2<br />
PO 4<br />
1.3 mM CaCl 2<br />
1.0 mM MgSO 4<br />
4.2 mM NaHCO 3<br />
pH 7.4 (at 37°C) when equilibrated with 95% O 2<br />
<strong>and</strong> 5% CO 2<br />
. Adjust <strong>the</strong> pH<br />
be<strong>for</strong>e <strong>use</strong>.<br />
Phosphate Buffered Sal<strong>in</strong>e (PBS), pH 7.4<br />
150 mM NaCl<br />
10 mM Potassium Phosphate buffer<br />
(1 liter PBS can be prepared by dissolv<strong>in</strong>g 8.7 g NaCl, 1.82 g<br />
K 2<br />
HPO 4<br />
.3H 2<br />
O, <strong>and</strong> 0.23 g KH 2<br />
PO 4<br />
<strong>in</strong> 1 liter <strong>of</strong> distilled water.<br />
Adjust <strong>the</strong> pH be<strong>for</strong>e <strong>use</strong>).<br />
A variation <strong>of</strong> PBS can also be prepared as follows:<br />
137 mM NaCl<br />
2.7 mM KCl<br />
10 mM Na 2<br />
HPO 4<br />
1.76 mM KH 2<br />
PO 4<br />
22
Tris Buffered Sal<strong>in</strong>e (TBS), pH 7.4<br />
10 mM Tris<br />
150 mM NaCl<br />
(1 liter <strong>of</strong> TBS can be prepared by dissolv<strong>in</strong>g 1.21 g <strong>of</strong> Tris base <strong>and</strong><br />
8.7 g <strong>of</strong> NaCl <strong>in</strong> 1 liter <strong>of</strong> distilled water. Adjust <strong>the</strong> pH be<strong>for</strong>e <strong>use</strong>.<br />
Note: Tris has a pK a<br />
<strong>of</strong> 8.3. Hence, <strong>the</strong> buffer<strong>in</strong>g capacity at pH 7.4<br />
is m<strong>in</strong>imal compared to phosphate buffer (pK a<br />
= 7.21).<br />
TBST (Tris Buffered sal<strong>in</strong>e <strong>and</strong> TWEEN®-20)<br />
10 mM Tris-HCl, pH 8.0<br />
150 mM NaCl<br />
0.1% TWEEN®-20<br />
Stripp<strong>in</strong>g Buffer <strong>for</strong> Western Blott<strong>in</strong>g Applications<br />
62.5 mM Tris buffer, pH 6.7 to 6.8<br />
2% Sodium dodecyl sulfate (SDS)<br />
100 mM β-Mercaptoethanol<br />
Cell Lysis Buffer<br />
20 mM Tris-HCl (pH 7.5)<br />
150 mM NaCl<br />
1 mM Sodium EDTA<br />
1 mM EGTA<br />
1% TRITON® X-100<br />
2.5 mM Sodium pyrophosphate<br />
1 mM β-Glycerophosphate<br />
1 mM Sodium orthovanadate<br />
1µg/ml Leupept<strong>in</strong><br />
23
Isoelectric Po<strong>in</strong>t <strong>of</strong> Selected Prote<strong>in</strong>s<br />
Prote<strong>in</strong> Organism/Tissue Isoelectric Po<strong>in</strong>t<br />
Acetylchol<strong>in</strong>esterase Electric eel, Electric organ 4.5<br />
α1-Acid Glycoprote<strong>in</strong> Human serum 1.8<br />
Acid Protease Penicillium duponti 3.9<br />
Aconitase Porc<strong>in</strong>e heart 8.5<br />
Adenos<strong>in</strong>e deam<strong>in</strong>ase Human erythrocytes 4.7 - 5.1<br />
Adenylate cyclase Mo<strong>use</strong> bra<strong>in</strong> 5.9 - 6.1<br />
Adenylate k<strong>in</strong>ase Rat liver 7.5 - 8.0<br />
Adenylate K<strong>in</strong>ase Human erythrocytes 8.5 - 9.0<br />
Album<strong>in</strong> Human serum 4.6 - 5.3<br />
Alcohol dehydrogenase Horse liver 8.7 - 9.3<br />
Aldehyde dehydrogenase Rat Liver (cytosol) 8.5<br />
Aldolase Rabbit muscle 8.2 - 8.6<br />
Alkal<strong>in</strong>e phosphatase Bov<strong>in</strong>e <strong>in</strong>test<strong>in</strong>e 4.4<br />
Alkal<strong>in</strong>e phosphatase Human liver 3.9<br />
cAMP-phosphodiesterase Rat bra<strong>in</strong> 6.1<br />
Amylase Gu<strong>in</strong>ea Pig pancreas 8.4<br />
Amylase Human saliva 6.2 - 6.5<br />
Arg<strong>in</strong>ase Rat liver 9.4<br />
Arg<strong>in</strong>ase Human liver 9.2<br />
ATPase (Na + -K + ) Dog heart 5.1<br />
Carbonic Anhydrase Porc<strong>in</strong>e <strong>in</strong>test<strong>in</strong>e 7.3<br />
Carboxypeptidase B Human pancreas 6.9<br />
Carnit<strong>in</strong>e acetyltransferase Calf liver 6.0<br />
Catalase Mo<strong>use</strong> liver (particulate) 6.7<br />
Ca<strong>the</strong>ps<strong>in</strong> B Human liver 5.1<br />
Ca<strong>the</strong>ps<strong>in</strong> D Bov<strong>in</strong>e spleen 6.7<br />
Chol<strong>in</strong>e acetyltransferase Human bra<strong>in</strong> 7.8<br />
α-Chymotryps<strong>in</strong> Bov<strong>in</strong>e pancreas 8.8<br />
Collagenase Clostridium 5.5<br />
C-Reactive prote<strong>in</strong> Human 7.4<br />
DNA polymerase Human lymphocytes 4.7<br />
DNase I Bov<strong>in</strong>e 4.7<br />
Dipeptidase Porc<strong>in</strong>e kidney 4.9<br />
Enolase Rat liver 5.9<br />
Epidermal Growth Factor Mo<strong>use</strong> submaxillary gl<strong>and</strong>s 4.6<br />
Erythropoiet<strong>in</strong> Rabbit plasma 4.8 - 5.0<br />
Ferrit<strong>in</strong> Human liver 5.0 - 5.6<br />
α-Fetoprote<strong>in</strong> Human serum 4.8<br />
Follicle stimulat<strong>in</strong>g hormone Sheep pituitary 4.6<br />
Fructose 1,6-diphosphatase Crab muscle 5.9<br />
Galactok<strong>in</strong>ase Human placenta 5.8<br />
β-Galactosidase Rabbit bra<strong>in</strong> 6.3<br />
Glucose-6-phosphate dehydrogenase Human erythrocytes 5.8 - 7.0<br />
β-Glucuronidase Rat liver microsomes 6.7<br />
24
Isoelectric Po<strong>in</strong>t <strong>of</strong> Selected Prote<strong>in</strong>s, cont.<br />
Prote<strong>in</strong> Organism/Tissue Isoelectric Po<strong>in</strong>t<br />
γ-Glutamyl transpeptidase Rat hepatoma 3.0<br />
Glutathione S-transferase Rat liver 6.9, 8.1<br />
D-Glyceraldehyde 3-phosphate dehydrogenase Rabbit muscle 8.3<br />
L-Glycerol-3-phosphate dehydrogenase Rabbit kidney 6.4<br />
Glycogen phosphorylase b Human muscle 6.3<br />
Growth hormone Horse pituitary 7.3<br />
Guanylate k<strong>in</strong>ase Human erythrocytes 5.1<br />
Hemoglob<strong>in</strong> Rabbit erythrocyte 7.0<br />
Hemoglob<strong>in</strong> A Human erythrocytes 7.0<br />
Hexok<strong>in</strong>ase Yeast 5.3<br />
Insul<strong>in</strong> Bov<strong>in</strong>e pancreas 5.7<br />
Lactate dehydrogenase Rabbit muscle 8.5<br />
Leuc<strong>in</strong>e am<strong>in</strong>opeptidase Porc<strong>in</strong>e kidney 4.5<br />
Lipase Human pancreas 4.7<br />
Malate dehydrogenase Rabbit heart (cytosol) 5.1<br />
Malic Enzyme Rabbit heart mitochondria 5.4<br />
Myoglob<strong>in</strong> Horse muscle 6.8, 7.3<br />
Ornith<strong>in</strong>e decarboxylase Rat liver 4.1<br />
Phosphoenolpyruvate carboxyk<strong>in</strong>ase Mo<strong>use</strong> liver 6.1<br />
Phosph<strong>of</strong>ructok<strong>in</strong>ase Porc<strong>in</strong>e liver 5.0<br />
3-Phosphoglycerate k<strong>in</strong>ase Bov<strong>in</strong>e liver 6.4<br />
Phospholipase A Bee venom 10.5<br />
Phospholipase C C. perfr<strong>in</strong>gens 5.3<br />
Phosphorylase k<strong>in</strong>ase Rabbit muscle 5.8<br />
Peps<strong>in</strong> Porc<strong>in</strong>e stomach 2.2<br />
Plasm<strong>in</strong> Human plasma 7.0 - 8.5<br />
Plasm<strong>in</strong>ogen Human plasma 6.4 - 8.5<br />
Plasm<strong>in</strong>ogen proactivator Human plasma 8.9<br />
Prolact<strong>in</strong> Human pituitary 6.5<br />
Prote<strong>in</strong> k<strong>in</strong>ase A Bov<strong>in</strong>e bra<strong>in</strong> catalytic subunit 7.8<br />
Prothromb<strong>in</strong> Human plasma 4.6 - 4.7<br />
Pyruvate k<strong>in</strong>ase Rat liver 5.7<br />
Pyruvate k<strong>in</strong>ase Rat muscle 7.5<br />
Ren<strong>in</strong> Human kidney 5.3<br />
Ribonuclease Bov<strong>in</strong>e pancreas 9.3<br />
RNA polymerase II Human HeLa, KB cells 4.8<br />
Superoxide dismutase Pleurotus olearius 7.0<br />
Thromb<strong>in</strong> Human plasma 7.1<br />
Transferr<strong>in</strong> Human plasma 5.9<br />
Tryps<strong>in</strong> <strong>in</strong>hibitor Soybean 4.5<br />
Tryps<strong>in</strong>ogen Gu<strong>in</strong>ea Porc<strong>in</strong>e pancreas 8.7<br />
Tubul<strong>in</strong> Porc<strong>in</strong>e bra<strong>in</strong> 5.5<br />
Urease Jack bean 4.9<br />
25
Isoelectric Po<strong>in</strong>ts <strong>of</strong> Selected Plasma/Serum Prote<strong>in</strong>s<br />
Prote<strong>in</strong> M.W. Species Isoelectric Po<strong>in</strong>t<br />
α 1<br />
-Acid Glycoprote<strong>in</strong> 44,000 Human 2.7<br />
Album<strong>in</strong> 66,000 Human 5.2<br />
α 1<br />
-Antitryps<strong>in</strong> 51,000 Human 4.2 - 4.7<br />
Ceruloplasm<strong>in</strong> 135,000 Human 4.4<br />
Chol<strong>in</strong>esterase 320,000 Human 4.0<br />
Conalbum<strong>in</strong> — Human 5.9<br />
C-Reactive Prote<strong>in</strong> 110,000 Human 4.8<br />
Erythropoiet<strong>in</strong> — Rabbit 4.8 - 5.0<br />
α-Fetoprote<strong>in</strong> 70,000 Human 4.8<br />
Fibr<strong>in</strong>ogen 340,000 Human 5.5<br />
IgG 150,000 Human 5.8 - 7.3<br />
IgD 172,000 Human 4.7 - 6.1<br />
β-Lactoglobul<strong>in</strong> 44,000 Bov<strong>in</strong>e 5.2<br />
α 2<br />
-Macroglobul<strong>in</strong> 725,000 Human 5.4<br />
β 2<br />
-Macroglobul<strong>in</strong> 11,800 Human 5.8<br />
Plasm<strong>in</strong> — Human 7.0 - 8.5<br />
Prealbum<strong>in</strong> 50,000 - 60,000 Human 4.7<br />
Prothromb<strong>in</strong> — Bov<strong>in</strong>e 4.6 - 4.9<br />
Thromb<strong>in</strong> 37,000 Human 7.1<br />
Thyrox<strong>in</strong>e B<strong>in</strong>d<strong>in</strong>g Prote<strong>in</strong> 63,000 Human 4.2 - 5.2<br />
Transferr<strong>in</strong> 79,600 Human 5.9<br />
Approximate pH <strong>and</strong> Bicarbonate Concentration <strong>in</strong><br />
Extracellular Fluids<br />
Fluid pH meq HCO3¯/liter<br />
Plasma 7.35 - 7.45 28<br />
Cerebrosp<strong>in</strong>al Fluid 7.4 25<br />
Saliva 6.4 - 7.4 10 - 20<br />
Gastric Secretions 1.0 - 2.0 0<br />
Tears 7.0 - 7.4 5 - 25<br />
Aqueous Humor 7.4 28<br />
Pancreatic Juice 7.0 - 8.0 80<br />
Sweat 4.5 - 7.5 0 - 10<br />
26
Ionization Constants K <strong>and</strong> pK a<br />
<strong>for</strong> Selected Acids <strong>and</strong> Bases<br />
<strong>in</strong> Water<br />
Acids <strong>and</strong> Bases Ionization Constant (K) pK a<br />
Acetic Acid 1.75 x 10 -5 4.76<br />
Citric Acid 7.4 x 10 -4 3.13<br />
1.7 x 10 -5 4.77<br />
4.0 x 10 -7 6.40<br />
Formic Acid 1.76 x 10 -4 3.75<br />
Glyc<strong>in</strong>e 4.5 x 10 -3 2.35<br />
1.7 x 10 -10 9.77<br />
Imidazole 1.01 x 10 -7 6.95<br />
Phosphoric Acid 7.5 x 10 -3 2.12<br />
6.2 x10 -8 7.21<br />
4.8 x 10 -13 12.32<br />
Pyruvic Acid 3.23 x 10 -3 2.49<br />
Tris(hydroxymethyl)am<strong>in</strong>omethane 8.32 x 10 -9 8.08<br />
Physical Properties <strong>of</strong> Some Commonly Used Acids<br />
Molecular Specific % Weight/ Approx.<br />
ml required to<br />
Acid<br />
Weight Gravity Weight Normality<br />
make 1 liter<br />
<strong>of</strong> 1 N solution<br />
Acetic Acid 60.05 1.06 99.50 17.6 57<br />
Hydrochloric Acid 36.46 1.19 37 12.1 83<br />
Nitric Acid 63.02 1.42 70 15.7 64<br />
Perchloric Acid (72%) 100.46 1.68 72 11.9 84<br />
Phosphoric Acid 98.00 1.70 85 44.1 23<br />
Sulfuric Acid 98.08 1.84 96 36.0 28<br />
27
Some Useful Tips <strong>for</strong> Calculation <strong>of</strong> Concentrations <strong>and</strong><br />
Spectrophotometric Measurements<br />
As per Beer’s law<br />
A = abc<br />
Where A = absorbance<br />
a = proportionality constant def<strong>in</strong>ed as absorptivity<br />
b = light path <strong>in</strong> cm<br />
c = concentration <strong>of</strong> <strong>the</strong> absorb<strong>in</strong>g compound<br />
When b is 1 cm <strong>and</strong> c is moles/liter, <strong>the</strong> symbol a is substituted by a symbol e<br />
(epsilon).<br />
e is a constant <strong>for</strong> a given compound at a given wavelength under prescribed<br />
conditions <strong>of</strong> solvent, temperature, pH <strong>and</strong> is called as molar absorptivity. e is<br />
<strong>use</strong>d to characterize compounds <strong>and</strong> establish <strong>the</strong>ir purity.<br />
Example:<br />
Bilirub<strong>in</strong> dissolved <strong>in</strong> chloro<strong>for</strong>m at 25°C should have a molar absorptivity (e) <strong>of</strong><br />
60,700.<br />
Molecular weight <strong>of</strong> bilirub<strong>in</strong> is 584.<br />
Hence 5 mg/liter (0.005 g/l) read <strong>in</strong> 1 cm cuvette should have an absorbance <strong>of</strong><br />
A = (60,700)(1)(0.005/584) = 0.52 {A = abc}<br />
Conversely, a solution <strong>of</strong> this concentration show<strong>in</strong>g absorbance <strong>of</strong> 0.49 should<br />
have a purity <strong>of</strong> 94% (0.49/0.52).<br />
In most biochemical <strong>and</strong> toxicological work, it is customary to list constants<br />
based on concentrations <strong>in</strong> g/dl ra<strong>the</strong>r than mol/liter. This is also common when<br />
molecular weight <strong>of</strong> <strong>the</strong> substance is not precisely known.<br />
Here <strong>for</strong> b = 1 cm; <strong>and</strong> c = 1 g/dl (1%), A can be written as A<br />
1%<br />
1cm<br />
This constant is known as absorption coefficient.<br />
The direct proportionality between absorbance <strong>and</strong> concentration must be<br />
established experimentally <strong>for</strong> a given <strong>in</strong>strument under specified conditions.<br />
28
Frequently <strong>the</strong>re is a l<strong>in</strong>ear relationship up to a certa<strong>in</strong> concentration. With<strong>in</strong><br />
<strong>the</strong>se limitations, a calibration constant (K) may be derived as follows:<br />
A = abc.<br />
There<strong>for</strong>e,<br />
c = A/ab = A x 1/ab.<br />
The absorptivity (a) <strong>and</strong> light path (b) rema<strong>in</strong> constant <strong>in</strong> a given method <strong>of</strong><br />
analysis. Hence, 1/ab can be replaced by a constant (K).<br />
Then,<br />
c = A x K; where K = c/A. The value <strong>of</strong> <strong>the</strong> constant K is obta<strong>in</strong>ed by measur<strong>in</strong>g<br />
<strong>the</strong> absorbance (A) <strong>of</strong> a st<strong>and</strong>ard <strong>of</strong> known concentration (c).<br />
29
CALBIOCHEM® Buffers<br />
We <strong>of</strong>fer an extensive l<strong>in</strong>e <strong>of</strong> buffer materials that meet <strong>the</strong> highest st<strong>and</strong>ards <strong>of</strong><br />
quality. We are cont<strong>in</strong>u<strong>in</strong>g to broaden our l<strong>in</strong>e <strong>of</strong> ULTROL® Grade Buffer<br />
materials, which are <strong>of</strong> superior quality <strong>and</strong> are manufactured to meet str<strong>in</strong>gent<br />
specifications. In addition, whenever possible, <strong>the</strong>y are screened <strong>for</strong> uni<strong>for</strong>m<br />
particle size, giv<strong>in</strong>g uni<strong>for</strong>m solubility characteristics.<br />
ADA, Sodium Salt<br />
(N-2-Acetamido-2-im<strong>in</strong>odiacetic Acid, Na)<br />
M.W. 212.2<br />
100 g<br />
Cat. No. 114801<br />
2-Am<strong>in</strong>o-2-methyl-1,3-propanediol<br />
M.W. 105.1<br />
50 g<br />
Cat. No. 164548<br />
500 g<br />
BES, Free Acid, ULTROL® Grade<br />
[N,N-bis-(2-Hydroxyethyl)-2-am<strong>in</strong>oethanesulfonic<br />
Acid]<br />
M.W. 213.3<br />
25 g<br />
Cat. No. 391334<br />
Bic<strong>in</strong>e, ULTROL® Grade<br />
[N,N-bis-(2-Hydroxyethyl)glyc<strong>in</strong>e]<br />
M.W. 163.2<br />
Cat. No. 391336<br />
100 g<br />
1 kg<br />
BIS-Tris, ULTROL® Grade<br />
{bis(2-Hydroxyethyl)im<strong>in</strong>o]-tris(hydroxymethyl)methane}<br />
M.W. 209.2<br />
100 g<br />
Cat. No. 391335<br />
1 kg<br />
BIS-Tris Propane, ULTROL® Grade<br />
{1,3-bis[tris(Hydroxymethyl)methylam<strong>in</strong>o]-<br />
propane}<br />
M.W. 282.4<br />
100 g<br />
Cat. No. 394111<br />
1 kg<br />
Boric Acid, Molecular Biology Grade<br />
M.W. 61.8<br />
500 g<br />
Cat. No. 203667<br />
1 kg<br />
5 kg<br />
Cacodylic Acid, Sodium Salt<br />
(Sodium Dimethyl Arsenate)<br />
M.W. 160.0<br />
Cat. No. 205541<br />
100 g<br />
CAPS, ULTROL® Grade<br />
[3-(Cyclohexylam<strong>in</strong>o)propanesulfonic Acid]<br />
M.W. 221.3<br />
100 g<br />
Cat. No. 239782<br />
1 kg<br />
CHES, ULTROL® Grade<br />
[2-(N-Cyclohexylam<strong>in</strong>o)ethanesulfonic Acid]<br />
M.W. 207.3<br />
100 g<br />
Cat. No. 239779<br />
Citric Acid, Monohydrate, Molecular Biology<br />
Grade<br />
M.W. 210.1<br />
100 g<br />
Cat. No. 231211<br />
1 kg<br />
Glyc<strong>in</strong>e, Free Base<br />
M.W. 75.1<br />
Cat. No. 3570<br />
Glyc<strong>in</strong>e, Molecular Biology Grade<br />
M.W. 75.1<br />
Cat. No. 357002<br />
Glycylglyc<strong>in</strong>e, Free Base<br />
M.W. 132.1<br />
Cat. No. 3630<br />
500 g<br />
100 g<br />
1 kg<br />
25 g<br />
100 g<br />
HEPES, Free Acid, Molecular Biology Grade<br />
(N-2-Hydroxyethylpiperaz<strong>in</strong>e-N′-2-<br />
ethanesulfonic Acid)<br />
M.W. 238.3<br />
25 g<br />
Cat. No. 391340<br />
250 g<br />
HEPES, Free Acid, ULTROL® Grade<br />
(N-2-Hydroxyethylpiperaz<strong>in</strong>e-N′-2-<br />
ethanesulfonic Acid)<br />
M.W. 238.3<br />
Cat. No. 391338<br />
25 g<br />
100 g<br />
500 g<br />
1 kg<br />
5 kg<br />
30
HEPES, Free Acid, ULTROL® Grade, 1 M<br />
Solution<br />
M.W. 238.3<br />
100 ml<br />
Cat. No. 375368<br />
500 ml<br />
HEPES, Sodium Salt, ULTROL® Grade<br />
(N-2-Hydroxyethylpiperaz<strong>in</strong>e-N′-2-<br />
ethanesulfonic Acid, Na)<br />
M.W. 260.3<br />
Cat. No. 391333<br />
100 g<br />
500 g<br />
1 kg<br />
HEPPS, ULTROL® Grade<br />
(EPPS; N-2-Hydroxyethylpiperaz<strong>in</strong>e-N′-3-<br />
propane sulfonic acid)<br />
M.W. 252.3<br />
100 g<br />
Cat. No. 391339<br />
Imidazole, ULTROL® Grade<br />
(1,3-Diaza-2,4-cyclopentadiene )<br />
M.W. 68.1<br />
Cat. No. 4015<br />
25 g<br />
100 g<br />
MES, Free Acid, ULTROL® Grade<br />
[2-(N-Morphol<strong>in</strong>o)ethanesulfonic Acid]<br />
M.W. 195.2<br />
100 g<br />
Cat. No. 475893<br />
500 g<br />
1 kg<br />
MES, Sodium Salt, ULTROL® Grade<br />
[2-(N-Morphol<strong>in</strong>o)ethanesulfonic Acid, Na]<br />
M.W. 217.2<br />
100 g<br />
Cat. No. 475894<br />
1 kg<br />
MOPS, Free Acid, ULTROL® Grade<br />
[3-(N-Morphol<strong>in</strong>o)propanesulfonic Acid]<br />
M.W. 209.3<br />
100 g<br />
Cat. No. 475898<br />
500 g<br />
1 kg<br />
MOPS, Sodium, ULTROL® Grade<br />
[3-(N-Morphol<strong>in</strong>o)propanesulfonic Acid, Na]<br />
M.W. 231.2<br />
100 g<br />
Cat. No. 475899<br />
1 kg<br />
MOPS/EDTA Buffer, 10X Liquid Concentrate,<br />
Molecular Biology Grade<br />
M.W. 209.3<br />
100 ml<br />
Cat. No. 475916<br />
PBS-TWEEN® Tablets<br />
(Phosphate Buffered Sal<strong>in</strong>e-TWEEN® 20 Tablets)<br />
Cat. No. 524653<br />
1 each<br />
PIPES, Free Acid, Molecular Biology Grade<br />
[Piperaz<strong>in</strong>e-N,N′-bis(2-ethanesulfonic Acid)]<br />
M.W. 302.4<br />
25 g<br />
Cat. No. 528133<br />
250 g<br />
PIPES, Free Acid, ULTROL® Grade<br />
[Piperaz<strong>in</strong>e-N,N′-bis(2-ethanesulfonic Acid)]<br />
M.W. 302.4<br />
100 g<br />
Cat. No. 528131<br />
1 kg<br />
PIPES, Sesquisodium Salt, ULTROL® Grade<br />
[Piperaz<strong>in</strong>e-N,N′-bis(2-ethanesulfonic Acid),<br />
1.5Na]<br />
M.W. 335.3<br />
100 g<br />
Cat. No. 528132<br />
1 kg<br />
PIPPS<br />
[Piperaz<strong>in</strong>e-N,N′-bis(3-propanesulfonic Acid)]<br />
M.W. 330.4<br />
10 g<br />
Cat. No. 528315<br />
Potassium Phosphate, Dibasic, Trihydrate,<br />
Molecular Biology Grade<br />
M.W. 228.2<br />
250 g<br />
Cat. No. 529567<br />
1 kg<br />
Potassium Phosphate, Monobasic<br />
M.W. 136.1<br />
Cat. No. 529565<br />
100 g<br />
500 g<br />
Potassium Phosphate, Monobasic, Molecular<br />
Biology Grade<br />
M.W. 136.1<br />
250 g<br />
Cat. No. 529568<br />
1 kg<br />
Sodium Citrate, Dihydrate<br />
(Citric Acid, 3Na)<br />
M.W. 294.1<br />
Cat. No. 567444<br />
Sodium Citrate, Dihydrate, Molecular<br />
Biology Grade<br />
M.W. 294.1<br />
Cat. No. 567446<br />
1 kg<br />
100 g<br />
1 kg<br />
5 kg<br />
PBS Tablets<br />
(Phosphate Buffered Sal<strong>in</strong>e Tablets)<br />
Cat. No. 524650<br />
1 each<br />
Sodium Phosphate, Dibasic<br />
M.W. 142.0<br />
Cat. No. 567550<br />
500 g<br />
1 kg<br />
31
Sodium Phosphate, Dibasic, Molecular<br />
Biology Grade<br />
M.W. 142.0<br />
250 g<br />
Cat. No. 567547<br />
1 kg<br />
Sodium Phosphate, Monobasic<br />
M.W. 120.0<br />
Cat. No. 567545<br />
250 g<br />
500 g<br />
1 kg<br />
Sodium Phosphate, Monobasic, Monohydrate,<br />
Molecular Biology Grade<br />
M.W. 138.0<br />
250 g<br />
Cat. No. 567549<br />
1 kg<br />
Triethanolam<strong>in</strong>e, Hydrochloride*<br />
M.W. 185.7<br />
Cat. No. 641752<br />
1 kg<br />
Triethylammonium Acetate, 1 M Solution<br />
M.W. 161.2<br />
1 liter<br />
Cat. No. 625718<br />
Tris Base, Molecular Biology Grade<br />
[tris(Hydroxymethyl)am<strong>in</strong>omethane]<br />
M.W. 121.1<br />
Cat. No. 648310<br />
100 g<br />
500 g<br />
1 kg<br />
2.5 kg<br />
SSC Buffer, 20X Powder Pack, ULTROL®<br />
Grade<br />
Cat. No. 567780<br />
2 pack<br />
SSPE Buffer, 20X Powder Pack, ULTROL®<br />
Grade<br />
Cat. No. 567784<br />
2 pack<br />
Tris Base, ULTROL® Grade<br />
[tris(Hydroxymethyl)am<strong>in</strong>omethane]<br />
M.W. 121.1<br />
Cat. No. 648311<br />
100 g<br />
500 g<br />
1 kg<br />
5 kg<br />
10 kg<br />
TAPS, ULTROL® Grade<br />
(3-{[tris(Hydroxymethyl)methyl]am<strong>in</strong>o}-<br />
propanesulfonic Acid)<br />
M.W. 243.2<br />
100 g<br />
Cat. No. 394675<br />
1 kg<br />
TBE Buffer, 10X Powder Pack, ULTROL®<br />
Grade<br />
(10X Tris-Borate-EDTA Buffer)<br />
Cat. No. 574796<br />
2 pack<br />
TES, Free Acid, ULTROL® Grade<br />
(2-{[tris(Hydroxymethyl)methyl]am<strong>in</strong>o}-<br />
ethanesulfonic Acid)<br />
M.W. 229.3<br />
100 g<br />
Cat. No. 39465<br />
1 kg<br />
TES, Sodium Salt, ULTROL® Grade<br />
M.W. 251.2<br />
Cat. No. 394651<br />
100 g<br />
Tric<strong>in</strong>e, ULTROL® Grade<br />
{N-[tris(Hydroxymethyl)methyl]glyc<strong>in</strong>e}<br />
M.W. 179.2<br />
100 g<br />
Cat. No. 39468<br />
1 kg<br />
Tris Buffer, 1.0 M, pH 8.0, Molecular Biology<br />
Grade<br />
M.W. 121.1<br />
100 ml<br />
Cat. No. 648314<br />
Tris Buffer, 100 mM, pH 7.4, Molecular<br />
Biology Grade<br />
M.W. 121.1<br />
100 ml<br />
Cat. No. 648315<br />
Tris, Hydrochloride, Molecular Biology<br />
Grade<br />
[tris(Hydroxymethyl)am<strong>in</strong>omethane, HCl]<br />
M.W. 157.6<br />
100 ml<br />
Cat. No. 648317<br />
1 kg<br />
Tris, Hydrochloride, ULTROL® Grade<br />
[tris(Hydroxymethyl)am<strong>in</strong>omethane, HCl]<br />
M.W. 157.6<br />
250 g<br />
Cat. No. 648313<br />
500 g<br />
1 kg<br />
* Not <strong>for</strong> <strong>in</strong>ternational sales outside <strong>the</strong> US.<br />
Buy <strong>in</strong> Bulk <strong>and</strong> $ave!<br />
To request a bulk quotation,<br />
call our bulk department at<br />
800-854-2855 or your local sales <strong>of</strong>fice.<br />
32