22.10.2014 Views

2008 Sazawa - Robust Fast Tracking Control for Multi-Degrees-of-Freedom Motion System Considering Torque Saturation.pdf

2008 Sazawa - Robust Fast Tracking Control for Multi-Degrees-of-Freedom Motion System Considering Torque Saturation.pdf

2008 Sazawa - Robust Fast Tracking Control for Multi-Degrees-of-Freedom Motion System Considering Torque Saturation.pdf

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Fast</strong> Continuous Path <strong>Tracking</strong> <strong>Control</strong> <strong>Considering</strong><br />

High Precision and <strong>Torque</strong> <strong>Saturation</strong><br />

Masaki <strong>Sazawa</strong><br />

Nagaoka University <strong>of</strong> Technology<br />

1603-1, Kamitomioka, Nagaoka,<br />

Niigata, 940-2188, JAPAN<br />

Email: sazawa@vos.nagaokaut.ac.jp<br />

Kiyoshi Ohishi<br />

Nagaoka University <strong>of</strong> Technology<br />

1603-1, Kamitomioka, Nagaoka,<br />

Niigata, 940-2188, JAPAN<br />

Email: ohishi@vos.nagaoaut.ac.jp<br />

Abstract—Continuous path tracking control is an important<br />

technology <strong>for</strong> the position control system such as factory<br />

automation field. Particularly, large acceleration and/or deceleration<br />

torque is required <strong>for</strong> continuous path tracking control<br />

at its start position and its goal position. Each AC servo motor<br />

<strong>of</strong> continuous path tracking control has limitation <strong>of</strong> current<br />

and voltage. There<strong>for</strong>e, in controlling a multi-degree-<strong>of</strong>-freedom<br />

continuous path tracking control system, even if only the motor<br />

torque <strong>of</strong> one axis has the current limitation, the actual position<br />

response is not <strong>of</strong>ten equal to the desired trajectory reference.<br />

In fast continuous path tracking control <strong>of</strong> multi-degree-<strong>of</strong>freedom<br />

position control system, the position error sometimes<br />

increases according to the unknown disturbance torque and<br />

inertia variation.<br />

In order to overcome these problems, this paper proposes a<br />

new continuous path tracking control algorithm by considering<br />

both the torque saturation and the coordinated motion. The<br />

proposed method assures the coordinated motion by considering<br />

the torque limitation. The effectiveness <strong>of</strong> the proposed method<br />

is confirmed by the experimental results in this paper.<br />

I. INTRODUCTION<br />

<strong>Fast</strong> continuous path tracking control is demanded <strong>for</strong> the<br />

multi-degrees-<strong>of</strong>-freedom position control system in order to<br />

improve the productivity [1]. Moreover, fast continuous path<br />

tracking control system such as X-Y tables is constructed by<br />

AC servo motor and ball screw. Especially, large acceleration<br />

and/or deceleration torque is necessary <strong>for</strong> fast continuous path<br />

tracking control at its start position and its goal position. As<br />

a result, the actual position response sometimes has the large<br />

overshoot and the oscillated response. Moreover, the position<br />

response <strong>of</strong> each axis cannot coordinate and follow to the<br />

desired path tracking reference [2]–[10].<br />

We have already proposed a new anti-windup algorithm<br />

<strong>for</strong> motor drive control and fast potion control. This control<br />

method realizes the fast and smooth positioning control<br />

without overshoot and the oscillated response [11], [12]. This<br />

paper applies the proposed anti-windup algorithm to the multidegrees-<strong>of</strong>-freedom<br />

position control system such as X-Y table.<br />

In multi-degrees-<strong>of</strong>-freedom position control system, when<br />

the servo motor on Y-axis has torque saturation, the servo<br />

motor on X-axis <strong>of</strong>ten increases the tracking error. In order<br />

to overcome this problem, this paper proposes a new torque<br />

limitation algorithm considering coordinated motion control<br />

<strong>for</strong> robust fast continuous path tracking control system [13].<br />

The proposed method is the on-line real time algorithm, which<br />

assures the coordinated multi-degrees-<strong>of</strong>-freedom motion control<br />

considering the torque saturation.<br />

II. FAST CONTINUOUS PATH TRACKING CONTROL<br />

Fig.1 shows the fast continuous path tracking control system.<br />

The position control system is constructed by the minor<br />

control loop <strong>of</strong> speed PI controller and current PI controller<br />

with each output limitation [6]. In this paper, the limiter <strong>of</strong><br />

the speed controller output is constructed by the proposed<br />

output limitation algorithm based on the priority feedback<br />

compensation <strong>of</strong> proportional output, which is a new antiwindup<br />

algorithm <strong>for</strong> PI controller [11], [12]. Since this<br />

limitation algorithm <strong>of</strong> PI controller output has the robustness<br />

on parameter variation [11], [12], this paper applies the proposed<br />

anti-windup algorithm to the multi-degrees-<strong>of</strong>-freedom<br />

position control system. When the bandwidth <strong>of</strong> position<br />

controller becomes high enough, the transfer function from<br />

the position command θ cmd to the actual position response<br />

θ res can be treated as show in (1).<br />

θ res<br />

θ<br />

ω<br />

ωres αres<br />

= =<br />

cmd cmd<br />

A. Braking Mode Algorithm<br />

≃ 1 (1)<br />

αcmd In order to realize the desired fast continuous path tracking<br />

control, near to the goal position, the maximum torque deceleration<br />

is <strong>of</strong>ten requested. Fig.2 shows the ideal deceleration<br />

response to the target goal position. The fast continuous path<br />

tracking control system decelerates by using the maximum<br />

torque during the proposed decelerating time t d , which is the<br />

time from the braking start time t brake to the braking end time<br />

t end as shown in Fig.2. The moving distance ΔΘ err <strong>for</strong> the<br />

decelerating time t d is defined as (2). The braking start time<br />

t brake is determined by the load torque and the target goal<br />

position. Hence, the moving distance ΔΘ err is treated as the<br />

position error until the target goal position. In this method,<br />

the decelerating speed ω m (t) and the decelerating time t d<br />

are obtained as shown in (3) and (4). The moving distance<br />

ΔΘ err is calculated by using the estimated load torque and<br />

978-1-4244-4649-0/09/$25.00 ©2009 IEEE 3089


α cmd J n<br />

I FF<br />

K tn<br />

ω cmd<br />

i ref d<br />

+<br />

Position P + + ω ref e<br />

+<br />

+<br />

u +<br />

+<br />

+ - <strong>Control</strong>ler<br />

+<br />

ksiTs z-1<br />

i ref<br />

-<br />

- + q<br />

x ~ x +<br />

Speed<br />

- Current + -<br />

ksp<br />

Limiter<br />

+<br />

Limiter<br />

-<br />

-<br />

Δup Δu<br />

+<br />

Δui<br />

Speed <strong>Control</strong>ler<br />

ω res with proposed new anti-windup algorithm<br />

target position<br />

I<br />

ω STOP<br />

STOP =0<br />

Braking Mode<br />

+ - Algorithm<br />

Braking Mode Algorithm<br />

s<br />

θ<br />

cmd<br />

θ<br />

res<br />

+<br />

-<br />

id res<br />

iq res<br />

kcp<br />

kci<br />

s<br />

+<br />

-<br />

1<br />

kcp<br />

Current <strong>Control</strong>ler<br />

with anti-windup algorithm<br />

+<br />

+<br />

kcp<br />

kci<br />

s<br />

1 ΔVd<br />

kcp<br />

ΔVq<br />

Vd<br />

d-q<br />

+<br />

α-β<br />

+ Vq<br />

θre<br />

d-q<br />

t1,<br />

t2<br />

d-q<br />

u,<br />

v,w<br />

iv<br />

iu<br />

p<br />

α-β<br />

t1,<br />

t2<br />

t1<br />

t2<br />

θrm<br />

~<br />

t1<br />

+<br />

-<br />

+ -<br />

~<br />

t2<br />

t1,<br />

t2<br />

Suvw<br />

Inverter<br />

PM<br />

Enc.<br />

Fig. 1.<br />

Continuous path tracking control system with anti-windup algorithm<br />

Current Speed Position<br />

0<br />

ω 0<br />

0<br />

0<br />

~<br />

target position<br />

ΔΘ err<br />

brake point<br />

time[s]<br />

ω m (t)<br />

time[s]<br />

-I MAX<br />

time[s]<br />

Y-Axis<br />

Table<br />

AC Motor<br />

Coupling<br />

X-Axis<br />

Encoder<br />

Ball Screw<br />

Coupling<br />

AC Motor<br />

Encoder<br />

(a) tested X-Y table system<br />

start, goal<br />

(b) path reference<br />

Fig. 3. <strong>System</strong> configuration <strong>of</strong> experimental system<br />

tbrake<br />

td<br />

tend<br />

Fig. 2.<br />

Ideal deceleration & stop response<br />

the maximum torque current I MAX , as shown in (5) [14].<br />

ΔΘ err = ∫ t d<br />

0 ω m(t)dt (2)<br />

ω m (t) =ω 0 − K tnI MAX + ˆT dis<br />

J<br />

t (3)<br />

t d =<br />

2<br />

1 Jω 0<br />

K tn I MAX + ˆT (4)<br />

dis<br />

ΔΘ err = 1 2<br />

Jω 2 0<br />

K tn (I MAX + ˆT dis<br />

K tn<br />

)<br />

B. <strong>System</strong> Configuration and Experimental <strong>System</strong><br />

Fig.3 shows the configuration <strong>of</strong> tested experimental system.<br />

Fig.3(a) shows the tested X-Y table system. TABLE.I is the<br />

specifications <strong>of</strong> tested motor and TABLE.II is the specifications<br />

<strong>of</strong> tested experimental system. In the tested experimental<br />

system, the axis inertia J such as X-axis is 6.21×10 −5 [kgm 2 ].<br />

(5)<br />

As the axis inertia <strong>of</strong> Y-axis is the total inertia including<br />

the weight <strong>of</strong> X-axis, Y-axis inertia becomes 2.5 times value<br />

<strong>of</strong> X-axis inertia. Hence, the tested motion control system<br />

always has the inertia variation. The continuous path tracking<br />

command is shown in the reference <strong>of</strong> Fig.3(b).<br />

Fig.4 shows the experimental results <strong>of</strong> the tested continuous<br />

path tracking control system using the conventional speed<br />

PI controller using integrator with limiter. Fig.4(b) shows the<br />

responses <strong>of</strong> position, speed and current <strong>of</strong> Y-axis on condition<br />

that the driving time <strong>of</strong> path reference is 2 [sec]. In this<br />

condition, the actual path response coincides with the path<br />

reference completely, even if the continuous path tracking<br />

control system has only limiter. However, on condition that<br />

the driving time <strong>of</strong> path reference is 1 [sec], the actual<br />

path response has large tracking error. In multi-degrees-<strong>of</strong>freedom<br />

position control system, when the servo motor on<br />

Y-axis has torque saturation, the servo motor on X-axis <strong>of</strong>ten<br />

increases the tracking error. There<strong>for</strong>e, the multi-degrees-<strong>of</strong>freedom<br />

position control system must be required to have the<br />

coordinated motion considering the torque limitation.<br />

978-1-4244-4649-0/09/$25.00 ©2009 IEEE 3090


TABLE I<br />

SPECIFICATIONS OF TESTED MOTOR<br />

Rated power P [W] 200<br />

Rated voltage v[V] 100<br />

<strong>Torque</strong> constant K t[Nm/A] 0.1597<br />

Actual inertia <strong>of</strong> joint X J x[kgm 2 ] 6.21 × 10 −5<br />

Actual inertia <strong>of</strong> joint Y J y[kgm 2 ] 15.54 × 10 −5<br />

Nominal inertia <strong>of</strong> joint X J xn[kgm 2 ] 6.21 × 10 −5<br />

Nominal inertia <strong>of</strong> joint Y J yn[kgm 2 ] 6.21 × 10 −5<br />

Rated maximum speed ω max[rad/s] 314<br />

Rated current (d-q axis) i max[A] 4<br />

Conversion factor K 0 [rad/m] 100π<br />

Encoder pulse [pulse/rev] 2000<br />

y[mm]<br />

80<br />

60<br />

40<br />

20<br />

0<br />

start, goal<br />

P-reference<br />

P-response(2s)<br />

P-response(1s)<br />

-20<br />

TABLE II<br />

SPECIFICATIONS OF EACH CONTROLLER<br />

Bandwidth <strong>of</strong> current controller ω p[rad/s] 4000<br />

Bandwidth <strong>of</strong> speed controller ω s[rad/s] 600<br />

Bandwidth <strong>of</strong> position controller ω c[rad/s] 150<br />

Current limitation values I limit [A] 4<br />

Speed limitation value ω limit [rad/s] 300<br />

III. TORQUE LIMITATION ALGORITHM FOR<br />

MULTI-DEGREE-OF-FREEDOM SYSTEM<br />

The torque current reference i ref should be divided into the<br />

tracking control current i tra and the disturbance compensation<br />

current i cmp , as shown in (6). The disturbance compensation<br />

current i cmp is estimated by ordinary disturbance observer.<br />

When the fast continuous path tracking control system has<br />

torque saturation, the amplitude <strong>of</strong> i tra should be adjusted<br />

to the maximum tracking control current I traMAX as shown<br />

in (7). Here, I MAX is the maximum torque current, k is the<br />

sampling number.<br />

I tra (k) = I ref (k) − I cmp (k). (6)<br />

⎧<br />

I MAX − I cmp (k)<br />

⎪⎨<br />

when I MAX >I refi<br />

I traMAX (k) =<br />

(7)<br />

−I MAX − I cmp (k)<br />

⎪⎩<br />

when −I MAX


60<br />

40<br />

P-reference<br />

P-response<br />

position[rad]<br />

20<br />

0<br />

-20<br />

θ-cmd<br />

θ-cmd-tilde<br />

θ-res<br />

0 0.5 1 1.5<br />

20<br />

y[mm]<br />

0<br />

Zoom up<br />

speed[rad/s]<br />

200<br />

0<br />

-200<br />

ω-ref<br />

ω-res<br />

-20<br />

0 0.5 1 1.5<br />

-40<br />

iq[A]<br />

5<br />

0<br />

iq-ref<br />

iq-res<br />

Radius error[mm]<br />

0.2<br />

0.1<br />

0<br />

-0.1<br />

-0.2<br />

-60<br />

-150 -100 -50 0 50 100 150<br />

x[mm]<br />

a) path response<br />

0 0.5 1 1.5<br />

Time[s]<br />

b) tracking error<br />

P-reference<br />

P-response<br />

10<br />

-5<br />

0 0.5 1 1.5<br />

Time[s]<br />

a) position, speed and current response <strong>of</strong> X axis<br />

position[rad]<br />

speed[rad/s]<br />

θ-cmd<br />

20<br />

θ-cmd-tilde<br />

θ-res<br />

0<br />

-20<br />

0 0.5 1 1.5<br />

ω-ref<br />

200<br />

ω-res<br />

0<br />

-200<br />

0 0.5 1 1.5<br />

5<br />

5<br />

iq-ref<br />

iq-res<br />

y[mm]<br />

0<br />

iq[A]<br />

0<br />

-5<br />

-5<br />

0 0.5 1 1.5<br />

Time[s]<br />

b) position, speed and current response <strong>of</strong> Y axis<br />

-10<br />

99.4 99.5 99.6 99.7 99.8 99.9 100 100.1 100.2<br />

x[mm]<br />

c) zoom up <strong>of</strong> path response<br />

Fig. 5. Experimental results <strong>of</strong> the tested continuous path tracking control<br />

using conventional torque current limitation algorithm<br />

Ĩ refi (k) =ε min (k)I trai (k)+I cmpi (k) (11)<br />

= Ĩtra i<br />

(k)+I cmpi (k) (12)<br />

The acceleration torque current adjustment ratio ε i is<br />

defined as shown in (10). The acceleration torque current<br />

adjustment ratio ε i shows the content ratio <strong>of</strong> I traMAX to<br />

I trai in each axes. In this torque limitation algorithm, the<br />

fast continuous path tracking control current I trai is adjusted<br />

by using the minimum acceleration torque current adjustment<br />

ratio ε min . When the fast continuous path tracking control<br />

system has no torque saturation, the path tracking control<br />

current I trai should be not adjusted. In this case, ε min<br />

becomes equal to 1. The adjusted current reference Ĩref i<br />

is<br />

the sum <strong>of</strong> the adjusted acceleration torque current and the<br />

disturbance compensation torque current as shown in (12).<br />

Fig.5 shows the experimental results <strong>of</strong> the tested continuous<br />

path tracking control system using this conventional<br />

torque current limitation algorithm. When the continuous path<br />

Fig. 6. Experimental results <strong>of</strong> the tested continuous path tracking control<br />

system using conventional torque current limitation algorithm<br />

tracking control system has torque saturation, the path tracking<br />

error is small in comparison with that <strong>of</strong> Fig.5. The proposed<br />

torque limitation algorithm has the validity on fast continuous<br />

path tracking control. However, in the start position and the<br />

goal position, the path tracking error has just large error as<br />

shown in Fig.5-(b) and Fig.5-(c).<br />

IV. TORQUE LIMITATION ALGORITHM FOR ROBUST<br />

MULTI-DEGREES-OF-FREEDOM FAST POSITION CONTROL<br />

In order to overcome this problem, this paper proposes a<br />

new adjustment path backward torque limitation algorithm.<br />

The new proposed sampling adjusted position command is<br />

determined from the current sampling maximum path tracking<br />

control current I traMAXi . The acceleration command α i (k) is<br />

determined in (13). In this paper, the next sampling adjusted<br />

cmd<br />

position command ˜θ i (k +1) is defined as shown in (14).<br />

The position adjustment ratio γ i (k +1) is defined as shown<br />

in (15). Here, T s is sampling time.<br />

This paper picks up the minimum value γ min (k +1) among<br />

γ i (k +1)(i =1∼ N). The next sampling adjustment time<br />

˜t(k +1) is obtained by the time function <strong>of</strong> position command<br />

f i (t) as shown in (16) and (17). Since the proposed algorithm<br />

calculates the next sampling corrected position command<br />

978-1-4244-4649-0/09/$25.00 ©2009 IEEE 3092


α cmd i<br />

ω cmd i<br />

θ<br />

cmd<br />

i<br />

<strong>Tracking</strong> Adjustment Algorithm <strong>of</strong><br />

<strong>Multi</strong>-<strong>Degrees</strong>-<strong>of</strong>-<strong>Freedom</strong> <strong>Motion</strong> <strong>System</strong><br />

~<br />

I FF i<br />

~<br />

ω cmd i<br />

~<br />

+ + ω ref<br />

i Position P<br />

i<br />

+<br />

+<br />

- <strong>Control</strong>ler<br />

-<br />

Speed<br />

Limiter<br />

i<br />

ω res i<br />

θ<br />

cmd<br />

θ<br />

res<br />

Speed <strong>Control</strong>ler<br />

with proposed new anti-windup algorithm<br />

e<br />

+<br />

+<br />

ksiTs<br />

-<br />

ksp<br />

i ref d i<br />

+<br />

+<br />

z -1 u<br />

i ref<br />

+ q<br />

x ~ i<br />

x +<br />

-<br />

Current<br />

+<br />

-<br />

Limiter<br />

-<br />

Δup Δu<br />

+<br />

Δui<br />

target position<br />

ω STOP =0<br />

+ -<br />

Braking Mode<br />

Algorithm I STOP<br />

Current <strong>Control</strong>ler<br />

with anti-windup algorithm<br />

Inverter<br />

PM<br />

Enc.<br />

^<br />

T dis i<br />

Disturbance<br />

Observer<br />

ω res i<br />

i ref q i<br />

Braking Mode Algorithm<br />

s<br />

Fig. 7.<br />

Proposed continuous path tracking control system considering torque current saturation and coordinated motion<br />

˜θ cmd<br />

i<br />

(k +1) by using ˜t(k +1), ˜θcmd i (k +1) is determined<br />

as shown in (18). Similarly, the corrected speed command<br />

˜ω i<br />

cmd (k +1) is calculated as shown in (19). Here, f ′ (t) is<br />

the time function <strong>of</strong> speed command.<br />

˜θ cmd<br />

i<br />

= θ cmd<br />

i<br />

α i (k) = K tn i<br />

J ni<br />

I traMAXi (k) (13)<br />

(k +1)=θ cmd (k)+T s ω res (k)+ 1 2 T s 2 α i (k)<br />

i<br />

(k)+T s ωi<br />

res (k)+ 1 2 T s<br />

2<br />

γ i (k +1)≡<br />

cmd ˜θ i<br />

θi<br />

cmd<br />

= T sωi<br />

res<br />

i<br />

K tni<br />

J ni<br />

I traMAXi (k) (14)<br />

(k +1)− θi<br />

cmd (k)<br />

(k +1)− θi<br />

cmd (k)<br />

(k)+ 1 2 T s 2 α i (k)<br />

θi<br />

cmd (k +1)− θi<br />

cmd (k)<br />

if I MAX > |I refi |, γ(k +1)=1<br />

˜ω cmd<br />

i (k +1)=<br />

(15)<br />

˜t(k +1)=f −1<br />

i (˜θ i cmd (k + 1)) (16)<br />

≃ t(k)+γ min (k +1)T s (17)<br />

˜θ cmd<br />

i (k +1)=f i (˜t(k + 1)) (18)<br />

⎧<br />

If γ min (k +1)=γ i (k +1)<br />

⎪⎨ f i ′ (˜t(k + 1))<br />

else γ min (k +1)≠ γ i (k +1) (19)<br />

˜θ ⎪⎩ i<br />

cmd (k +1)− θi<br />

cmd (k)<br />

T s<br />

Using (14) and the proposed adjustment path backward<br />

torque limitation algorithm, the next sampling corrected position<br />

command ˜θ i (k +1) is defined as shown in (20). Here,<br />

cmd<br />

Ĩ FFi (k) is the corrected acceleration current reference based<br />

on coordinated motion caused by torque saturation. As the<br />

result, the acceleration current reference ĨFF i<br />

(k) is obtained<br />

as shown in (21).<br />

˜θ i cmd (k +1)<br />

= θ cmd<br />

i<br />

(k)+T s ωi<br />

res (k)+ 1 2 T s<br />

2<br />

K tni<br />

J ni<br />

Ĩ FFi (k) (20)<br />

Ĩ FFi (k) =<br />

2J n i<br />

Ts 2 {f i (t(k)+γ min (k +1)T s )<br />

K tni<br />

− θi<br />

cmd (k) − T s ωi res (k)} (21)<br />

Fig.7 shows the block diagram <strong>of</strong> the proposed fast continuous<br />

path tracking control system considering torque current<br />

saturation and coordinated motion. Fig.8 shows the experimental<br />

results <strong>of</strong> the proposed continuous path tracking control<br />

based on the proposed torque current limitation algorithm.<br />

TABLE III shows the comparison <strong>of</strong> settling time and tracking<br />

error. In fig.9(b), the continuous path tracking control <strong>of</strong> Y-<br />

axis has torque saturation. The proposed method well realizes<br />

the high accuracy path tracking control within radius error<br />

0.02[rad], even if Y-axis acceleration torque is the maximum<br />

torque.<br />

V. CONCLUSION<br />

This paper proposes a new continuous path tracking control<br />

algorithm taking into account both the torque saturation and<br />

the coordinated motion. This paper newly defines the new<br />

position reference adjustment ratio γ by using disturbance<br />

observer, which is the key <strong>for</strong> robust multi-degrees-<strong>of</strong>-freedom<br />

fast position control. The proposed method well realizes the<br />

coordinated motion considering the torque limitation, which<br />

is the on-line real time algorithm. The effectiveness <strong>of</strong> the<br />

proposed method is confirmed by the experimental results.<br />

REFERENCES<br />

[1] K. Sakai, M. Iwasaki, and N. Matsui :“High-speed and high-precision<br />

positioning system by using mode switching control,”(in Japanese), IEEJ<br />

Trans. IA, Vol. 118-D, No. 7/8, pp. 870–876, Jul./Aug. 1998.<br />

978-1-4244-4649-0/09/$25.00 ©2009 IEEE 3093


60<br />

40<br />

P-reference<br />

P-response<br />

position[rad]<br />

20<br />

0<br />

-20<br />

θ-cmd<br />

θ-cmd-tilde<br />

θ-res<br />

0 0.5 1 1.5<br />

20<br />

y[mm]<br />

0<br />

Zoom up<br />

speed[rad/s]<br />

200<br />

0<br />

-200<br />

ω-ref<br />

ω-res<br />

-20<br />

0 0.5 1 1.5<br />

-40<br />

iq[A]<br />

5<br />

0<br />

iq-ref<br />

iq-res<br />

Radius error[mm]<br />

0.2<br />

0.1<br />

0<br />

-0.1<br />

-0.2<br />

-60<br />

-150 -100 -50 0 50 100 150<br />

x[mm]<br />

a) path response<br />

0 0.5 1 1.5<br />

Time[s]<br />

b) tracking error<br />

P-reference<br />

P-response<br />

10<br />

-5<br />

0 0.5 1 1.5<br />

Time[s]<br />

a) position, speed and current response <strong>of</strong> X axis<br />

position[rad]<br />

speed[rad/s]<br />

θ-cmd<br />

20<br />

θ-cmd-tilde<br />

θ-res<br />

0<br />

-20<br />

0 0.5 1 1.5<br />

ω-ref<br />

200<br />

ω-res<br />

0<br />

-200<br />

0 0.5 1 1.5<br />

5<br />

5<br />

iq-ref<br />

iq-res<br />

y[mm]<br />

0<br />

iq[A]<br />

0<br />

-5<br />

-5<br />

0 0.5 1 1.5<br />

Time[s]<br />

b) position, speed and current response <strong>of</strong> Y axis<br />

-10<br />

99.4 99.5 99.6 99.7 99.8 99.9 100 100.1 100.2<br />

x[mm]<br />

c) zoom up <strong>of</strong> path response<br />

Fig. 8. Experimental results <strong>of</strong> proposed continuous path tracking control<br />

based on the proposed torque current limitation algorithm<br />

TABLE III<br />

COMPARISON OF SETTLING TIME AND TRACKING ERROR<br />

settling time path inner error path outer error<br />

only current limiter 1.106s -3.929rad 0.831rad<br />

(-12.51mm) (2.65mm)<br />

conventional torque 1.046s -0.057rad 0.042rad<br />

limitation method (-0.18mm) (0.13mm)<br />

proposed torque 1.041s -0.018rad 0.008rad<br />

limitaion method (0.06mm) (0.03mm)<br />

[2] K. Ohishi and T. Someno: “<strong>Robust</strong> motion control with autonomous<br />

consideration algorithm <strong>of</strong> joint torque saturation,” in Proc. IEEE<br />

IES/IECON’98, pp.1812–1817, 1998.<br />

[3] K. Ohishi, H. Nozawa, and S. Ohtaki: “<strong>Robust</strong> motion control with consideration<br />

algorithm <strong>of</strong> joint torque saturation <strong>for</strong> redundant manipulator,”<br />

in Proc. IEEE IES/IECON 2000, pp.2255–2260, 2000.<br />

[4] F. Suzuki and Y. Hori: “Anti-windup strategy <strong>for</strong> feedback control system<br />

based on youla parameterization,” (in Japanese), IEEJ Trans. IA, Vol.121-<br />

D, No. 6, pp. 683–688, Jun. 2001.<br />

[5] R. Watanabe, K. Uchida, E. Shimemura, and M. Fujita: “A new synthesis<br />

<strong>of</strong> anti-windup and bumpeless transfer <strong>for</strong> system with constraint on<br />

control input,” (in Japanese), SICE, Vol. 30, No. 6, pp. 660–668, Jun.<br />

Fig. 9. Experimental results <strong>of</strong> proposed continuous path tracking control<br />

based on the proposed torque current limitation algorithm<br />

1994.<br />

[6] K. Ohishi, E. Hayasaka, T. Nagano, M. Harakawa, and T. Kanmachi:<br />

“High-per<strong>for</strong>mance speed servo system considering voltage saturation <strong>of</strong><br />

a vector-controlled induction motor,” IEEE Trans. Ind. Ele., Vol.53, No.3,<br />

pp.795–802, Jun. 2006.<br />

[7] C. Bohn, and D.P.Atherton: “An analysis package comparing PID antiwindup<br />

strategies,” IEEE <strong>Control</strong> Syst. Mag., Vol. 15, No. 2, pp. 34–40,<br />

Apr. 1995.<br />

[8] K.J.Åstrom, and T.Hagglund:“Automatic Tuning <strong>of</strong> PID <strong>Control</strong>lers,”<br />

Instrument Society <strong>of</strong> America, 1988<br />

[9] Y. Peng, D. Vrancic, and R. Hanus: “Anti-windup, bumpless, and conditioned<br />

transfer techniques <strong>for</strong> PID controllers,” IEEE <strong>Control</strong> Syst, Mag.,<br />

Vol. 16, No. 4, pp. 48–57, Aug. 1996.<br />

[10] M.V.kothare, P.J.Campo, M. Morari, and C.N.Nett: “A Unified framework<br />

<strong>for</strong> the study <strong>of</strong> anti-windup designs,” Automatica, Vol. 30, No. 12,<br />

pp. 1869–1883, 1994.<br />

[11] M. <strong>Sazawa</strong>, T. Yamada, K. Ohishi, and S. Katsura: “<strong>Robust</strong> high speed<br />

positioning servo system considering saturation <strong>of</strong> current and speed,” in<br />

Proc. IEEE IES/ICIT 2006, pp. 866–871, Dec. 2006<br />

[12] M. <strong>Sazawa</strong>, K. Ohishi, and S. Katsura : “<strong>Robust</strong> high speed position<br />

servo system considering current & voltage limitation and load inertia<br />

variation,” in Proc. IEEE IES/IECON 2007, pp.322-327 Nov. 2007.<br />

[13] M. <strong>Sazawa</strong>, K. Ohishi, S. Katsura, and S. Kato :“<strong>Robust</strong> fast tracking<br />

control <strong>for</strong> multi-degrees-<strong>of</strong>-freedom motion system considering torque<br />

saturation,” in Proc. IEEE IES/ICIT <strong>2008</strong>, Apr. <strong>2008</strong><br />

[14] T. Mashimo, K. Ohishi, and H. Dohmeki :“High speed positioning<br />

system considering unknown coulomb friction and inertia variation,” in<br />

Proc. IEEE IES/IECON 2004, Nov. 2004<br />

978-1-4244-4649-0/09/$25.00 ©2009 IEEE 3094

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!