22.10.2014 Views

2009 Sazawa - Fast Continuous Path Tracking Control Considering High Precision and Torque Saturation.pdf

2009 Sazawa - Fast Continuous Path Tracking Control Considering High Precision and Torque Saturation.pdf

2009 Sazawa - Fast Continuous Path Tracking Control Considering High Precision and Torque Saturation.pdf

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Fast</strong> <strong>Continuous</strong> <strong>Path</strong> <strong>Tracking</strong> <strong>Control</strong> <strong>Considering</strong><br />

<strong>High</strong> <strong>Precision</strong> <strong>and</strong> <strong>Torque</strong> <strong>Saturation</strong><br />

Masaki <strong>Sazawa</strong><br />

Nagaoka University of Technology<br />

1603-1, Kamitomioka, Nagaoka,<br />

Niigata, 940-2188, JAPAN<br />

Email: sazawa@vos.nagaokaut.ac.jp<br />

Kiyoshi Ohishi<br />

Nagaoka University of Technology<br />

1603-1, Kamitomioka, Nagaoka,<br />

Niigata, 940-2188, JAPAN<br />

Email: ohishi@vos.nagaoaut.ac.jp<br />

Abstract—<strong>Continuous</strong> path tracking control is an important<br />

technology for the position control system such as factory<br />

automation field. Particularly, large acceleration <strong>and</strong>/or deceleration<br />

torque is required for continuous path tracking control<br />

at its start position <strong>and</strong> its goal position. Each AC servo motor<br />

of continuous path tracking control has limitation of current<br />

<strong>and</strong> voltage. Therefore, in controlling a multi-degree-of-freedom<br />

continuous path tracking control system, even if only the motor<br />

torque of one axis has the current limitation, the actual position<br />

response is not often equal to the desired trajectory reference.<br />

In fast continuous path tracking control of multi-degree-offreedom<br />

position control system, the position error sometimes<br />

increases according to the unknown disturbance torque <strong>and</strong><br />

inertia variation.<br />

In order to overcome these problems, this paper proposes a<br />

new continuous path tracking control algorithm by considering<br />

both the torque saturation <strong>and</strong> the coordinated motion. The<br />

proposed method assures the coordinated motion by considering<br />

the torque limitation. The effectiveness of the proposed method<br />

is confirmed by the experimental results in this paper.<br />

I. INTRODUCTION<br />

<strong>Fast</strong> continuous path tracking control is dem<strong>and</strong>ed for the<br />

multi-degrees-of-freedom position control system in order to<br />

improve the productivity [1]. Moreover, fast continuous path<br />

tracking control system such as X-Y tables is constructed by<br />

AC servo motor <strong>and</strong> ball screw. Especially, large acceleration<br />

<strong>and</strong>/or deceleration torque is necessary for fast continuous path<br />

tracking control at its start position <strong>and</strong> its goal position. As<br />

a result, the actual position response sometimes has the large<br />

overshoot <strong>and</strong> the oscillated response. Moreover, the position<br />

response of each axis cannot coordinate <strong>and</strong> follow to the<br />

desired path tracking reference [2]–[10].<br />

We have already proposed a new anti-windup algorithm<br />

for motor drive control <strong>and</strong> fast potion control. This control<br />

method realizes the fast <strong>and</strong> smooth positioning control<br />

without overshoot <strong>and</strong> the oscillated response [11], [12]. This<br />

paper applies the proposed anti-windup algorithm to the multidegrees-of-freedom<br />

position control system such as X-Y table.<br />

In multi-degrees-of-freedom position control system, when<br />

the servo motor on Y-axis has torque saturation, the servo<br />

motor on X-axis often increases the tracking error. In order<br />

to overcome this problem, this paper proposes a new torque<br />

limitation algorithm considering coordinated motion control<br />

for robust fast continuous path tracking control system [13].<br />

The proposed method is the on-line real time algorithm, which<br />

assures the coordinated multi-degrees-of-freedom motion control<br />

considering the torque saturation.<br />

II. FAST CONTINUOUS PATH TRACKING CONTROL<br />

Fig.1 shows the fast continuous path tracking control system.<br />

The position control system is constructed by the minor<br />

control loop of speed PI controller <strong>and</strong> current PI controller<br />

with each output limitation [6]. In this paper, the limiter of<br />

the speed controller output is constructed by the proposed<br />

output limitation algorithm based on the priority feedback<br />

compensation of proportional output, which is a new antiwindup<br />

algorithm for PI controller [11], [12]. Since this<br />

limitation algorithm of PI controller output has the robustness<br />

on parameter variation [11], [12], this paper applies the proposed<br />

anti-windup algorithm to the multi-degrees-of-freedom<br />

position control system. When the b<strong>and</strong>width of position<br />

controller becomes high enough, the transfer function from<br />

the position comm<strong>and</strong> θ cmd to the actual position response<br />

θ res can be treated as show in (1).<br />

θ res<br />

θ<br />

ω<br />

ωres αres<br />

= =<br />

cmd cmd<br />

A. Braking Mode Algorithm<br />

≃ 1 (1)<br />

αcmd In order to realize the desired fast continuous path tracking<br />

control, near to the goal position, the maximum torque deceleration<br />

is often requested. Fig.2 shows the ideal deceleration<br />

response to the target goal position. The fast continuous path<br />

tracking control system decelerates by using the maximum<br />

torque during the proposed decelerating time t d , which is the<br />

time from the braking start time t brake to the braking end time<br />

t end as shown in Fig.2. The moving distance ΔΘ err for the<br />

decelerating time t d is defined as (2). The braking start time<br />

t brake is determined by the load torque <strong>and</strong> the target goal<br />

position. Hence, the moving distance ΔΘ err is treated as the<br />

position error until the target goal position. In this method,<br />

the decelerating speed ω m (t) <strong>and</strong> the decelerating time t d<br />

are obtained as shown in (3) <strong>and</strong> (4). The moving distance<br />

ΔΘ err is calculated by using the estimated load torque <strong>and</strong><br />

978-1-4244-4649-0/09/$25.00 ©<strong>2009</strong> IEEE 3089


α cmd J n<br />

I FF<br />

K tn<br />

ω cmd<br />

i ref d<br />

+<br />

Position P + + ω ref e<br />

+<br />

+<br />

u +<br />

+<br />

+ - <strong>Control</strong>ler<br />

+<br />

ksiTs z-1<br />

i ref<br />

-<br />

- + q<br />

x ~ x +<br />

Speed<br />

- Current + -<br />

ksp<br />

Limiter<br />

+<br />

Limiter<br />

-<br />

-<br />

Δup Δu<br />

+<br />

Δui<br />

Speed <strong>Control</strong>ler<br />

ω res with proposed new anti-windup algorithm<br />

target position<br />

I<br />

ω STOP<br />

STOP =0<br />

Braking Mode<br />

+ - Algorithm<br />

Braking Mode Algorithm<br />

s<br />

θ<br />

cmd<br />

θ<br />

res<br />

+<br />

-<br />

id res<br />

iq res<br />

kcp<br />

kci<br />

s<br />

+<br />

-<br />

1<br />

kcp<br />

Current <strong>Control</strong>ler<br />

with anti-windup algorithm<br />

+<br />

+<br />

kcp<br />

kci<br />

s<br />

1 ΔVd<br />

kcp<br />

ΔVq<br />

Vd<br />

d-q<br />

+<br />

α-β<br />

+ Vq<br />

θre<br />

d-q<br />

t1,<br />

t2<br />

d-q<br />

u,<br />

v,w<br />

iv<br />

iu<br />

p<br />

α-β<br />

t1,<br />

t2<br />

t1<br />

t2<br />

θrm<br />

~<br />

t1<br />

+<br />

-<br />

+ -<br />

~<br />

t2<br />

t1,<br />

t2<br />

Suvw<br />

Inverter<br />

PM<br />

Enc.<br />

Fig. 1.<br />

<strong>Continuous</strong> path tracking control system with anti-windup algorithm<br />

Current Speed Position<br />

0<br />

ω 0<br />

0<br />

0<br />

~<br />

target position<br />

ΔΘ err<br />

brake point<br />

time[s]<br />

ω m (t)<br />

time[s]<br />

-I MAX<br />

time[s]<br />

Y-Axis<br />

Table<br />

AC Motor<br />

Coupling<br />

X-Axis<br />

Encoder<br />

Ball Screw<br />

Coupling<br />

AC Motor<br />

Encoder<br />

(a) tested X-Y table system<br />

start, goal<br />

(b) path reference<br />

Fig. 3. System configuration of experimental system<br />

tbrake<br />

td<br />

tend<br />

Fig. 2.<br />

Ideal deceleration & stop response<br />

the maximum torque current I MAX , as shown in (5) [14].<br />

ΔΘ err = ∫ t d<br />

0 ω m(t)dt (2)<br />

ω m (t) =ω 0 − K tnI MAX + ˆT dis<br />

J<br />

t (3)<br />

t d =<br />

2<br />

1 Jω 0<br />

K tn I MAX + ˆT (4)<br />

dis<br />

ΔΘ err = 1 2<br />

Jω 2 0<br />

K tn (I MAX + ˆT dis<br />

K tn<br />

)<br />

B. System Configuration <strong>and</strong> Experimental System<br />

Fig.3 shows the configuration of tested experimental system.<br />

Fig.3(a) shows the tested X-Y table system. TABLE.I is the<br />

specifications of tested motor <strong>and</strong> TABLE.II is the specifications<br />

of tested experimental system. In the tested experimental<br />

system, the axis inertia J such as X-axis is 6.21×10 −5 [kgm 2 ].<br />

(5)<br />

As the axis inertia of Y-axis is the total inertia including<br />

the weight of X-axis, Y-axis inertia becomes 2.5 times value<br />

of X-axis inertia. Hence, the tested motion control system<br />

always has the inertia variation. The continuous path tracking<br />

comm<strong>and</strong> is shown in the reference of Fig.3(b).<br />

Fig.4 shows the experimental results of the tested continuous<br />

path tracking control system using the conventional speed<br />

PI controller using integrator with limiter. Fig.4(b) shows the<br />

responses of position, speed <strong>and</strong> current of Y-axis on condition<br />

that the driving time of path reference is 2 [sec]. In this<br />

condition, the actual path response coincides with the path<br />

reference completely, even if the continuous path tracking<br />

control system has only limiter. However, on condition that<br />

the driving time of path reference is 1 [sec], the actual<br />

path response has large tracking error. In multi-degrees-offreedom<br />

position control system, when the servo motor on<br />

Y-axis has torque saturation, the servo motor on X-axis often<br />

increases the tracking error. Therefore, the multi-degrees-offreedom<br />

position control system must be required to have the<br />

coordinated motion considering the torque limitation.<br />

978-1-4244-4649-0/09/$25.00 ©<strong>2009</strong> IEEE 3090


TABLE I<br />

SPECIFICATIONS OF TESTED MOTOR<br />

Rated power P [W] 200<br />

Rated voltage v[V] 100<br />

<strong>Torque</strong> constant K t[Nm/A] 0.1597<br />

Actual inertia of joint X J x[kgm 2 ] 6.21 × 10 −5<br />

Actual inertia of joint Y J y[kgm 2 ] 15.54 × 10 −5<br />

Nominal inertia of joint X J xn[kgm 2 ] 6.21 × 10 −5<br />

Nominal inertia of joint Y J yn[kgm 2 ] 6.21 × 10 −5<br />

Rated maximum speed ω max[rad/s] 314<br />

Rated current (d-q axis) i max[A] 4<br />

Conversion factor K 0 [rad/m] 100π<br />

Encoder pulse [pulse/rev] 2000<br />

y[mm]<br />

80<br />

60<br />

40<br />

20<br />

0<br />

start, goal<br />

P-reference<br />

P-response(2s)<br />

P-response(1s)<br />

-20<br />

TABLE II<br />

SPECIFICATIONS OF EACH CONTROLLER<br />

B<strong>and</strong>width of current controller ω p[rad/s] 4000<br />

B<strong>and</strong>width of speed controller ω s[rad/s] 600<br />

B<strong>and</strong>width of position controller ω c[rad/s] 150<br />

Current limitation values I limit [A] 4<br />

Speed limitation value ω limit [rad/s] 300<br />

III. TORQUE LIMITATION ALGORITHM FOR<br />

MULTI-DEGREE-OF-FREEDOM SYSTEM<br />

The torque current reference i ref should be divided into the<br />

tracking control current i tra <strong>and</strong> the disturbance compensation<br />

current i cmp , as shown in (6). The disturbance compensation<br />

current i cmp is estimated by ordinary disturbance observer.<br />

When the fast continuous path tracking control system has<br />

torque saturation, the amplitude of i tra should be adjusted<br />

to the maximum tracking control current I traMAX as shown<br />

in (7). Here, I MAX is the maximum torque current, k is the<br />

sampling number.<br />

I tra (k) = I ref (k) − I cmp (k). (6)<br />

⎧<br />

I MAX − I cmp (k)<br />

⎪⎨<br />

when I MAX >I refi<br />

I traMAX (k) =<br />

(7)<br />

−I MAX − I cmp (k)<br />

⎪⎩<br />

when −I MAX


60<br />

40<br />

P-reference<br />

P-response<br />

position[rad]<br />

20<br />

0<br />

-20<br />

θ-cmd<br />

θ-cmd-tilde<br />

θ-res<br />

0 0.5 1 1.5<br />

20<br />

y[mm]<br />

0<br />

Zoom up<br />

speed[rad/s]<br />

200<br />

0<br />

-200<br />

ω-ref<br />

ω-res<br />

-20<br />

0 0.5 1 1.5<br />

-40<br />

iq[A]<br />

5<br />

0<br />

iq-ref<br />

iq-res<br />

Radius error[mm]<br />

0.2<br />

0.1<br />

0<br />

-0.1<br />

-0.2<br />

-60<br />

-150 -100 -50 0 50 100 150<br />

x[mm]<br />

a) path response<br />

0 0.5 1 1.5<br />

Time[s]<br />

b) tracking error<br />

P-reference<br />

P-response<br />

10<br />

-5<br />

0 0.5 1 1.5<br />

Time[s]<br />

a) position, speed <strong>and</strong> current response of X axis<br />

position[rad]<br />

speed[rad/s]<br />

θ-cmd<br />

20<br />

θ-cmd-tilde<br />

θ-res<br />

0<br />

-20<br />

0 0.5 1 1.5<br />

ω-ref<br />

200<br />

ω-res<br />

0<br />

-200<br />

0 0.5 1 1.5<br />

5<br />

5<br />

iq-ref<br />

iq-res<br />

y[mm]<br />

0<br />

iq[A]<br />

0<br />

-5<br />

-5<br />

0 0.5 1 1.5<br />

Time[s]<br />

b) position, speed <strong>and</strong> current response of Y axis<br />

-10<br />

99.4 99.5 99.6 99.7 99.8 99.9 100 100.1 100.2<br />

x[mm]<br />

c) zoom up of path response<br />

Fig. 5. Experimental results of the tested continuous path tracking control<br />

using conventional torque current limitation algorithm<br />

Ĩ refi (k) =ε min (k)I trai (k)+I cmpi (k) (11)<br />

= Ĩtra i<br />

(k)+I cmpi (k) (12)<br />

The acceleration torque current adjustment ratio ε i is<br />

defined as shown in (10). The acceleration torque current<br />

adjustment ratio ε i shows the content ratio of I traMAX to<br />

I trai in each axes. In this torque limitation algorithm, the<br />

fast continuous path tracking control current I trai is adjusted<br />

by using the minimum acceleration torque current adjustment<br />

ratio ε min . When the fast continuous path tracking control<br />

system has no torque saturation, the path tracking control<br />

current I trai should be not adjusted. In this case, ε min<br />

becomes equal to 1. The adjusted current reference Ĩref i<br />

is<br />

the sum of the adjusted acceleration torque current <strong>and</strong> the<br />

disturbance compensation torque current as shown in (12).<br />

Fig.5 shows the experimental results of the tested continuous<br />

path tracking control system using this conventional<br />

torque current limitation algorithm. When the continuous path<br />

Fig. 6. Experimental results of the tested continuous path tracking control<br />

system using conventional torque current limitation algorithm<br />

tracking control system has torque saturation, the path tracking<br />

error is small in comparison with that of Fig.5. The proposed<br />

torque limitation algorithm has the validity on fast continuous<br />

path tracking control. However, in the start position <strong>and</strong> the<br />

goal position, the path tracking error has just large error as<br />

shown in Fig.5-(b) <strong>and</strong> Fig.5-(c).<br />

IV. TORQUE LIMITATION ALGORITHM FOR ROBUST<br />

MULTI-DEGREES-OF-FREEDOM FAST POSITION CONTROL<br />

In order to overcome this problem, this paper proposes a<br />

new adjustment path backward torque limitation algorithm.<br />

The new proposed sampling adjusted position comm<strong>and</strong> is<br />

determined from the current sampling maximum path tracking<br />

control current I traMAXi . The acceleration comm<strong>and</strong> α i (k) is<br />

determined in (13). In this paper, the next sampling adjusted<br />

cmd<br />

position comm<strong>and</strong> ˜θ i (k +1) is defined as shown in (14).<br />

The position adjustment ratio γ i (k +1) is defined as shown<br />

in (15). Here, T s is sampling time.<br />

This paper picks up the minimum value γ min (k +1) among<br />

γ i (k +1)(i =1∼ N). The next sampling adjustment time<br />

˜t(k +1) is obtained by the time function of position comm<strong>and</strong><br />

f i (t) as shown in (16) <strong>and</strong> (17). Since the proposed algorithm<br />

calculates the next sampling corrected position comm<strong>and</strong><br />

978-1-4244-4649-0/09/$25.00 ©<strong>2009</strong> IEEE 3092


α cmd i<br />

ω cmd i<br />

θ<br />

cmd<br />

i<br />

<strong>Tracking</strong> Adjustment Algorithm of<br />

Multi-Degrees-of-Freedom Motion System<br />

~<br />

I FF i<br />

~<br />

ω cmd i<br />

~<br />

+ + ω ref<br />

i Position P<br />

i<br />

+<br />

+<br />

- <strong>Control</strong>ler<br />

-<br />

Speed<br />

Limiter<br />

i<br />

ω res i<br />

θ<br />

cmd<br />

θ<br />

res<br />

Speed <strong>Control</strong>ler<br />

with proposed new anti-windup algorithm<br />

e<br />

+<br />

+<br />

ksiTs<br />

-<br />

ksp<br />

i ref d i<br />

+<br />

+<br />

z -1 u<br />

i ref<br />

+ q<br />

x ~ i<br />

x +<br />

-<br />

Current<br />

+<br />

-<br />

Limiter<br />

-<br />

Δup Δu<br />

+<br />

Δui<br />

target position<br />

ω STOP =0<br />

+ -<br />

Braking Mode<br />

Algorithm I STOP<br />

Current <strong>Control</strong>ler<br />

with anti-windup algorithm<br />

Inverter<br />

PM<br />

Enc.<br />

^<br />

T dis i<br />

Disturbance<br />

Observer<br />

ω res i<br />

i ref q i<br />

Braking Mode Algorithm<br />

s<br />

Fig. 7.<br />

Proposed continuous path tracking control system considering torque current saturation <strong>and</strong> coordinated motion<br />

˜θ cmd<br />

i<br />

(k +1) by using ˜t(k +1), ˜θcmd i (k +1) is determined<br />

as shown in (18). Similarly, the corrected speed comm<strong>and</strong><br />

˜ω i<br />

cmd (k +1) is calculated as shown in (19). Here, f ′ (t) is<br />

the time function of speed comm<strong>and</strong>.<br />

˜θ cmd<br />

i<br />

= θ cmd<br />

i<br />

α i (k) = K tn i<br />

J ni<br />

I traMAXi (k) (13)<br />

(k +1)=θ cmd (k)+T s ω res (k)+ 1 2 T s 2 α i (k)<br />

i<br />

(k)+T s ωi<br />

res (k)+ 1 2 T s<br />

2<br />

γ i (k +1)≡<br />

cmd ˜θ i<br />

θi<br />

cmd<br />

= T sωi<br />

res<br />

i<br />

K tni<br />

J ni<br />

I traMAXi (k) (14)<br />

(k +1)− θi<br />

cmd (k)<br />

(k +1)− θi<br />

cmd (k)<br />

(k)+ 1 2 T s 2 α i (k)<br />

θi<br />

cmd (k +1)− θi<br />

cmd (k)<br />

if I MAX > |I refi |, γ(k +1)=1<br />

˜ω cmd<br />

i (k +1)=<br />

(15)<br />

˜t(k +1)=f −1<br />

i (˜θ i cmd (k + 1)) (16)<br />

≃ t(k)+γ min (k +1)T s (17)<br />

˜θ cmd<br />

i (k +1)=f i (˜t(k + 1)) (18)<br />

⎧<br />

If γ min (k +1)=γ i (k +1)<br />

⎪⎨ f i ′ (˜t(k + 1))<br />

else γ min (k +1)≠ γ i (k +1) (19)<br />

˜θ ⎪⎩ i<br />

cmd (k +1)− θi<br />

cmd (k)<br />

T s<br />

Using (14) <strong>and</strong> the proposed adjustment path backward<br />

torque limitation algorithm, the next sampling corrected position<br />

comm<strong>and</strong> ˜θ i (k +1) is defined as shown in (20). Here,<br />

cmd<br />

Ĩ FFi (k) is the corrected acceleration current reference based<br />

on coordinated motion caused by torque saturation. As the<br />

result, the acceleration current reference ĨFF i<br />

(k) is obtained<br />

as shown in (21).<br />

˜θ i cmd (k +1)<br />

= θ cmd<br />

i<br />

(k)+T s ωi<br />

res (k)+ 1 2 T s<br />

2<br />

K tni<br />

J ni<br />

Ĩ FFi (k) (20)<br />

Ĩ FFi (k) =<br />

2J n i<br />

Ts 2 {f i (t(k)+γ min (k +1)T s )<br />

K tni<br />

− θi<br />

cmd (k) − T s ωi res (k)} (21)<br />

Fig.7 shows the block diagram of the proposed fast continuous<br />

path tracking control system considering torque current<br />

saturation <strong>and</strong> coordinated motion. Fig.8 shows the experimental<br />

results of the proposed continuous path tracking control<br />

based on the proposed torque current limitation algorithm.<br />

TABLE III shows the comparison of settling time <strong>and</strong> tracking<br />

error. In fig.9(b), the continuous path tracking control of Y-<br />

axis has torque saturation. The proposed method well realizes<br />

the high accuracy path tracking control within radius error<br />

0.02[rad], even if Y-axis acceleration torque is the maximum<br />

torque.<br />

V. CONCLUSION<br />

This paper proposes a new continuous path tracking control<br />

algorithm taking into account both the torque saturation <strong>and</strong><br />

the coordinated motion. This paper newly defines the new<br />

position reference adjustment ratio γ by using disturbance<br />

observer, which is the key for robust multi-degrees-of-freedom<br />

fast position control. The proposed method well realizes the<br />

coordinated motion considering the torque limitation, which<br />

is the on-line real time algorithm. The effectiveness of the<br />

proposed method is confirmed by the experimental results.<br />

REFERENCES<br />

[1] K. Sakai, M. Iwasaki, <strong>and</strong> N. Matsui :“<strong>High</strong>-speed <strong>and</strong> high-precision<br />

positioning system by using mode switching control,”(in Japanese), IEEJ<br />

Trans. IA, Vol. 118-D, No. 7/8, pp. 870–876, Jul./Aug. 1998.<br />

978-1-4244-4649-0/09/$25.00 ©<strong>2009</strong> IEEE 3093


60<br />

40<br />

P-reference<br />

P-response<br />

position[rad]<br />

20<br />

0<br />

-20<br />

θ-cmd<br />

θ-cmd-tilde<br />

θ-res<br />

0 0.5 1 1.5<br />

20<br />

y[mm]<br />

0<br />

Zoom up<br />

speed[rad/s]<br />

200<br />

0<br />

-200<br />

ω-ref<br />

ω-res<br />

-20<br />

0 0.5 1 1.5<br />

-40<br />

iq[A]<br />

5<br />

0<br />

iq-ref<br />

iq-res<br />

Radius error[mm]<br />

0.2<br />

0.1<br />

0<br />

-0.1<br />

-0.2<br />

-60<br />

-150 -100 -50 0 50 100 150<br />

x[mm]<br />

a) path response<br />

0 0.5 1 1.5<br />

Time[s]<br />

b) tracking error<br />

P-reference<br />

P-response<br />

10<br />

-5<br />

0 0.5 1 1.5<br />

Time[s]<br />

a) position, speed <strong>and</strong> current response of X axis<br />

position[rad]<br />

speed[rad/s]<br />

θ-cmd<br />

20<br />

θ-cmd-tilde<br />

θ-res<br />

0<br />

-20<br />

0 0.5 1 1.5<br />

ω-ref<br />

200<br />

ω-res<br />

0<br />

-200<br />

0 0.5 1 1.5<br />

5<br />

5<br />

iq-ref<br />

iq-res<br />

y[mm]<br />

0<br />

iq[A]<br />

0<br />

-5<br />

-5<br />

0 0.5 1 1.5<br />

Time[s]<br />

b) position, speed <strong>and</strong> current response of Y axis<br />

-10<br />

99.4 99.5 99.6 99.7 99.8 99.9 100 100.1 100.2<br />

x[mm]<br />

c) zoom up of path response<br />

Fig. 8. Experimental results of proposed continuous path tracking control<br />

based on the proposed torque current limitation algorithm<br />

TABLE III<br />

COMPARISON OF SETTLING TIME AND TRACKING ERROR<br />

settling time path inner error path outer error<br />

only current limiter 1.106s -3.929rad 0.831rad<br />

(-12.51mm) (2.65mm)<br />

conventional torque 1.046s -0.057rad 0.042rad<br />

limitation method (-0.18mm) (0.13mm)<br />

proposed torque 1.041s -0.018rad 0.008rad<br />

limitaion method (0.06mm) (0.03mm)<br />

[2] K. Ohishi <strong>and</strong> T. Someno: “Robust motion control with autonomous<br />

consideration algorithm of joint torque saturation,” in Proc. IEEE<br />

IES/IECON’98, pp.1812–1817, 1998.<br />

[3] K. Ohishi, H. Nozawa, <strong>and</strong> S. Ohtaki: “Robust motion control with consideration<br />

algorithm of joint torque saturation for redundant manipulator,”<br />

in Proc. IEEE IES/IECON 2000, pp.2255–2260, 2000.<br />

[4] F. Suzuki <strong>and</strong> Y. Hori: “Anti-windup strategy for feedback control system<br />

based on youla parameterization,” (in Japanese), IEEJ Trans. IA, Vol.121-<br />

D, No. 6, pp. 683–688, Jun. 2001.<br />

[5] R. Watanabe, K. Uchida, E. Shimemura, <strong>and</strong> M. Fujita: “A new synthesis<br />

of anti-windup <strong>and</strong> bumpeless transfer for system with constraint on<br />

control input,” (in Japanese), SICE, Vol. 30, No. 6, pp. 660–668, Jun.<br />

Fig. 9. Experimental results of proposed continuous path tracking control<br />

based on the proposed torque current limitation algorithm<br />

1994.<br />

[6] K. Ohishi, E. Hayasaka, T. Nagano, M. Harakawa, <strong>and</strong> T. Kanmachi:<br />

“<strong>High</strong>-performance speed servo system considering voltage saturation of<br />

a vector-controlled induction motor,” IEEE Trans. Ind. Ele., Vol.53, No.3,<br />

pp.795–802, Jun. 2006.<br />

[7] C. Bohn, <strong>and</strong> D.P.Atherton: “An analysis package comparing PID antiwindup<br />

strategies,” IEEE <strong>Control</strong> Syst. Mag., Vol. 15, No. 2, pp. 34–40,<br />

Apr. 1995.<br />

[8] K.J.Åstrom, <strong>and</strong> T.Hagglund:“Automatic Tuning of PID <strong>Control</strong>lers,”<br />

Instrument Society of America, 1988<br />

[9] Y. Peng, D. Vrancic, <strong>and</strong> R. Hanus: “Anti-windup, bumpless, <strong>and</strong> conditioned<br />

transfer techniques for PID controllers,” IEEE <strong>Control</strong> Syst, Mag.,<br />

Vol. 16, No. 4, pp. 48–57, Aug. 1996.<br />

[10] M.V.kothare, P.J.Campo, M. Morari, <strong>and</strong> C.N.Nett: “A Unified framework<br />

for the study of anti-windup designs,” Automatica, Vol. 30, No. 12,<br />

pp. 1869–1883, 1994.<br />

[11] M. <strong>Sazawa</strong>, T. Yamada, K. Ohishi, <strong>and</strong> S. Katsura: “Robust high speed<br />

positioning servo system considering saturation of current <strong>and</strong> speed,” in<br />

Proc. IEEE IES/ICIT 2006, pp. 866–871, Dec. 2006<br />

[12] M. <strong>Sazawa</strong>, K. Ohishi, <strong>and</strong> S. Katsura : “Robust high speed position<br />

servo system considering current & voltage limitation <strong>and</strong> load inertia<br />

variation,” in Proc. IEEE IES/IECON 2007, pp.322-327 Nov. 2007.<br />

[13] M. <strong>Sazawa</strong>, K. Ohishi, S. Katsura, <strong>and</strong> S. Kato :“Robust fast tracking<br />

control for multi-degrees-of-freedom motion system considering torque<br />

saturation,” in Proc. IEEE IES/ICIT 2008, Apr. 2008<br />

[14] T. Mashimo, K. Ohishi, <strong>and</strong> H. Dohmeki :“<strong>High</strong> speed positioning<br />

system considering unknown coulomb friction <strong>and</strong> inertia variation,” in<br />

Proc. IEEE IES/IECON 2004, Nov. 2004<br />

978-1-4244-4649-0/09/$25.00 ©<strong>2009</strong> IEEE 3094

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!