22.10.2014 Views

2009 Bai - A globally stable SM-PD-INP-D tracking control of robot manipulators.pdf

2009 Bai - A globally stable SM-PD-INP-D tracking control of robot manipulators.pdf

2009 Bai - A globally stable SM-PD-INP-D tracking control of robot manipulators.pdf

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

A Globally Stable <strong>SM</strong>-<strong>PD</strong>-I NP-D Tracking Control <strong>of</strong> Robot Manipulators<br />

<strong>Bai</strong>-shun Liu Fan-Cai Lin<br />

Department <strong>of</strong> Battle & Command<br />

Academe <strong>of</strong> Naval Submarine<br />

QingDao, China<br />

E-mail: baishunliu@163.com E-mail: lfcai_777@yahoo.com.cn.<br />

Abstract — This paper deals with the <strong>tracking</strong> <strong>control</strong> <strong>of</strong> <strong>robot</strong><br />

<strong>manipulators</strong>. Synthesizing the strong robustness <strong>of</strong> the sliding<br />

mode <strong>control</strong> and the good flexibility <strong>of</strong> <strong>PD</strong>-I NP-D <strong>control</strong>,<br />

Proposed is a simple class <strong>of</strong> <strong>robot</strong> <strong>tracking</strong> <strong>control</strong>ler<br />

consisting <strong>of</strong> a linear sliding mode term plus a linear <strong>PD</strong><br />

feedback plus an integral action driven by an NP-D <strong>control</strong>ler.<br />

By using Lyapunov’s direct method and LaSalle’s invariance<br />

principle, the simple explicit conditions on the <strong>control</strong>ler gains<br />

to ensure global asymptotic stability are provided. The<br />

theoretical analysis and simulation results show that: i) the<br />

<strong>SM</strong>-<strong>PD</strong>-I NP-D <strong>control</strong>ler has the faster convergence, better<br />

flexibility and stronger robustness with respect to initial errors;<br />

ii) the proposed <strong>control</strong> laws can not only achieve the<br />

asymptotically <strong>stable</strong> trajectory <strong>tracking</strong> <strong>control</strong> but also the<br />

<strong>tracking</strong> errors quickly tend to almost zero without oscillation<br />

as time increases; iii) after the sign function is replaced by<br />

saturation function in the <strong>SM</strong>-<strong>PD</strong>-I NP-D <strong>control</strong> law, the highfrequency<br />

oscillation <strong>of</strong> the <strong>control</strong> input vanishes.<br />

Keywords — Manipulators; Robot <strong>control</strong>; PID <strong>control</strong>;<br />

global stability; Tracking <strong>control</strong>.<br />

I. INTRODUCTION<br />

For the <strong>tracking</strong> <strong>control</strong> <strong>of</strong> <strong>robot</strong> <strong>manipulators</strong>, many<br />

<strong>control</strong> strategies have been proposed in the literature [1-4] .For<br />

example, feedback linearization method, <strong>PD</strong> feedback with<br />

feedforward compensation, PID <strong>control</strong>, sliding mode<br />

<strong>control</strong>, adaptive <strong>control</strong>, sliding mode linear PID <strong>control</strong>,<br />

sliding mode nonlinear PID <strong>control</strong>, and so on. Among them,<br />

PID-like <strong>control</strong>lers with little prior knowledge <strong>of</strong> system are<br />

one <strong>of</strong> the most popular <strong>control</strong> strategies because they can<br />

not only effectively deal with nonlinearity and uncertainties<br />

<strong>of</strong> dynamics but also the <strong>globally</strong> or semi<strong>globally</strong><br />

asymptotically <strong>stable</strong> <strong>tracking</strong> <strong>control</strong> can be achieved<br />

accordingly. Hence, most <strong>robot</strong>s employed in industrial<br />

operation are <strong>control</strong>led through PID-like <strong>control</strong>lers.<br />

A major drawback <strong>of</strong> PID-like <strong>tracking</strong> <strong>control</strong>ler is that<br />

it <strong>of</strong>ten produces the larger oscillation <strong>of</strong> the <strong>control</strong>led<br />

system, even may lead to instability due to unlimited integral<br />

action. Hence, in this paper, synthesizing the strong<br />

robustness <strong>of</strong> the sliding mode <strong>control</strong> and the good<br />

flexibility <strong>of</strong> <strong>PD</strong>-I NP-D <strong>control</strong> [7] , we develop a new class <strong>of</strong><br />

global position <strong>tracking</strong> <strong>control</strong>ler for <strong>robot</strong> <strong>manipulators</strong><br />

leading to a linear sliding mode term plus a linear <strong>PD</strong><br />

feedback plus an integral action driven by NP-D <strong>control</strong>ler.<br />

The novel <strong>control</strong>lers not only can effectively avoid the<br />

drawback due to unlimited integral action but also do not<br />

_____________________________<br />

978-1-4244-4520-2/09/$25.00 ©<strong>2009</strong> IEEE<br />

require the exact knowledge <strong>of</strong> <strong>robot</strong> dynamics. The simple<br />

explicit conditions on the <strong>control</strong>ler gains to ensure <strong>globally</strong><br />

asymptotically <strong>stable</strong> position <strong>tracking</strong> <strong>control</strong> are provided.<br />

Throughout this paper, we use the notation λm (A)<br />

and<br />

λ (A) M<br />

to indicate the smallest and largest eigenvalues,<br />

respectively, <strong>of</strong> a symmetric positive define bounded matrix<br />

n<br />

A (x) , for any x ∈ R . The norm <strong>of</strong> vector x is defined as<br />

T<br />

x = x x , and that <strong>of</strong> matrix A is defined as the<br />

T<br />

corresponding induced norm A ( A A)<br />

= .<br />

The remainder <strong>of</strong> the paper is organized as follows.<br />

Section II summarizes the <strong>robot</strong> model and its main<br />

properties. Our main results are presented in Section III and<br />

IV, where we propose <strong>SM</strong>-<strong>PD</strong>-I NP-D <strong>control</strong> law and provide<br />

the conditions on the <strong>control</strong>ler gains to ensure global<br />

asymptotic stability, respectively. Simulation examples are<br />

given in Section V. Conclusions are presented in Section VI.<br />

II. PROBLEM FORMULATION<br />

The dynamic system <strong>of</strong> an n-link rigid <strong>robot</strong> manipulator<br />

system [1] can be written as,<br />

M ( q)<br />

q̇ + C(<br />

q,<br />

q̇<br />

) q̇<br />

+ Dq̇<br />

+ g(<br />

q)<br />

= u<br />

(1)<br />

where q is the n × 1 vector <strong>of</strong> joint positions, u is the n × 1<br />

vector <strong>of</strong> applied joint torques, M (q)<br />

is the n × n symmetric<br />

positive define inertial matrix, C( q,<br />

q̇)<br />

q̇<br />

is the n × 1 vector<br />

<strong>of</strong> the Coriolis and centrifugal torques, D is the n × n<br />

positive define diagonal friction matrix, and g(q)<br />

is the<br />

n ×1 vector <strong>of</strong> gravitational torques obtained as the gradient<br />

<strong>of</strong> the <strong>robot</strong> potential energy U (q)<br />

due to gravity.<br />

A list <strong>of</strong> properties [1] <strong>of</strong> the model (1) is recalled as,<br />

0 < λ ( M ) ≤ M ( q)<br />

≤ λ ( M )<br />

(2)<br />

ς<br />

T<br />

m<br />

M<br />

( Ṁ<br />

( q)<br />

− 2C(<br />

q,<br />

q̇<br />

)) ς = 0<br />

C ( q,<br />

ς ) v = C(<br />

q,<br />

v)ς<br />

λ M<br />

n<br />

∀ς ∈ R<br />

(3)<br />

∀ q ,<br />

n<br />

,ς v ∈ R<br />

(4)


2<br />

0 < C q̇<br />

≤ C(<br />

q,<br />

q̇<br />

) q̇<br />

≤ C q̇<br />

m<br />

g(<br />

q)<br />

≤ κ<br />

g<br />

M<br />

2<br />

∀q<br />

̇<br />

n<br />

, q ∈ R (5)<br />

n<br />

∀ q ∈ R<br />

(6)<br />

where C<br />

m<br />

, CM<br />

and κ<br />

g<br />

are all positive constants.<br />

For convenience, we define hyperbolic tangent vector<br />

n<br />

function tanh( •) ∈ R and hyperbolic secant diagonal matrix<br />

n×<br />

n<br />

function sec h(•) ∈ R , as follows,<br />

T<br />

tanh( ξ ) = [tanh( ξ1),<br />

⋯,tanh(<br />

ξn )] ,<br />

sech(<br />

ξ ) = diag[sech(<br />

ξ1),<br />

⋯,sech(<br />

ξn<br />

)],<br />

and then one can obtain,<br />

T<br />

T<br />

T<br />

tanh ( ξ )tanh( ξ ) ≤ tanh ( ξ ) ξ ≤ ξ ξ<br />

(7)<br />

where K<br />

P<br />

, K<br />

D<br />

, K<br />

η<br />

, K<br />

IP<br />

and K<br />

ID<br />

are the suitable positive<br />

define diagonal n × n matrices;<br />

Discussion 1 Notice that the integral action in (11) and<br />

(10) can be rewritten as: σ̇<br />

= −K<br />

IP<br />

tanh( e)<br />

− K<br />

IDė<br />

and<br />

σ ̇ = −K I<br />

(tanh( e)<br />

+ ė<br />

) , respectively. Although they are all<br />

asymptotically <strong>stable</strong>, the former adds a gain matrix K<br />

ID<br />

,<br />

which make us more easily inject the suitable damping to<br />

adjust the integral action. This means that the <strong>control</strong>ler (11)<br />

should have the faster convergence, better flexibility than the<br />

one (10), and then the <strong>control</strong>ler (11) could yield higher<br />

<strong>control</strong> performance.<br />

Remark 1 It is well known that sliding mode <strong>control</strong><br />

easily excites high-frequency oscillation <strong>of</strong> <strong>control</strong> action in<br />

practice, which degrades the performance <strong>of</strong> the system and<br />

may even lead to instability. To avoid this drawback, the sign<br />

function can be replaced by saturation function, and then a<br />

continuous <strong>control</strong> law can be obtained, as follows.<br />

|| tanh( ξ ) ||≤<br />

n<br />

(8)<br />

u = −K<br />

e − K<br />

ė<br />

− K<br />

t<br />

( K tanh( e(<br />

τ )) K ė<br />

( τ ))<br />

−<br />

∫<br />

+<br />

0<br />

IP<br />

P<br />

D<br />

η<br />

tanh( η)<br />

ID<br />

dτ<br />

(12)<br />

λ (sec 2 M<br />

h ( ξ )) = 1<br />

(9)<br />

n<br />

where ξ = [ ξ 1<br />

, ⋯ , ξ ]∈ R .<br />

n<br />

III. <strong>SM</strong>-<strong>PD</strong>- I NP-D CONTROL LAW<br />

The position <strong>tracking</strong> <strong>control</strong> <strong>of</strong> most <strong>of</strong> the industrial<br />

<strong>robot</strong>s are <strong>control</strong>led through PID-like <strong>control</strong>lers. The<br />

textbook version <strong>of</strong> the <strong>SM</strong>-<strong>PD</strong>-NI <strong>tracking</strong> <strong>control</strong>ler [1] can<br />

be described as,<br />

u = −K<br />

P<br />

e − K<br />

D<br />

t<br />

∫0<br />

ė − K sgn( η)<br />

− K η(<br />

τ ) dτ<br />

(10)<br />

η<br />

n<br />

where e( t)<br />

= q(<br />

t)<br />

− qd<br />

( t)<br />

∈ R is the <strong>tracking</strong> errors, q d<br />

(t)<br />

is the desired trajectories, and η = tanh( e)<br />

+ ė<br />

; K<br />

P<br />

, K<br />

D<br />

and<br />

K<br />

I<br />

are suitable positive define diagonal n × n matrices;<br />

sgn(• ) is the normal sign function.<br />

Although the <strong>control</strong>ler (10) has been shown in practice<br />

to be effective for position <strong>tracking</strong> <strong>control</strong> <strong>of</strong> <strong>robot</strong><br />

<strong>manipulators</strong>, unfortunately, it <strong>of</strong>ten produces the larger<br />

oscillation <strong>of</strong> the <strong>control</strong>led system due to integral action.<br />

Based on the above fact, we get intuitively an idea that<br />

the transient performance <strong>of</strong> the closed-loop system may be<br />

improved if the suitable damping is injected into the<br />

integrator. Following this idea, a novel class <strong>of</strong> <strong>tracking</strong><br />

<strong>control</strong>ler is proposed, as follows,<br />

u = −K<br />

e − K<br />

ė<br />

− K<br />

t<br />

( K tanh( e(<br />

τ )) K ė<br />

( τ ))<br />

−<br />

∫<br />

+<br />

0<br />

IP<br />

P<br />

D<br />

η<br />

sgn( η)<br />

ID<br />

dτ<br />

I<br />

(11)<br />

IV.<br />

CLOSED-LOOP ANALYSIS<br />

For analyzing the stability <strong>of</strong> the closed-loop system, it is<br />

convenient to introduce the following notation.<br />

t<br />

1<br />

Defining z(<br />

t)<br />

=<br />

−<br />

∫<br />

tanh( e(<br />

τ )) dτ<br />

− K<br />

IP<br />

K<br />

IDe(0)<br />

, and then<br />

0<br />

the <strong>control</strong> law (11) can be rewritten as,<br />

u = −( K + K ) e − K ė − K z − sgn( η)<br />

(13)<br />

P<br />

ID<br />

D<br />

IP<br />

The closed-loop system dynamics is obtained by<br />

substituting the <strong>control</strong> action u from (13) into the <strong>robot</strong><br />

dynamic model (1),<br />

M ( q)<br />

̇̇ e + C(<br />

q,<br />

q̇<br />

) ė<br />

+ Dė<br />

+ ( K<br />

P<br />

+ K<br />

+ K ė<br />

D<br />

+ K<br />

IPz<br />

+ Kη sgn( η)<br />

= ρ<br />

K η<br />

ID<br />

) e<br />

(14)<br />

where ρ = −M<br />

( q)<br />

q̇̇<br />

d<br />

− C(<br />

q,<br />

q̇<br />

) q̇<br />

d<br />

− Dq̇<br />

d<br />

− g(<br />

q)<br />

Using (2), (5) and (6), the upper bound <strong>of</strong> || ρ || can be<br />

rewritten as [1] ,<br />

|| ρ || ≤ λM<br />

( M ) AM<br />

+ CMV<br />

+ λM<br />

( D)<br />

VM<br />

+ κ<br />

g<br />

≡ γ + γ || ė<br />

||<br />

0<br />

1<br />

2<br />

M<br />

+ C<br />

M<br />

V<br />

M<br />

|| ė<br />

||<br />

(15)<br />

where γ<br />

0<br />

and γ 1<br />

are positive constants; AM<br />

and V M<br />

are the<br />

upper bound <strong>of</strong> q̇ ̇<br />

d<br />

and q̇ d<br />

, respectively.<br />

Now, the objective is to provide conditions on the<br />

<strong>control</strong>ler gains K<br />

P<br />

, K<br />

η<br />

, K<br />

D<br />

, K<br />

IP<br />

and K<br />

ID<br />

guaranteeing


global asymptotic stability <strong>of</strong> the closed-loop system (14).<br />

This is established in the following.<br />

Theorem Consider the <strong>robot</strong> dynamics (1) together with<br />

the <strong>control</strong> law (11). There exist gain matrices K<br />

P<br />

, K<br />

η<br />

, K<br />

D<br />

,<br />

K<br />

IP<br />

and K<br />

ID<br />

such that<br />

λ ( K + K − K ) > 4λ<br />

( M )<br />

(16)<br />

m<br />

P<br />

ID<br />

IP<br />

M<br />

3 1<br />

λ<br />

m<br />

( K<br />

D<br />

+ D)<br />

≥ γ<br />

1<br />

+ CMVM<br />

+ nCM<br />

+ λM<br />

( M ) (17)<br />

2 2<br />

1<br />

λ<br />

m<br />

( K<br />

P<br />

+ K<br />

ID<br />

− K<br />

IP<br />

) ≥ ( γ<br />

1<br />

+ CMVM<br />

)<br />

(18)<br />

2<br />

λ<br />

η<br />

≥<br />

m<br />

( K ) γ<br />

0<br />

(19)<br />

hold, and then the closed-loop system (14) is <strong>globally</strong><br />

asymptotically <strong>stable</strong>, i.e., lim e(<br />

t)<br />

= 0 .<br />

t→∞<br />

Pro<strong>of</strong>: To carry out the stability analysis, we consider the<br />

following Lyapunov function candidate:<br />

1 T<br />

T<br />

V = ė<br />

M ( q)<br />

ė<br />

+ tanh ( e)<br />

M ( q)<br />

ė<br />

2<br />

1 T<br />

1 T<br />

+ e ( K<br />

P<br />

+ K<br />

ID<br />

− K<br />

IP<br />

) e + ( e + z)<br />

K<br />

2<br />

2<br />

+<br />

n<br />

∑<br />

i=<br />

1<br />

( K<br />

Di<br />

+ D )ln(cosh( e ))<br />

i<br />

i<br />

IP<br />

( e + z)<br />

(20)<br />

where K<br />

Di<br />

and Di<br />

are the diagonal element <strong>of</strong> the<br />

matrices K<br />

D<br />

and D , respectively; cosh(• ) and ln(• ) are the<br />

hyperbolic cosine function and natural logarithm function,<br />

respectively.<br />

I. Positive definition <strong>of</strong> Lyapunov function (20).<br />

Now, using (2) and (7), the following inequality holds,<br />

1 T<br />

T<br />

1 T<br />

ė<br />

M ( q)<br />

ė<br />

+ tanh ( e)<br />

M ( q)<br />

ė<br />

+ e ( K<br />

P<br />

+ K<br />

ID<br />

− K<br />

4<br />

4<br />

1<br />

T<br />

= ( ė<br />

+ 2tanh( e))<br />

M ( q)(<br />

ė<br />

+ 2tanh( e))<br />

4<br />

T<br />

1 T<br />

− tanh ( e)<br />

M ( q)tanh(<br />

e)<br />

+ e ( K<br />

P<br />

+ K<br />

ID<br />

− K<br />

IP<br />

) e<br />

4<br />

1 T<br />

T<br />

≥ e ( K<br />

P<br />

+ K<br />

ID<br />

− K<br />

IP<br />

) e − tanh ( e)<br />

M ( q)tanh(<br />

e)<br />

4<br />

1<br />

≥<br />

4<br />

n<br />

∑<br />

i=<br />

1<br />

( K<br />

Pi<br />

+ K<br />

IDi<br />

− K<br />

IPi<br />

− 4λ<br />

M<br />

( M ))tanh<br />

2<br />

( e )<br />

i<br />

IP<br />

) e<br />

(21)<br />

where K<br />

Pi<br />

, K<br />

IPi<br />

and K<br />

IDi<br />

are the diagonal element <strong>of</strong> the<br />

matrices K<br />

P<br />

, K<br />

IP<br />

and K<br />

ID<br />

, respectively.<br />

Substituting (21) into (20), and using (16), and the fact<br />

T T T T<br />

ln(cosh( e )) ≥ 0 , for any ( e , ė , z ) ≠ 0 ,weobtain,<br />

1<br />

V ≥ e<br />

4<br />

+<br />

n<br />

∑<br />

i=<br />

1<br />

( K<br />

1 T<br />

+ ( e + z)<br />

K<br />

2<br />

i<br />

1<br />

M ( q)<br />

e + e<br />

4<br />

̇T<br />

̇<br />

Di<br />

( K<br />

+ D )ln(cosh( e ))<br />

i<br />

IP<br />

T<br />

P<br />

( e + z)<br />

> 0<br />

i<br />

+ K<br />

ID<br />

− K<br />

IP<br />

) e<br />

(22)<br />

This shows that the Lyapunov function (20) is positive<br />

define.<br />

II. Time derivative <strong>of</strong> Lyapunov function (20).<br />

The time derivative <strong>of</strong> Lyapunov function (20) along the<br />

trajectories <strong>of</strong> the closed-loop system (14) is,<br />

1<br />

V̇<br />

T<br />

T<br />

= ė<br />

M ( q)<br />

̇̇ e + ė<br />

Ṁ<br />

( q)<br />

ė<br />

2<br />

T<br />

T<br />

+ ė<br />

( K<br />

P<br />

+ K<br />

ID<br />

− K<br />

IP<br />

) e + ( ė<br />

+ ż<br />

) K<br />

IP<br />

( e + z)<br />

T<br />

T<br />

+ tanh ( e)<br />

Ṁ<br />

( q)<br />

ė<br />

+ tanh ( e)<br />

M ( q)<br />

ė̇<br />

2 T<br />

+ (sech<br />

( e)<br />

ė<br />

) M ( q)<br />

ė<br />

+ ė<br />

( K + D)tanh(<br />

e)<br />

D<br />

(23)<br />

Substituting z ̇( t)<br />

= tanh( e)<br />

and M ( q)̇<br />

ė<br />

from (14) into<br />

(23), and using (3), we have,<br />

V̇<br />

T T<br />

= ( ė<br />

+ tanh( e))<br />

ρ −η<br />

K sgn( η)<br />

T<br />

− ė<br />

( K<br />

D<br />

2 T<br />

+ (sech<br />

( e)<br />

ė<br />

)<br />

(sech<br />

≤ (<br />

+ D)<br />

ė<br />

− tanh<br />

T<br />

η<br />

( e)(<br />

K<br />

M ( q)<br />

ė<br />

+ tanh<br />

T<br />

P<br />

+ K<br />

ID<br />

− K<br />

IP<br />

T<br />

( e)<br />

C ( q,<br />

q̇<br />

) ė<br />

) e<br />

Now, using (2), (4), (5), (8) and (9), we get,<br />

2<br />

= (sech<br />

+ (<br />

nC<br />

T<br />

T<br />

( e)<br />

ė<br />

) M ( q)<br />

ė<br />

+ tanh ( e)<br />

C(<br />

q,<br />

q̇<br />

) ė<br />

2<br />

T<br />

T<br />

( e)<br />

ė<br />

) M ( q)<br />

ė<br />

+ tanh ( e)<br />

C(<br />

q,<br />

ė<br />

)( ė<br />

+ q̇<br />

)<br />

M<br />

+ λ<br />

M<br />

( M )) || ė<br />

||<br />

2<br />

+ C<br />

M<br />

V<br />

M<br />

|| tanh( e)<br />

|| || ė<br />

||<br />

Substituting (15) and (25) into (24), we obtain,<br />

V̇<br />

≤||<br />

ė<br />

+ tanh( e)<br />

|| ( γ + γ || ė<br />

||)<br />

T<br />

T<br />

−η<br />

K sgn( η)<br />

− ė<br />

( K<br />

T<br />

− tanh ( e)(<br />

K<br />

+ C<br />

+ K<br />

2<br />

nCM<br />

+ λ ( M )) || ė<br />

M<br />

||<br />

V || tanh( e)<br />

|| || ė<br />

||<br />

M<br />

η<br />

M<br />

P<br />

0<br />

ID<br />

D<br />

1<br />

− K<br />

+ D)<br />

ė<br />

IP<br />

) e<br />

d<br />

(24)<br />

(25)<br />

(26)<br />

By || η || = || tanh( e)<br />

+ ė<br />

|| and || η || ≤||<br />

tanh( e)<br />

|| + || ė<br />

|| , the<br />

inequality (26) can be rewritten as,


V̇<br />

T<br />

≤ γ || η || −η<br />

K<br />

+ ( γ +<br />

1<br />

1<br />

0<br />

T<br />

ė<br />

( K<br />

D<br />

+ ( γ + C V<br />

sgn( η)<br />

−<br />

T<br />

+ D)<br />

ė<br />

− tanh ( e)(<br />

K<br />

nC<br />

M<br />

M<br />

M<br />

η<br />

P<br />

+ K<br />

2<br />

+ λ ( M )) || ė<br />

M<br />

||<br />

) || tanh( e)<br />

|| || ė<br />

||<br />

ID<br />

− K<br />

IP<br />

) e<br />

(27)<br />

The parameter values <strong>of</strong> the system are selected as:<br />

2<br />

m = m 1kg<br />

, l = l 1m<br />

, g = 10m/<br />

s .<br />

1 2<br />

=<br />

1 2<br />

=<br />

2 2<br />

Inserting 2 || tanh( e)<br />

|| || ė || ≤||<br />

tanh( e)<br />

|| + || ė<br />

|| into (27)<br />

and using (7), we get,<br />

V̇<br />

T<br />

≤ γ || η || −η<br />

K<br />

0<br />

T<br />

− ė<br />

( K<br />

D<br />

sgn( η)<br />

T<br />

+ D)<br />

ė<br />

− tanh ( e)(<br />

K<br />

3 1<br />

+ ( γ<br />

1<br />

+ CMVM<br />

+ nCM<br />

+ λ<br />

2 2<br />

1<br />

2<br />

+ ( γ<br />

1<br />

+ CMVM<br />

) || tanh( e)<br />

||<br />

2<br />

Noticing<br />

η<br />

n<br />

∑<br />

i=<br />

1<br />

P<br />

+ K<br />

M<br />

ID<br />

− K<br />

IP<br />

( M )) || ė<br />

||<br />

)tanh( e)<br />

T<br />

η sgn( η)<br />

= | ηi<br />

| and || η || ≤ ∑|<br />

ηi<br />

|<br />

inequality (28) can be rewritten as,<br />

2<br />

n<br />

i=<br />

1<br />

(28)<br />

, the<br />

Figure 1. The two-link <strong>robot</strong> <strong>manipulators</strong><br />

V̇<br />

≤ −(<br />

λ ( K<br />

m<br />

η<br />

) − γ ) || η ||<br />

⎡λm<br />

( K<br />

D<br />

+ D)<br />

−<br />

T<br />

− ė<br />

⎢<br />

⎢<br />

3 1<br />

( γ<br />

1<br />

+ CMVM<br />

+ nC<br />

⎢⎣<br />

2 2<br />

⎡λm<br />

( K<br />

P<br />

+ K<br />

ID<br />

− K<br />

T<br />

− tanh ( e)<br />

⎢<br />

⎢<br />

1<br />

− ( γ<br />

1<br />

+ CMVM<br />

)<br />

⎢⎣<br />

2<br />

0<br />

M<br />

IP<br />

⎤<br />

⎥ė<br />

+ λM<br />

( M )) ⎥<br />

⎥⎦<br />

) ⎤<br />

⎥ tanh( e)<br />

⎥<br />

⎥⎦<br />

(29)<br />

From (17), (18), (19), (22) and (29), we can conclude<br />

V̇ ≤ 0 . Using the fact that the Lyapunov function (20) is a<br />

positive define function and its time derivative is a negative<br />

semidefine function, we conclude that the closed-loop<br />

system (14) is <strong>stable</strong>. In fact, V̇ = 0 means e = 0 and ė = 0 .<br />

By invoking the LaSalle’s invariance principle [5] ,itiseasyto<br />

know that the closed-loop system (14) is <strong>globally</strong><br />

asymptotically <strong>stable</strong>, i.e., lim e(<br />

t)<br />

= 0 .<br />

t→∞<br />

V. SIMULATIONS<br />

To illustrate the effect <strong>of</strong> the <strong>control</strong>ler given in this<br />

paper, a two-link <strong>manipulators</strong> shown in Figure 1 is<br />

considered. The dynamics (1) is <strong>of</strong> the following form [6]<br />

2<br />

⎧M<br />

11q̇̇<br />

1<br />

+ M<br />

12q̇̇<br />

2<br />

+ F11q̇<br />

2<br />

+ 2F12q̇<br />

1q̇<br />

2<br />

+ G1<br />

= u1<br />

⎨<br />

2<br />

⎩M<br />

12q̇̇<br />

1<br />

+ M<br />

22q̇̇<br />

2<br />

+ F11q̇<br />

1<br />

+ 2F12q̇<br />

1q̇<br />

2<br />

+ G2<br />

= u2<br />

2 2<br />

where: M = m + m ) l + m l + 2m l l cos( ) ,<br />

11<br />

(<br />

1 2 1 2 2 2 1 2<br />

q2<br />

2<br />

2<br />

M<br />

22<br />

= m2l2<br />

, M<br />

12<br />

= m2l2<br />

+ m 2<br />

l 1<br />

l 2<br />

cos( q 2<br />

) ,<br />

F 11<br />

= F 12<br />

= −m 2<br />

l 1<br />

l 2<br />

sin( q 2<br />

) , G<br />

2<br />

= m2gl2<br />

sin( q1<br />

+ q2)<br />

,<br />

and G = m + m ) gl sin( q ) + m gl sin( q + ) .<br />

1<br />

(<br />

1 2 1 1 2 2 1<br />

q2<br />

Figure 2. The desired (dashed) and actual (solid) trajectories with the<br />

<strong>control</strong> law (11).<br />

Figure 3. The desired (dashed) and actual (solid) trajectories with the<br />

<strong>control</strong> law (12).<br />

The desired trajectories are taken as: q d 1<br />

= 2sin( t)<br />

and<br />

q d 2<br />

= 2cos( t)<br />

for Link1 and Link2, respectively. The<br />

simulation is implemented by using the <strong>control</strong> laws (11) and<br />

(12), respectively. The <strong>control</strong>ler gains matrices are given as:<br />

K P<br />

= diag(500,500) , K D<br />

= diag(150,150)<br />

,<br />

K IP<br />

= diag(200,200) , K ID<br />

= diag(50,50)


and K<br />

η<br />

= diag(10,10)<br />

.<br />

ii) <strong>SM</strong>-<strong>PD</strong>-I NP-D <strong>control</strong> law has the faster convergence,<br />

better flexibility and stronger robustness with respect to<br />

initial position errors, and then the <strong>tracking</strong> errors quickly<br />

tend to almost zero without oscillation as time increases;<br />

iii) After the sign function is replaced by saturation<br />

function, the high-frequency oscillation <strong>of</strong> the <strong>control</strong> input<br />

vanishes.<br />

Figure 4. Position errors with the <strong>control</strong> law (11).<br />

Figure 7. Control input with the <strong>control</strong> law (12).<br />

Figure 5. Position errors with the <strong>control</strong> law (12).<br />

Figure 6. Control input with the <strong>control</strong> law (11).<br />

The simulations with sampling period <strong>of</strong> 2ms are<br />

implemented. Figure 2 ~ Figure 5 present the response <strong>of</strong> the<br />

<strong>robot</strong> <strong>manipulators</strong> with the <strong>control</strong> laws (11) and (12),<br />

respectively. Figure 6 and Figure 7 are the <strong>control</strong> inputs<br />

produced by the <strong>control</strong> laws (11) and (12), respectively.<br />

From simulation results, it is easy to see that:<br />

i) Using the proposed <strong>control</strong> laws (11) and (12), the<br />

asymptotically <strong>stable</strong> <strong>tracking</strong> <strong>control</strong> can all be achieved;<br />

VI. CONCLUSIONS<br />

In this paper, we have presented a solution to the <strong>tracking</strong><br />

problem <strong>control</strong> <strong>of</strong> <strong>robot</strong> <strong>manipulators</strong> without exact<br />

knowledge <strong>of</strong> the <strong>robot</strong> dynamics. The explicit conditions on<br />

the <strong>control</strong>ler gains to ensure global asymptotic stability <strong>of</strong><br />

the overall closed-loop system are given in terms <strong>of</strong> some<br />

information exacted from the <strong>robot</strong> dynamics. An attractive<br />

feature <strong>of</strong> our scheme is that <strong>SM</strong>-<strong>PD</strong>-I NP-D <strong>tracking</strong> <strong>control</strong>ler<br />

has the faster convergence, better flexibility and stronger<br />

robustness with respect to initial errors, and then the <strong>tracking</strong><br />

errors quickly tend to almost zero without oscillation as time<br />

increases. Our findings have been corroborated numerically<br />

on a two DOF vertical <strong>robot</strong> manipulator.<br />

REFERENCES<br />

[1] Y. X. Su, Nonlinear Control Theory for Robot Manipulators, Science<br />

Publishing, Beijing, 2008.<br />

[2] J. Alvarez-Ramirez, I. Gervantes, and R. Kelly, “PID regulation <strong>of</strong><br />

<strong>robot</strong> <strong>manipulators</strong>: stability and performance”, System & Control<br />

Letters, vol. 41(2), Apr. 2000, pp. 73-83.<br />

[3] H. G. Sage, M. F. Mathelin, and E. Ostertag, “Robust <strong>control</strong> <strong>of</strong> <strong>robot</strong><br />

<strong>manipulators</strong>: a survey”, International Journal <strong>of</strong> Control, vol. 72(6),<br />

Jun. 1999, pp.1498-1522.<br />

[4] J. Alvarez-Ramirez and I. Gervantes, “On the <strong>tracking</strong> <strong>control</strong> <strong>of</strong><br />

<strong>robot</strong> <strong>manipulators</strong>”, Systems & Control Letters, vol. 42(1), jan. 2001,<br />

pp. 37-46.<br />

[5] H. K. Khalil, Nonlinear Systems, Electronics Industry Publishing,<br />

Beijing, 2007.<br />

[6] S. J. Yu, X. D. Qi, and J. H. Wu, Iterative Learning Control Theory<br />

& application, Machine Publishing, Beijing, 2005.<br />

[7] B. S. Liu, and B. L. Tian, “A lobally Stable <strong>PD</strong>-I NP-D Regulator for<br />

Robot Manipulators”, to be published in <strong>2009</strong> International<br />

Conference on Information Technology and Computer Science<br />

proceedings.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!