22.10.2014 Views

Physics 12c, Problem Set 8 Solutions - Caltech Theoretical Particle ...

Physics 12c, Problem Set 8 Solutions - Caltech Theoretical Particle ...

Physics 12c, Problem Set 8 Solutions - Caltech Theoretical Particle ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Physics</strong> <strong>12c</strong>, <strong>Problem</strong> <strong>Set</strong> 8 <strong>Solutions</strong><br />

June 13, 2013<br />

[1] Hyperscaling<br />

For λ = 0, the scaling hypothesis becomes<br />

G(Ω p ɛ) = ΩG(ɛ);<br />

hence choosing Ω p ɛ = constant, or Ω ∼ |ɛ| −1/p , we find<br />

G(ɛ) ∼ Ω −1 ∼ |ɛ| 1/p .<br />

The hyperscaling relation, together with the definition of ν implies<br />

G(ɛ) ∼ (r corr ) −d ∼ |ɛ| dν .<br />

Comparing the two expressions for G(ɛ) we find<br />

dν = 1/p.<br />

From <strong>Problem</strong> 2c, we have 1/p = 2 − α; therefore<br />

the Josephson identity.<br />

[2] Evaporative cooling<br />

dν = 2 − α,<br />

(a) The Maxwell distribution is of the form<br />

√<br />

2<br />

( m<br />

) 3/2<br />

P (v) =<br />

v 2 e − 1 2 mv2 /τ . (2.1)<br />

π τ<br />

Check the normalization,<br />

∫ ∞<br />

√ ∫ 2 ∞<br />

dvP (v) =<br />

π 23/2<br />

where<br />

0<br />

0<br />

= √ 4 ∫ ∞<br />

dx π<br />

Probability that 1 2 mv2 > x 0 is<br />

And<br />

0<br />

x =<br />

P (x 0 ) = √ 4 ∫ ∞<br />

π<br />

which is the fraction of particle that escapes.<br />

( m<br />

) 1/2 1<br />

dv<br />

2τ 2τ mv2 e − 1 2 mv2 /τ<br />

(<br />

x 2 e −x2) = 1, (2.2)<br />

( 1<br />

2τ mv2 )<br />

. (2.3)<br />

x 0<br />

(<br />

dx x 2 e −x2) . (2.4)<br />

P (x 0 = 1) = 0.572407, (2.5)<br />

1


(b) Number of particles with speed in (v, v + dv) is NP (v)dv, carrying energy<br />

1<br />

2 mv2 NP (v)dv. Total energy is<br />

U = N<br />

∫ ∞<br />

0<br />

dvP (v) 1 2 mv2 = Nτ √ 4 ∫ ∞<br />

π<br />

Eenrgy of particles with 1<br />

2τ mv2 > x 0 is<br />

U(x 0 ) = Nτ 4 √ π<br />

∫ ∞<br />

where g(x 0 ) is fraction of energy lost.<br />

(c) The remaining particles have energy<br />

0<br />

dxx 4 e −x2 = 3 Nτ. (2.6)<br />

2<br />

x 0<br />

dxx 4 e −x2 = 3 2 Nτg(x 0), (2.7)<br />

g(1) = 0.849145 (2.8)<br />

Ū = (1 − g)U = (1 − g) 3 Nτ. (2.9)<br />

2<br />

After evaporation,<br />

¯N = (1 − f)N (2.10)<br />

Ū = (1 − g) 3 2 Nτ = 3 2 ¯N ¯τ = 3 (1 − f)N ¯τ. (2.11)<br />

2<br />

So,<br />

for x 0 = 1.<br />

¯τ = 1 − g τ = 0.3528τ, (2.12)<br />

1 − f<br />

[3] Einstein relation on a lattice<br />

(a)<br />

So,<br />

Γ(s → s + 1)<br />

Γ(s + 1 → s) = eF ∆/τ . (3.13)<br />

And,<br />

P R =<br />

P R<br />

= e F ∆/τ →<br />

P L<br />

∆/τ<br />

eF<br />

1 + e , P 1<br />

F ∆/τ L = . (3.14)<br />

1 + eF ∆/τ<br />

P R − P L = eF ∆/τ ( )<br />

− 1 F ∆<br />

e F ∆/τ + 1 = tanh . (3.15)<br />

2τ<br />

(b) For F ∆<br />

τ<br />


[4] Einstein relation from linear response theory<br />

(a)<br />

Z 0 = ∑ a<br />

e −Ea/τ (4.18)<br />

and<br />

Z λ = ∑ a<br />

e −(ɛa−λAa)/τ ∼ Z 0 + λ τ Z 0 < A > . (4.19)<br />

And we know that<br />

Therefore,<br />

∑<br />

B a e −(ɛa−λAa)/τ ∼ Z 0 < B > + λ τ Z 0 < AB > . (4.20)<br />

a<br />

< B > λ<br />

Z 0 < B > + λ τ Z 0 < AB ><br />

Z 0 + λ τ Z 0 < A ><br />

∼< B > 0 + λ τ (< AB > 0 − < A > 0 < B > 0 ).<br />

(4.21)<br />

(b) Next consider H → H−F x. Find drift velocity < v > F , where < v > 0 = 0.<br />

< v > F = F τ < vx > 0 (4.22)<br />

[5] The cost of erasure<br />

(a) According to Boltzmann distribution, the probability is proportional to<br />

e −E/τ . Thus, we have<br />

1<br />

P (0) =<br />

(5.23)<br />

1 + e −λ/τ<br />

(b)<br />

(c)<br />

W =<br />

∫ ∞<br />

0<br />

P (1) =<br />

e−λ/τ<br />

1 + e −λ/τ (5.24)<br />

dW = P (0)dE 0 + P (1)dE 1 (5.25)<br />

dW =<br />

dW =<br />

e−λ/τ<br />

dλ (5.26)<br />

1 + e−λ/τ ∫ ∞<br />

The result agrees with the Landauer’s Principle.<br />

0<br />

e −λ/τ<br />

dλ = τ ln 2 (5.27)<br />

1 + e−λ/τ 3

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!