27.10.2014 Views

Natural Attenuation Potential of Cyanide in Groundwater Near a SPL ...

Natural Attenuation Potential of Cyanide in Groundwater Near a SPL ...

Natural Attenuation Potential of Cyanide in Groundwater Near a SPL ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Natural</strong> <strong>Attenuation</strong> <strong>Potential</strong> <strong>of</strong> <strong>Cyanide</strong> <strong>in</strong> <strong>Groundwater</strong> <strong>Near</strong> a <strong>SPL</strong><br />

Landfill<br />

I.Gagnon<br />

Department <strong>of</strong> Chemical Eng<strong>in</strong>eer<strong>in</strong>g, École Polytechnique de Montréal, Montreal, Quebec, Canada<br />

G.J.Zagury<br />

Department <strong>of</strong> Civil, Geological and M<strong>in</strong><strong>in</strong>g Eng<strong>in</strong>eer<strong>in</strong>g, École Polytechnique de Montréal, Montreal,<br />

Quebec, Canada<br />

L.Deschênes<br />

Department <strong>of</strong> Chemical Eng<strong>in</strong>eer<strong>in</strong>g, École Polytechnique de Montréal, Montreal, Quebec, Canada<br />

ABSTRACT: Spent pot l<strong>in</strong><strong>in</strong>g (<strong>SPL</strong>), a waste product conta<strong>in</strong><strong>in</strong>g cyanide, has been deposited <strong>in</strong> a landfill at<br />

an alum<strong>in</strong>um ref<strong>in</strong><strong>in</strong>g site <strong>in</strong> British Columbia (Canada). S<strong>in</strong>ce the capp<strong>in</strong>g <strong>of</strong> the landfill, a cont<strong>in</strong>uous decl<strong>in</strong>e<br />

<strong>of</strong> the cyanide level <strong>in</strong> the groundwater was observed for more than a decade, suggest<strong>in</strong>g that natural<br />

attenuation might be tak<strong>in</strong>g place. The <strong>in</strong>formation gathered from a critical review <strong>of</strong> the exist<strong>in</strong>g literature<br />

along with available groundwater characterization data identified adsorption and biodegradation as two possible<br />

attenuation phenomena. Collection and analysis <strong>of</strong> additional groundwater samples showed that the majority<br />

<strong>of</strong> the cyanide <strong>in</strong> the groundwater was under the form <strong>of</strong> iron-cyanide complexes. Us<strong>in</strong>g the groundwater<br />

characterization data, geochemical model<strong>in</strong>g us<strong>in</strong>g Visual MINTEQ was performed <strong>in</strong> order to predict the<br />

concentration <strong>of</strong> dissolved cyanide species. The results were close to the field data and they confirmed the occurrence<br />

<strong>of</strong> significant concentrations <strong>of</strong> Fe(CN) 6<br />

4-<br />

and Na Fe(CN) 6 3- along the contam<strong>in</strong>ation plume.<br />

1 INTRODUCTION<br />

1.1 Background<br />

<strong>Cyanide</strong> occurs as a groundwater contam<strong>in</strong>ant at<br />

various current and former <strong>in</strong>dustrial sites, <strong>in</strong>clud<strong>in</strong>g<br />

electroplat<strong>in</strong>g facilities, alum<strong>in</strong>um production plants,<br />

manufactured-gas plants (MGP), and gold m<strong>in</strong><strong>in</strong>g<br />

<strong>in</strong>dustries. The study site is located <strong>in</strong> British Columbia<br />

(Canada) and is primarily an alum<strong>in</strong>um<br />

smelter, but also functions as an alum<strong>in</strong>um production<br />

facility.<br />

Spent pot l<strong>in</strong><strong>in</strong>g (<strong>SPL</strong>) is a waste product <strong>of</strong> alum<strong>in</strong>um<br />

ref<strong>in</strong><strong>in</strong>g. It conta<strong>in</strong>s, <strong>in</strong> addition to carbon,<br />

fluoride salts and cyanide. In British Columbia, <strong>SPL</strong><br />

is classified as a special waste by the prov<strong>in</strong>cial<br />

M<strong>in</strong>istry <strong>of</strong> Water, Lands and Air Protection<br />

(MWLAP), and is therefore subject to particular<br />

handl<strong>in</strong>g, storage and transfer requirements. Disposal<br />

<strong>of</strong> <strong>SPL</strong> is an <strong>in</strong>dustry wide problem.<br />

Prior to the mid-1980s, <strong>SPL</strong> from the smelter was<br />

deposited <strong>in</strong> a landfill on the smelter site. The landfill<br />

was capped at the end <strong>of</strong> the 1980s to prevent<br />

leach<strong>in</strong>g <strong>of</strong> cyanide to groundwater. Over the next<br />

decade, a cont<strong>in</strong>uous decl<strong>in</strong>e <strong>of</strong> the cyanide level <strong>in</strong><br />

the groundwater was observed, suggest<strong>in</strong>g that natural<br />

attenuation (NA) might be tak<strong>in</strong>g place. The<br />

ma<strong>in</strong> objectives <strong>of</strong> this study are: (1) to identify the<br />

ma<strong>in</strong> NA phenomena which could expla<strong>in</strong> the cyanide<br />

decrease ; and (2) to assess the NA potential <strong>of</strong><br />

cyanide <strong>in</strong> groundwater near the landfill.<br />

1.2 <strong>Cyanide</strong> chemistry<br />

Speciation <strong>of</strong> the cyanide present <strong>in</strong> groundwater is<br />

very important when determ<strong>in</strong><strong>in</strong>g groundwater toxicity.<br />

<strong>Cyanide</strong>s are toxic and their toxicity is related<br />

to their physicochemical speciation (Zagury et al.<br />

2004). <strong>Cyanide</strong> can exist <strong>in</strong> aqueous solution as free<br />

cyanide (HCN, CN - ) or as complexes with metals<br />

such as cadmium, copper, iron, gold and nickel<br />

among others, or as thiocyanate. Free cyanide, and<br />

weak acid dissociable cyanide (CN WAD ) (complexes<br />

with metals such as copper, z<strong>in</strong>c, nickel) are classified<br />

as the most toxic because <strong>of</strong> their high metabolic<br />

<strong>in</strong>hibition potential whereas strong acid dissociable<br />

cyanide (CN SAD ) (complexes with cobalt,<br />

iron, gold) are considered to be relatively less toxic<br />

(Shifr<strong>in</strong> et al.1996; Zagury et al. 2004). Thiocyanates<br />

are not considered to be very toxic when compared<br />

with cyanide.<br />

Available <strong>in</strong>formation on chemical speciation <strong>of</strong><br />

cyanide <strong>in</strong> contam<strong>in</strong>ated groundwater <strong>in</strong>dicates that<br />

iron-cyanide complexes are <strong>of</strong>ten dom<strong>in</strong>ant (Dzombak<br />

et al. 1996; Meeussen et al. 1992; Theis et al.<br />

1994). These species are stable <strong>in</strong> the dark at neutral<br />

to high pH (Meeussen et al. 1992) and are resistant<br />

to biodegradation (Aronste<strong>in</strong> et al. 1994). However,<br />

Meehan et al. (1999) have shown that cyanide can<br />

be degraded <strong>in</strong> aerobic and anaerobic conditions and<br />

Cherryholmes et al. (1985) observed that K 3 Fe(CN) 6<br />

can be degraded by P. aerug<strong>in</strong>osa <strong>in</strong> the dark. In addition,<br />

at neutral pH conditions, iron cyanide species


exhibit little adsorption onto iron oxides (Theis &<br />

West 1986) but perhaps have greater adsorption on<br />

alum<strong>in</strong>um oxides and kaol<strong>in</strong> clay (Alesii & Fuller<br />

1976), which can be important adsorbents <strong>in</strong><br />

groundwater systems. Ghosh et al. (1999a) <strong>in</strong>vestigated<br />

fate and transport <strong>of</strong> cyanide at a manufactured-gas<br />

plant (MGP) site and their results showed<br />

that cyanide <strong>in</strong> groundwater was primarily <strong>in</strong> the<br />

form <strong>of</strong> iron-cyanide complexes which are transported<br />

as non-reactive solutes <strong>in</strong> the sand-gravel aquifer<br />

material. Also, chemical decomposition <strong>of</strong> iron<br />

cyanide complexes can occur, but the decomposition<br />

k<strong>in</strong>etics are extremely slow.<br />

Free cyanide has been shown to react with various<br />

forms <strong>of</strong> sulphur <strong>in</strong> the environment to form thiocyanate.<br />

The two forms <strong>of</strong> sulphur most likely to react<br />

with cyanide are polysulphides (S 2 ) and thiosulphate<br />

(S 2 O 3 ) (Smith & Mudder 1991). They react<br />

accord<strong>in</strong>g to the follow<strong>in</strong>g equations:<br />

S x -2 + CN - → S (x-1) -2 + SCN - (1)<br />

S 2 O 3 -2 + CN - → SO 3 -2 + SCN - (2)<br />

In neutral to basic solutions, both polysulphides and<br />

thiosulphate are oxidation products <strong>of</strong> sulphides. As<br />

such, these products could possibly be present <strong>in</strong><br />

oxidiz<strong>in</strong>g environments, such as the vadose zone <strong>in</strong><br />

soils. The concentrations <strong>of</strong> polysulphides and thiosulphate<br />

<strong>in</strong> groundwater are strongly dependent on<br />

the sulphur content and the Eh-pH conditions <strong>in</strong> that<br />

groundwater.<br />

1.3 <strong>Natural</strong> attenuation<br />

<strong>Natural</strong> attenuation phenomena such as volatilization,<br />

chelation and precipitation, chemical decomposition,<br />

adsorption, photolytic reactions, and biodegradation<br />

with <strong>in</strong>digenous microorganisms can occur<br />

<strong>in</strong> various environments. In groundwater, volatilization<br />

and photolytic reactions are less likely to occur<br />

and chemical decomposition has very slow k<strong>in</strong>etics.<br />

1.3.1 Adsorption<br />

A key po<strong>in</strong>t <strong>in</strong> the case <strong>of</strong> cyanide is that most aqueous<br />

species are anionic (except HCN), and will<br />

therefore only be sorbed on soils with high anion<br />

exchange capacity. The surfaces <strong>of</strong> most soil particles<br />

have low anion exchange capacity. Retardation<br />

<strong>of</strong> cyanide release due to sorption processes is generally<br />

<strong>of</strong> m<strong>in</strong>or importance <strong>in</strong> most soils (Kjeldsen<br />

1999). However, some surfaces such as Fe, Al and<br />

Mn oxides, clay m<strong>in</strong>erals and organic matter may<br />

provide anion exchange sites (McLean & Bledsoe<br />

1992).<br />

1.3.2 Precipitation<br />

Most <strong>of</strong> the cyanide at alum<strong>in</strong>um plant sites is orig<strong>in</strong>ally<br />

<strong>in</strong> solid form as spent pot l<strong>in</strong><strong>in</strong>g, which conta<strong>in</strong>s<br />

primarily solid cyanide complexes and thiocyanate<br />

compounds. Thiocyanates are quite soluble<br />

<strong>in</strong> water and can produce relatively high thiocyanate<br />

concentrations <strong>in</strong> pores and groundwater. Iron cyanide<br />

complexes are generally slightly soluble. The<br />

potassium and sodium ferrocyanides are readily<br />

soluble, but can reprecipitate <strong>in</strong> the presence <strong>of</strong> iron<br />

(III). The solubility <strong>of</strong> iron cyanide <strong>in</strong> soil is dependent<br />

on pH. Thus, re-precipitation <strong>of</strong> cyanide can<br />

occur if conditions change. The potential for the<br />

cyanide precipitation process to occur can be evaluated<br />

with the use <strong>of</strong> computer-based chemical speciation<br />

models. In this study, model<strong>in</strong>g <strong>of</strong> thermodynamic<br />

equilibrium conditions <strong>in</strong> groundwater<br />

samples collected from four wells will be performed<br />

us<strong>in</strong>g Visual MINTEQ s<strong>of</strong>tware .<br />

Ghosh et al. (1999b) showed that precipitation <strong>of</strong><br />

iron cyanide complexes us<strong>in</strong>g a reactive barrier has<br />

the potential to be used for <strong>in</strong> situ treatment <strong>of</strong> cyanide-contam<strong>in</strong>ated<br />

groundwater.<br />

1.3.3 Microbial degradation<br />

There are many examples <strong>of</strong> cyanide microbial degradation<br />

under both aerobic and anaerobic conditions<br />

(Wang et al. 1996; Barclay et al. 1997). Simple<br />

cyanides, <strong>in</strong> particular, are relatively easily degraded,<br />

especially under aerobic conditions. Degradation<br />

<strong>of</strong> iron cyanides under aerobic conditions also<br />

occurs, but at a slower rate than that <strong>of</strong> simple cyanide<br />

degradation. To our knowledge, bacterial degradation<br />

<strong>of</strong> iron cyanides <strong>in</strong> groundwater under anaerobic<br />

conditions has not yet been <strong>in</strong>vestigated.<br />

Aerobic degradation <strong>of</strong> CN- is mediated by a<br />

number <strong>of</strong> bacteria, fungi, algae, and yeast (Young<br />

& Jordan 1995). The first step <strong>in</strong>volves oxidation <strong>of</strong><br />

cyanide to cyanate:<br />

CN - + ½ O 2 (aq) → OCN - (3)<br />

This is followed by hydrolysis <strong>of</strong> the cyanate, which<br />

requires a pH below 7:<br />

OCN - + 3 H 2 O → NH 4 + + HCO 3 - + OH - (4)<br />

Aerobic degradation <strong>of</strong> CN SAD is mediated by a<br />

number <strong>of</strong> organisms, generally Pseudomonas bacteria<br />

(Young & Jordan 1995). The relevant reaction is:<br />

M(CN) x y-x + 3xH 2 O + x/2 O 2 (aq) → M y+ + x NH 4 + +<br />

x HCO 3 - + xOH - (5)<br />

Thiocyanate is also subject to bacterially-mediated<br />

aerobic degradation:<br />

SCN - + 3H 2 O + 2 O 2 (aq) → SO 4 2- + NH 4 + + HCO 3<br />

-<br />

+ H + (6)<br />

Anaerobic biodegradation <strong>of</strong> cyanide and hydrogen<br />

cyanide is restricted to the moderately to strongly<br />

reduced portions <strong>of</strong> the environment and can only


occur if HS - or H 2 S(aq) are present. The sulphur<br />

species present will depend on pH. At a pH value<br />

greater than 7, HS - is the dom<strong>in</strong>ant species. At a<br />

lower pH, H 2 S(aq) will be present. These equations<br />

illustrate the anaerobic biodegradation <strong>of</strong> cyanide:<br />

CN - + H 2 S (aq) → HCNS + H + (7)<br />

HCN + HS - → HCNS + H + (8)<br />

The HCNS will be hydrolyze to form NH 3 , H 2 S and<br />

CO 2 . In comparison with the aerobic biodegradation<br />

<strong>of</strong> cyanide, anaerobic degradation is much slower<br />

and anaerobic bacteria have a cyanide toxicity<br />

threshold <strong>of</strong> only 2 mg/L compared to 200 mg/L for<br />

aerobic bacteria (Smith & Mudder 1991). Consequently<br />

anaerobic biodegradation would be a less<br />

effective cyanide removal mechanism.<br />

Presumably, natural attenuation may play an important<br />

role <strong>in</strong> cyanide reduction <strong>in</strong> groundwater.<br />

Accord<strong>in</strong>g to Kjeldsen (1999), studies on natural attenuation<br />

<strong>of</strong> cyanide compounds <strong>in</strong> groundwater at<br />

relevant contam<strong>in</strong>ated sites must be carried out.<br />

Few <strong>in</strong>vestigations have been conducted <strong>in</strong> a realistic<br />

soil/groundwater environment. The presence<br />

<strong>of</strong> another substrate, or nutrients, as well as the accessibility<br />

<strong>of</strong> cyanide for the bacteria, can vary<br />

greatly <strong>in</strong> a natural soil/groundwater environment.<br />

Hence, the <strong>in</strong>terest <strong>in</strong> conduct<strong>in</strong>g experiments under<br />

field conditions us<strong>in</strong>g <strong>in</strong>digenous material is evident.<br />

2 CHARACTERIZATION OF WATER<br />

SAMPLES<br />

2.1 Sampl<strong>in</strong>g<br />

<strong>Groundwater</strong> from the study site was sampled at<br />

four different locations (wells PN2A, PN3B,<br />

MW12A, and PZ3) <strong>in</strong> May 2002 and May 2003 <strong>in</strong><br />

order to assess the potential for natural attenuation<br />

near source, middle, end, and just <strong>of</strong>f the contam<strong>in</strong>ation<br />

plume.<br />

2.2 <strong>Groundwater</strong> characterization results<br />

Samples from each <strong>of</strong> the four wells were analyzed<br />

for different physicochemical characteristics and for<br />

various cyanide species accord<strong>in</strong>g to Standard<br />

Methods (Clesceri et al. 1998). The most significant<br />

results obta<strong>in</strong>ed <strong>in</strong> May 2003 are presented <strong>in</strong> Table<br />

1. Results for the four different wells are presented<br />

<strong>in</strong> the same order as the flow direction. This allows<br />

to follow the evolution <strong>of</strong> the contam<strong>in</strong>ation with<strong>in</strong><br />

the plume.<br />

Table 1. Physicochemical properties and concentration <strong>of</strong> cyanide species <strong>in</strong> groundwater (PN2A, PN3B,<br />

MW12A, and PZ3).<br />

FLOW DIRECTION<br />

Well location PN2A PN3 B MW12A PZ3<br />

2003-05- 2003-05- 2003-05-<br />

Sampl<strong>in</strong>g date<br />

12<br />

12<br />

12<br />

2003-05-<br />

12<br />

Units<br />

Dissolved oxygen (<strong>in</strong>-situ) % 0.85 1.09 0.63 1.52<br />

pH (<strong>in</strong>-situ) 9.48 8.84 8.91 6.70<br />

Redox potential (<strong>in</strong>-situ measurement)<br />

MV -72 123 -188 -36<br />

On-site temperature °C 9.3 13.4 9.3 11.2<br />

Dissolved anions<br />

Sulphate mg/l 130 15 32 678<br />

<strong>Cyanide</strong>s<br />

Total cyanide mg/l 4.8 0.056 2.6 0.032<br />

Free cyanide mg/l


Total cyanide values (CN Total ) <strong>in</strong>clude free cyanide,<br />

weak acid dissociable cyanide (CN WAD ) and strong<br />

acid dissociable cyanide (CN SAD ). To obta<strong>in</strong> the<br />

concentration <strong>of</strong> strong metal-cyanide complexes,<br />

free cyanide and CN WAD concentrations must be<br />

substracted from the total cyanide. It should be<br />

noted that thiocyanates are not part <strong>of</strong> the total cyanide<br />

concentration.<br />

2.3 Discussion <strong>of</strong> groundwater characterization<br />

Us<strong>in</strong>g the data presented <strong>in</strong> Table 1 and the conclusions<br />

drawn from the literature review, one can foresee<br />

which cyanide species should be present <strong>in</strong> the<br />

groundwater as well as which attenuation mechanisms<br />

are likely to occur.<br />

Site conditions and species distribution can play a<br />

major role <strong>in</strong> the adsorption/precipitation potential.<br />

For example, pH <strong>in</strong>fluences the sorption potential by<br />

creat<strong>in</strong>g negatively or positively charged surfaces<br />

and redox potential determ<strong>in</strong>es the oxidation state <strong>of</strong><br />

some species (ex. Fe 2+ / Fe 3+ ). Here are some observations<br />

made while analyz<strong>in</strong>g the data obta<strong>in</strong>ed from<br />

the groundwater laboratory characterization:<br />

- CN Total content ranges from 0.03 mg/l<br />

(<strong>of</strong>f the contam<strong>in</strong>ation plume) to 4.8 mg/l<br />

(near source).<br />

- In all wells, CN Total content is far greater<br />

than that obta<strong>in</strong>ed for CN WAD , <strong>in</strong>dicat<strong>in</strong>g<br />

that the majority <strong>of</strong> cyanide <strong>in</strong> groundwater<br />

is under the form <strong>of</strong> strong metal<br />

complexes;<br />

- Of the four ma<strong>in</strong> metals form<strong>in</strong>g strong<br />

metal complexes with cyanide (Fe, Co,<br />

Ag, Au), only Fe is present <strong>in</strong> significant<br />

concentration;<br />

- Two <strong>of</strong> the four wells (PN2A and<br />

MW12A) show a high concentration <strong>of</strong><br />

thiocyanates. These two wells are the<br />

ones hav<strong>in</strong>g the greatest quantity <strong>of</strong> dissolved<br />

organic carbon and the lowest dissolved<br />

oxygen (DO) concentration. Furthermore,<br />

the measured redox potential<br />

was negative <strong>in</strong> these wells;<br />

- <strong>Groundwater</strong> pH is alkal<strong>in</strong>e <strong>in</strong> the plume<br />

and is near neutrality <strong>of</strong>f the plume<br />

(PZ3).<br />

Accord<strong>in</strong>g to the observations stated above and the<br />

detailed analysis, it is possible to assume that the<br />

majority <strong>of</strong> the cyanide (exclud<strong>in</strong>g thiocyanates)<br />

present <strong>in</strong> the groundwater at the four wells is under<br />

the form <strong>of</strong> strong metal complexes because the free<br />

cyanide and weak-acid dissociable cyanide concentrations<br />

are very low. Also, dissolved metals analysis<br />

show that these strong complexes are more likely<br />

to form with iron.<br />

High concentrations <strong>of</strong> thiocyanate at wells<br />

MW12A and PN2A can be expla<strong>in</strong>ed by different<br />

factors. These wells show the highest concentrations<br />

<strong>of</strong> dissolved sulphate and dissolved organic<br />

carbon, and low concentrations <strong>of</strong> dissolved oxygen.<br />

All these characteristics suggest that sulphate reduc<strong>in</strong>g<br />

conditions prevail <strong>in</strong> the groundwater <strong>in</strong> both<br />

wells MW12 and PN2A. Furthermore, dissolved organic<br />

carbon can provide adsorption sites and can<br />

serve as a substrate for bacterial activity.<br />

<strong>Groundwater</strong> characteristics will directly <strong>in</strong>fluence<br />

microbial activity. As mentioned <strong>in</strong> the literature<br />

review, cyanide biological degradation pathways<br />

differ depend<strong>in</strong>g on redox conditions; aerobic<br />

biodegradation occurr<strong>in</strong>g at a much faster rate than<br />

its counterpart. Here are some additional observations<br />

(<strong>in</strong> relation to bacterial activity) made while<br />

analyz<strong>in</strong>g the data obta<strong>in</strong>ed from the groundwater<br />

geochemical characterization:<br />

- Dissolved oxygen concentration <strong>in</strong> the<br />

plume is very low and vary between<br />

0.6 and 1.1 % <strong>of</strong> saturation;<br />

- The well <strong>of</strong>f the plume (PZ3) showed a<br />

relatively elevated DO concentration (3.5<br />

% <strong>in</strong> May 2002).<br />

It will be <strong>in</strong>terest<strong>in</strong>g to study the biological degradation<br />

<strong>of</strong> iron cyanide complexes <strong>in</strong> the groundwater<br />

because this is the dom<strong>in</strong>ant cyanide species. The<br />

wells hav<strong>in</strong>g the lowest redox potentials <strong>in</strong> 2003<br />

(MW12A and PN2A) show elevated thiocyanate and<br />

sulphate concentrations along with high DOC. These<br />

conditions are very suitable for sulfate-reduc<strong>in</strong>g<br />

bacteria activity <strong>in</strong> groundwater.<br />

3 GEOCHEMICAL MODELING USING<br />

VMINTEQ CODE<br />

Us<strong>in</strong>g the results <strong>of</strong> the detailed groundwater characterization,<br />

geochemical model<strong>in</strong>g <strong>of</strong> the groundwater<br />

composition was performed with Visual<br />

MINTEQ. This s<strong>of</strong>tware is used to predict the concentrations<br />

<strong>of</strong> various dissolved species <strong>in</strong> the<br />

groundwater once the thermodynamic equilibrium is<br />

reached. It gives the saturation status, provid<strong>in</strong>g <strong>in</strong>formation<br />

on the probability <strong>of</strong> precipitation.<br />

The model<strong>in</strong>g was performed us<strong>in</strong>g May 2002<br />

data. Accord<strong>in</strong>g to the Visual MINTEQ model<strong>in</strong>g<br />

results, the dom<strong>in</strong>ant cyanide species <strong>in</strong> the groundwater<br />

at each <strong>of</strong> the four wells once thermodynamic<br />

equilibrium has been reached are the follow<strong>in</strong>g:<br />

MW12A - Thiocyanates (SCN - ); PN3B - Free cya-


nide (HCN) and iron cyanide complexes (Fe(CN) 6<br />

4-<br />

and Na Fe(CN) 6 3- ); PN2A - Thiocyanates (SCN - );<br />

PZ3 - Free cyanide (HCN).<br />

In accordance with the results obta<strong>in</strong>ed from the<br />

geochemical characterization, the dom<strong>in</strong>ant species<br />

is thiocyanates <strong>in</strong> wells MW12A and PN2A. It<br />

should be noted that <strong>in</strong> these wells, the dom<strong>in</strong>ant<br />

cyanide species (other than thiocyanates) are<br />

Fe(CN) 6<br />

4-<br />

and Na Fe(CN) 6 3- ). Thiocyanates are quite<br />

soluble <strong>in</strong> water and can produce relatively high<br />

thiocyanate concentrations <strong>in</strong> pores and groundwater<br />

(Kjeldsen 1999), as observed <strong>in</strong> wells PN2A and<br />

MW12A. PZ3, for its part, shows free cyanide<br />

(HCN) as its dom<strong>in</strong>ant cyanide species which can be<br />

expla<strong>in</strong>ed by the groundwater pH <strong>of</strong> 6.2. At such a<br />

pH, more than 99.9 % <strong>of</strong> the free cyanide is under<br />

the form <strong>of</strong> molecular hydrogen cyanide (the pKa is<br />

9.2 at 25 o C).<br />

To help compare the model<strong>in</strong>g results with the<br />

characterization results obta<strong>in</strong>ed <strong>in</strong> the laboratory,<br />

Table 2 shows the concentration <strong>of</strong> various cyanide<br />

species us<strong>in</strong>g the two methods.<br />

The concentrations provided by the model<strong>in</strong>g are<br />

close to those measured <strong>in</strong> the field. The total cyanide<br />

concentrations calculated us<strong>in</strong>g the equilibrium<br />

model<strong>in</strong>g results are slightly higher than those obta<strong>in</strong>ed<br />

dur<strong>in</strong>g the 2002 geochemical characterization.<br />

This result allows the assumption that the reactions<br />

<strong>in</strong> the groundwater under the <strong>SPL</strong> landfill may have<br />

reached a pseudo equilibrium. However, as site conditions<br />

change (ex. pH, redox), equilibrium will shift<br />

and cyanide species concentrations might be different.<br />

The model<strong>in</strong>g does not <strong>in</strong>clude the <strong>in</strong>fluence <strong>of</strong><br />

reaction k<strong>in</strong>etics and the occurrence <strong>of</strong> phenomena<br />

such as sorption and microbial degradation.<br />

Furthermore, the model<strong>in</strong>g results <strong>in</strong>dicate that <strong>in</strong><br />

the contam<strong>in</strong>ation plume, iron cyanide complexes<br />

and specifically Fe(CN) 6<br />

4-<br />

and NaFe(CN) 6 3- are the<br />

dom<strong>in</strong>ant cyanide species. The geochemical model<strong>in</strong>g<br />

<strong>of</strong> the groundwater composition therefore completes<br />

and ref<strong>in</strong>es the groundwater characterization<br />

performed <strong>in</strong> the laboratory.<br />

4 CONCLUSIONS AND FUTURE WORK<br />

Characterization <strong>of</strong> groundwater samples collected<br />

at four different locations (near source, middle,<br />

end, and just <strong>of</strong>f the contam<strong>in</strong>ation plume) <strong>in</strong> the<br />

Spr<strong>in</strong>g <strong>of</strong> 2002 and 2003 showed total cyanide concentrations<br />

(CN Total ) rang<strong>in</strong>g from 0.02 mg l -1 (<strong>of</strong>f<br />

the plume) to 8.9 mg l -1 (near the source <strong>of</strong> the<br />

plume). In all wells, CN Total was far greater than<br />

weak acid dissociable cyanide (CN WAD ) suggest<strong>in</strong>g<br />

that the majority <strong>of</strong> the cyanide <strong>in</strong> the groundwater<br />

was under the form <strong>of</strong> iron-cyanide complexes.<br />

However, the more toxic free cyanide species (HCN,<br />

CN - ) were below detection. Two out <strong>of</strong> the four<br />

wells steadily showed high concentrations <strong>of</strong> thiocyanate<br />

(SCN - ). These wells had conditions very<br />

suitable for sulfate-reduc<strong>in</strong>g bacteria activity (high<br />

dissolved sulphate and dissolved organic carbon<br />

concentrations, and low concentrations <strong>of</strong> dissolved<br />

oxygen).<br />

Us<strong>in</strong>g the groundwater characterization data,<br />

geochemical model<strong>in</strong>g with Visual MINTEQ was<br />

performed <strong>in</strong> order to predict the concentration <strong>of</strong><br />

dissolved cyanide species at thermodynamic equilibrium.<br />

The results were close to the field data and<br />

they confirmed the occurrence <strong>of</strong> significant concentrations<br />

<strong>of</strong> Fe(CN) 6 and NaFe(CN) 4- 6 along the<br />

4-<br />

contam<strong>in</strong>ation plume. Further model<strong>in</strong>g will be<br />

performed with the 2003 data, to better understand<br />

the fate <strong>of</strong> cyanide.<br />

The results <strong>of</strong> the groundwater characterization<br />

and the geochemical equilibrium model<strong>in</strong>g enabled<br />

us to identify the ma<strong>in</strong> natural attenuation phenomena<br />

which should be tested <strong>in</strong> the laboratory. Adsorption<br />

and microbial degradation will be <strong>in</strong>vestigated.<br />

The adsorption potential will be assessed us<strong>in</strong>g<br />

batch and column experiments. Available geological<br />

material from the site will be used along with<br />

groundwater from the site and synthetic cyanidecontam<strong>in</strong>ated<br />

water.<br />

Heterotrophic and cyanide-resistant bacteria<br />

counts will be performed to <strong>in</strong>vestigate the presence<br />

<strong>of</strong> <strong>in</strong>digenous micr<strong>of</strong>lora <strong>in</strong> groundwater. Microbial<br />

degradation <strong>of</strong> iron cyanide complexes and free cyanide<br />

will be evaluated us<strong>in</strong>g radiolabeled m<strong>in</strong>eralization<br />

tests <strong>in</strong> microcosms (Oudjehani et al. 2002).<br />

Upon completion <strong>of</strong> these experiments, we should<br />

have a better understand<strong>in</strong>g <strong>of</strong> cyanide fate and natural<br />

attenuation potential <strong>in</strong> the groundwater near<br />

spent pot l<strong>in</strong><strong>in</strong>g landfills.<br />

Table 2. Total cyanide, strong acid dissociable cyanide and SCN - <strong>in</strong> groundwater (mg/l) follow<strong>in</strong>g laboratory<br />

characterization and thermodynamic model<strong>in</strong>g.


* Calculated as the difference between total cyanide and WAD cyanide<br />

** Calculated by summ<strong>in</strong>g every WAD, SAD and free cyanide species concentration<br />

5 REFERENCES<br />

Alesii, B.A. and Fuller, W.H. 1976. The Mobility <strong>of</strong> Three<br />

<strong>Cyanide</strong> Forms <strong>in</strong> Soils, Proceed<strong>in</strong>gs <strong>of</strong> the Hazardous<br />

Waste Research Symposium, C<strong>in</strong>c<strong>in</strong>nati: U.S. Environmental<br />

Protection Agency.<br />

Aronste<strong>in</strong>, B.N., Lawal, R.A. and Maka A. 1994. Chemical<br />

Degradation <strong>of</strong> <strong>Cyanide</strong>s by Fenton's Reagent <strong>in</strong> Aqueous<br />

and Soil-Conta<strong>in</strong><strong>in</strong>g Systems. Environmental Toxicology &<br />

Chemistry 13(11): 1719-1726.<br />

Barclay, M., Tette, V.A., Knowles, C.J., Hart, A. and Sharman,<br />

A.K. 1997. Biodegradation <strong>of</strong> Metal-Complexes <strong>Cyanide</strong>s<br />

by Fusarium Solani. In Situ and On-Site Bioremediation<br />

Symposium. 2: 531.<br />

Cherryholmes, K.L., Cornils, W.J., McDonald, D.B. and<br />

Spl<strong>in</strong>ter, R.C. (Cardwell, Purdy and Bahner) 1985. Biological<br />

Degradation <strong>of</strong> Iron <strong>Cyanide</strong> In <strong>Natural</strong> Aquatic Systems.<br />

Aquatic Toxicology and Hazard Assessment, 7th<br />

symposium ASTM STP 854, Philadelphia: American Society<br />

for Test<strong>in</strong>g Materials.<br />

Clesceri LS, Greenberg AE, Eaton AD (eds) 1998. Standard<br />

methods for the exam<strong>in</strong>ation <strong>of</strong> water and wastewater. 20 th<br />

Edition. Wash<strong>in</strong>gton, USA.<br />

Dzombak, D.A., Dobbs, C.L., Culleiton, C.J., Smith, J.R. and<br />

Krause, D. 1996. Removal <strong>of</strong> <strong>Cyanide</strong> from Spent Pot<br />

L<strong>in</strong><strong>in</strong>g Leachate by Iron <strong>Cyanide</strong> Precipitation. Proc. Water<br />

Environ. Fed. 69th Ann. Conf. Exposition: 107-116.<br />

Ghosh, R.S., Dzombak, D.A., Luthy, R.G. and Nakles, D.V.<br />

1999a. Subsurface Fate and Transport <strong>of</strong> <strong>Cyanide</strong> Species<br />

at a Manufactured-Gas Plant Site. Water Environment Research<br />

71(6): 1205-1216.<br />

Ghosh, R.S., Dzombak, D.A., Luthy, R.G. and Smith, J.R.<br />

1999b. In Situ Treatment <strong>of</strong> <strong>Cyanide</strong>-Contam<strong>in</strong>ated<br />

<strong>Groundwater</strong> by Iron <strong>Cyanide</strong> Precipitation. Water Environment<br />

Research 71(6): 1217-1228.<br />

Kjeldsen, P. 1999. Behaviour <strong>of</strong> <strong>Cyanide</strong>s <strong>in</strong> Soil and<br />

<strong>Groundwater</strong>: A Review. Water, Air, & Soil Pollution 115:<br />

279-307.<br />

McLean, J.E. and Bledsoe, B.E. 1992. Behavior <strong>of</strong> Metals <strong>in</strong><br />

Soils. US EPA/540/S-92/018.<br />

Meehan, S.M.E., Weaver, T.R. and Lawrence, C.R. 1999. The<br />

Biodegradation <strong>of</strong> <strong>Cyanide</strong> <strong>in</strong> <strong>Groundwater</strong> at Gasworks<br />

Sites, Australia: implications for site management. Environmental<br />

Management & Health 10(1): 64-71.<br />

Meeussen, J.C.L., Keizer, M.G. and de Haan, F.A.M. 1992.<br />

Chemical Stability and Decomposition Rate <strong>of</strong> Iron <strong>Cyanide</strong><br />

Complexes In Soil Solutions. Environmental Science<br />

& Technology 26(3): 511-516.<br />

Oudjehani, K., Zagury, G.J. and Deschênes, L. 2002. <strong>Natural</strong><br />

<strong>Attenuation</strong> <strong>Potential</strong> <strong>of</strong> <strong>Cyanide</strong> via Microbial Activity <strong>in</strong><br />

M<strong>in</strong>e Tail<strong>in</strong>gs. Applied Microbiology & Biotechnology,<br />

58(3): 409-415.<br />

Shifr<strong>in</strong>, N.S., Beck, B.D., Gauthier, T.D., Chapnick, S.D. and<br />

Goodman, G. 1996. Chemistry, Toxicology, and Human<br />

Health Risk <strong>of</strong> <strong>Cyanide</strong> Compounds <strong>in</strong> Soils at Former<br />

Manufactured Gas Plant Sites. Regulatory Toxicology &<br />

Pharmacology, 23(2): 106-116.<br />

Smith, A., and Mudder T. 1991. The chemistry and treatment<br />

<strong>of</strong> cyanidation wastes, London: M<strong>in</strong><strong>in</strong>g Journal Books Ltd.<br />

Theis, T. L., Young, T.C., Huang, M. and Knutsen K.C. 1994.<br />

Leachate Characteristics and Composition <strong>of</strong> <strong>Cyanide</strong>-<br />

Bear<strong>in</strong>g Wastes from Manufactured Gas Plants. Environmental<br />

Science & Technology 28(1): 99-106.<br />

Theis, T. L., and West, M.J. 1986. Effects <strong>of</strong> <strong>Cyanide</strong> Complexation<br />

on Adsorption <strong>of</strong> Trace Metals at the Surface <strong>of</strong><br />

Goethite. Environmental Technology Letters 7: 309-318.<br />

Wang, C.-S., Kunz, D.A. and Venables, B.J. 1996.<br />

Incorporation <strong>of</strong> Molecular Oxygen and Water dur<strong>in</strong>g Enzymatic<br />

Oxidation <strong>of</strong> <strong>Cyanide</strong> by Pseudomonas fluorescens<br />

NCIMB 11764. Applied & Environmental Microbiology,<br />

62(6): 2195-2197.<br />

Young, C. A. and Jordan, T.S. (L. E. Erickson, D. L. Tillison,<br />

S. C. Grant and J. P. McDonald) 1995. <strong>Cyanide</strong> Remediation:<br />

Current and Past Technologies, 10th Annual Conference<br />

on Hazardous Waste Research, Manhattan (Kansas):<br />

Kansas State University.<br />

Zagury, G. J., Oudjehani, K. and Deschênes, L. 2004. Characterization<br />

and availability <strong>of</strong> cyanide <strong>in</strong> solid m<strong>in</strong>e tail<strong>in</strong>gs<br />

from gold extraction plants. The Science <strong>of</strong> the Total<br />

Environment, (<strong>in</strong> press).<br />

Sampl<strong>in</strong>g Wells Laboratory characterization (May 2002<br />

sampl<strong>in</strong>g campaign)<br />

Model<strong>in</strong>g results (Visual MINTEQ)<br />

Total CN *CN SAD SCN - **Total CN Iron-cyanide SCN -<br />

Complexes<br />

PN2A 8.9 8.83 185 12.7 12.7 184.78<br />

PN3B 0.584 0.576 < 5 0.696 0.512 5.8E-18<br />

MW12A 3.2 3.176 17 4.33 2.37 16.98<br />

PZ3 0.02 0.02 < 0.5 0.021 < 10 -5 5.8E-18

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!