29.10.2014 Views

advances-in-protein-chemistry

advances-in-protein-chemistry

advances-in-protein-chemistry

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

165. Zhang Y, Kol<strong>in</strong>ski A, Skolnick J (2003) TOUCHSTONE II: a new approach to ab <strong>in</strong>itio prote<strong>in</strong> structure prediction. Biophys J 85: 1145-1164.<br />

166. Zhang Y, Kihara D, Skolnick J (2002) Local energy landscape flatten<strong>in</strong>g: parallel hyperbolic Monte Carlo sampl<strong>in</strong>g of prote<strong>in</strong> fold<strong>in</strong>g. Prote<strong>in</strong>s 48:<br />

192-201.<br />

167. Zhang Y, Skolnick J (2004) SPICKER: a cluster<strong>in</strong>g approach to identify near-native prote<strong>in</strong> folds. J Comput Chem 25: 865-871.<br />

168. Berenger F, Zhou Y, Shrestha R, Zhang KY (2011) Entropy-accelerated exact cluster<strong>in</strong>g of prote<strong>in</strong> decoys. Bio<strong>in</strong>formatics 27: 939-945.<br />

169. Zhang Y, Skolnick J (2005) TM-align: a prote<strong>in</strong> structure alignment algorithm based on the TM-score. Nucleic Acids Res 33: 2302-2309.<br />

170. Feig M, Rotkiewicz P, Kol<strong>in</strong>ski A, Skolnick J, Brooks CL 3rd (2000) Accurate reconstruction of all-atom prote<strong>in</strong> representations from side-cha<strong>in</strong>-based<br />

low-resolution models. Prote<strong>in</strong>s 41: 86-97.<br />

171. Canutescu AA, Shelenkov AA, Dunbrack RL Jr (2003) A graph-theory algorithm for rapid prote<strong>in</strong> side-cha<strong>in</strong> prediction. Prote<strong>in</strong> Sci 12: 2001-2014.<br />

172. Xu D, Zhang Y (2012) Ab <strong>in</strong>itio prote<strong>in</strong> structure assembly us<strong>in</strong>g cont<strong>in</strong>uous structure fragments and optimized knowledge-based force field. Prote<strong>in</strong>s<br />

80: 1715-1735.<br />

173. http://zhanglab.ccmb.med.umich.edu/PSSpred<br />

174. Thévenet P, Shen Y, Maupetit J, Guyon F, Derreumaux P, et al. (2012) PEP-FOLD: an updated de novo structure prediction server for both l<strong>in</strong>ear and<br />

disulfide bonded cyclic peptides. Nucleic Acids Res 40: W288-293.<br />

175. Maupetit J, Tuffery P, Derreumaux P (2007) A coarse-gra<strong>in</strong>ed prote<strong>in</strong> force field for fold<strong>in</strong>g and structure prediction. Prote<strong>in</strong>s 69: 394-408.<br />

176. Tuffery P, Guyon F, Derreumaux P (2005) Improved greedy algorithm for prote<strong>in</strong> structure reconstruction. J Comput Chem 26: 506-513.<br />

177. Moult J, Pedersen JT, Judson R, Fidelis K (1995) A large-scale experiment to assess prote<strong>in</strong> structure prediction methods. Prote<strong>in</strong>s 23: ii-v.<br />

178. Tramontano A, Cozzetto D, Giorgetti A, Raimondo D (2008) The assessment of methods for prote<strong>in</strong> structure prediction. Methods Mol Biol 413: 43-57.<br />

179. Cozzetto D, Kryshtafovych A, Fidelis K, Moult J, Rost B, et al. (2009) Evaluation of template-based models <strong>in</strong> CASP8 with standard measures. Prote<strong>in</strong>s<br />

77 Suppl 9: 18-28.<br />

180. Zemla A (2003) LGA: A method for f<strong>in</strong>d<strong>in</strong>g 3D similarities <strong>in</strong> prote<strong>in</strong> structures. Nucleic Acids Res 31: 3370-3374.<br />

181. Ben-David M, Noivirt-Brik O, Paz A, Prilusky J, Sussman JL, et al. (2009) Assessment of CASP8 structure predictions for template free targets.<br />

Prote<strong>in</strong>s 77 Suppl 9: 50-65.<br />

182. http://predictioncenter.org/casp10/<strong>in</strong>dex.cgi<br />

183. Zhou P, Tian F, Shang Z (2009) 2D depiction of nonbond<strong>in</strong>g <strong>in</strong>teractions for prote<strong>in</strong> complexes. J Comput Chem 30: 940-951.<br />

184. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, et al. (2004) UCSF Chimera--a visualization system for exploratory research and<br />

analysis. J Comput Chem 25: 1605-1612.<br />

185. Sanner MF, Olson AJ, Spehner JC (1996) Reduced surface: an efficient way to compute molecular surfaces. Biopolymers 38: 305-320.<br />

186. Ew<strong>in</strong>g TJ, Mak<strong>in</strong>o S, Skillman AG, Kuntz ID (2001) DOCK 4.0: search strategies for automated molecular dock<strong>in</strong>g of flexible molecule databases. J<br />

Comput Aided Mol Des 15: 411-428.<br />

187. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14: 33-38, 27-8.<br />

188. Nelson M, Humphrey W, Gursoy A, Dalke A, Kal L, et al. (1995) MDScope-A visual comput<strong>in</strong>g environment for structural biology. Computer Physics<br />

Communications 91: 111-34. [http://journals.ohiol<strong>in</strong>k.edu/ejc/article.cgi?issn=00104655&issue=v91i1-3&article=111_mavcefsb]<br />

189. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, et al. (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26: 1781-1802.<br />

OMICS Group eBooks<br />

023

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!