29.10.2014 Views

advances-in-protein-chemistry

advances-in-protein-chemistry

advances-in-protein-chemistry

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

21. van der Kamp MW, Shaw KE, Woods CJ, Mulholland AJ (2008) Biomolecular simulation and modell<strong>in</strong>g: status, progress and prospects. J R Soc<br />

Interface 5 Suppl 3: S173-190.<br />

22. Beck DA, Daggett V (2004) Methods for molecular dynamics simulations of prote<strong>in</strong> fold<strong>in</strong>g/unfold<strong>in</strong>g <strong>in</strong> solution. Methods 34: 112-120.<br />

23. Cui M, Shen J, Briggs JM, Fu W, Wu J, et al. (2002) Brownian dynamics simulations of the recognition of the scorpion tox<strong>in</strong> P05 with the smallconductance<br />

calcium-activated potassium channels. J Mol Biol 318: 417-428.<br />

24. Yu L, Sun C, Song D, Shen J, Xu N, et al. (2005) Nuclear magnetic resonance structural studies of a potassium channel-charybdotox<strong>in</strong> complex.<br />

Bio<strong>chemistry</strong> 44: 15834-15841.<br />

25. Meng XY, Xu Y, Zhang HX, Mezei M, Cui M (2012) Predict<strong>in</strong>g prote<strong>in</strong> <strong>in</strong>teractions by Brownian dynamics simulations. J Biomed Biotechnol 2012:<br />

121034.<br />

26. Angarica VE, Sancho J (2012) Prote<strong>in</strong> dynamics governed by <strong>in</strong>terfaces of high polarity and low pack<strong>in</strong>g density. PLoS One 7: e48212.<br />

27. Kong J, Yu S (2007) Fourier transform <strong>in</strong>frared spectroscopic analysis of prote<strong>in</strong> secondary structures. Acta Biochim Biophys S<strong>in</strong> (Shanghai) 39:<br />

549-559.<br />

28. Dimitrova M, D Ivanova, I Karamancheva, A Milev, I Dobrev (2009) Application of FTIR-Spectroscopy for Diagnosis of Breast Cancer Tumors. Journal<br />

of the University of Chemical Technology and Metallurgy 44: 297-300.<br />

29. Karim K, JD Taylor, DC Cullen, MJ Swann, NJ Freeman (2007) Measurement of conformational changes <strong>in</strong> the structure of transglutam<strong>in</strong>ase on<br />

b<strong>in</strong>d<strong>in</strong>g calcium ions us<strong>in</strong>g optical evanescent dual polarisation <strong>in</strong>terferometry. Analytical Chemistry 79: 3023-3031.<br />

30. Berney H, Oliver K (2005) Dual polarization <strong>in</strong>terferometry size and density characterisation of DNA immobilisation and hybridisation. Biosens<br />

Bioelectron 21: 618-626.<br />

31. Lillis B, Mann<strong>in</strong>g M, Berney H, Hurley E, Mathewson A, et al. (2006) Dual polarisation <strong>in</strong>terferometry characterisation of DNA immobilisation and<br />

hybridisation detection on a silanised support. Biosens Bioelectron 21: 1459-1467.<br />

32. R<strong>in</strong>gler P, Heymann BJ, Engel A (2000) Two-dimensional crystallization of membrane prote<strong>in</strong>s. Edited by Baldw<strong>in</strong> SA: Oxford University Press, Oxford.<br />

33. Henderson R, Baldw<strong>in</strong> JM, Ceska TA, Zeml<strong>in</strong> F, Beckmann E, et al. (1990) Model for the structure of bacteriorhodops<strong>in</strong> based on high-resolution<br />

electron cryo-microscopy. J Mol Biol 213: 899-929.<br />

34. Mitsuoka K, Hirai T, Murata K, Miyazawa A, Kidera A, et al. (1999) The structure of bacteriorhodops<strong>in</strong> at 3.0 A resolution based on electron<br />

crystallography: implication of the charge distribution. J Mol Biol 286: 861-882.<br />

35. Kühlbrandt W, Wang DN, Fujiyoshi Y (1994) Atomic model of plant light-harvest<strong>in</strong>g complex by electron crystallography. Nature 367: 614-621.<br />

36. Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, et al. (2000) Structural determ<strong>in</strong>ants of water permeation through aquapor<strong>in</strong>-1. Nature 407: 599-605.<br />

37. Ren G, Cheng A, Reddy V, Melnyk P, Mitra AK (2000) Three-dimensional fold of the human AQP1 water channel determ<strong>in</strong>ed at 4 A resolution by<br />

electron crystallography of two-dimensional crystals embedded <strong>in</strong> ice. J Mol Biol 301: 369-387.<br />

38. Nogales E, Wolf SG, Down<strong>in</strong>g KH (1998) Structure of the alpha beta tubul<strong>in</strong> dimer by electron crystallography. Nature 391: 199-203.<br />

39. Ily<strong>in</strong> VA, Pieper U, Stuart AC, Marti-Renom MA, McMahan L, et al. (2003) ModView, visualization of multiple prote<strong>in</strong> sequences and structures.<br />

Bio<strong>in</strong>formatics 19: 165-166.<br />

40. Li F, Li P, Xu W, Peng Y, Bo X, et al. (2010) Perturbation Analyzer: a tool for <strong>in</strong>vestigat<strong>in</strong>g the effects of concentration perturbation on prote<strong>in</strong> <strong>in</strong>teraction<br />

networks. Bio<strong>in</strong>formatics 26: 275-277.<br />

41. Saqi MA, Wild DL, Hartshorn MJ (1999) Prote<strong>in</strong> analyst--a distributed object environment for prote<strong>in</strong> sequence and structure analysis. Bio<strong>in</strong>formatics<br />

15: 521-522.<br />

42. Salama JJ, Feldman HJ, Hogue CW (2001) VISTRAJ: explor<strong>in</strong>g prote<strong>in</strong> conformational space. Bio<strong>in</strong>formatics 17: 851-852.<br />

43. Pietal MJ, Tuszynska I, Bujnicki JM (2007) PROTMAP2D: visualization, comparison and analysis of 2D maps of prote<strong>in</strong> structure. Bio<strong>in</strong>formatics 23:<br />

1429-1430.<br />

44. Camps J, Carrillo O, Emperador A, Orellana L, Hospital A, et al. (2009) FlexServ: an <strong>in</strong>tegrated tool for the analysis of prote<strong>in</strong> flexibility. Bio<strong>in</strong>formatics<br />

25: 1709-1710.<br />

45. Sharma S, D<strong>in</strong>g F, Nie H, Watson D, Unnithan A, et al. (2006) iFold: a platform for <strong>in</strong>teractive fold<strong>in</strong>g simulations of prote<strong>in</strong>s. Bio<strong>in</strong>formatics 22: 2693-<br />

2694.<br />

46. Grant BJ, Rodrigues AP, ElSawy KM, McCammon JA, Caves LS (2006) Bio3d: an R package for the comparative analysis of prote<strong>in</strong> structures.<br />

Bio<strong>in</strong>formatics 22: 2695-2696.<br />

47. Ho HK, Kuiper MJ, Kotagiri R (2008) PConPy--a Python module for generat<strong>in</strong>g 2D prote<strong>in</strong> maps. Bio<strong>in</strong>formatics 24: 2934-2935.<br />

48. Vertrees J, Phillip Barritt, Steve Whitten, V<strong>in</strong>cent J Hilser (2005) COREX/BEST server: a web browser-based program that calculates regional stability<br />

variations with<strong>in</strong> prote<strong>in</strong> structures. Bio-Informatics 21: 3318–3319.<br />

49. Chovancova E, Pavelka A, Benes P, Strnad O, Brezovsky J, et al. (2012) CAVER 3.0: a tool for the analysis of transport pathways <strong>in</strong> dynamic prote<strong>in</strong><br />

structures. PLoS Comput Biol 8: e1002708.<br />

50. Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, et al. (2003) ExPASy: The proteomics server for <strong>in</strong>-depth prote<strong>in</strong> knowledge and analysis.<br />

Nucleic Acids Res 31: 3784-3788.<br />

51. UniProt Consortium (2011) Ongo<strong>in</strong>g and future developments at the Universal Prote<strong>in</strong> Resource. Nucleic Acids Res 39: D214-219.<br />

52. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403-410.<br />

53. Notredame C, Higg<strong>in</strong>s DG, Her<strong>in</strong>ga J (2000) T-Coffee: A novel method for fast and accurate multiple sequence alignment. J Mol Biol 302: 205-217.<br />

OMICS Group eBooks<br />

018

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!