29.10.2014 Views

advances-in-protein-chemistry

advances-in-protein-chemistry

advances-in-protein-chemistry

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

39. Katsamba PS, Park S, Laird-Offr<strong>in</strong>ga IA (2002) K<strong>in</strong>etic studies of RNA-prote<strong>in</strong> <strong>in</strong>teractions us<strong>in</strong>g surface plasmon resonance. Methods 26: 95-104.<br />

40. Haruki M, Noguchi E, Kanaya S, Crouch RJ (1997) K<strong>in</strong>etic and stoichiometric analysis for the b<strong>in</strong>d<strong>in</strong>g of Escherichia coli ribonuclease HI to RNA-DNA<br />

hybrids us<strong>in</strong>g surface plasmon resonance. J Biol Chem 272: 22015-22022.<br />

41. Tsoi PY, Yang M (2002) K<strong>in</strong>etic study of various b<strong>in</strong>d<strong>in</strong>g modes between human DNA polymerase beta and different DNA substrates by surfaceplasmon-resonance<br />

biosensor. Biochem J 361: 317-325.<br />

42. Persson B, Stenhag K, Nilsson P, Larsson A, Uhlén M, et al. (1997) Analysis of oligonucleotide probe aff<strong>in</strong>ities us<strong>in</strong>g surface plasmon resonance: a<br />

means for mutational scann<strong>in</strong>g. Anal Biochem 246: 34-44.<br />

43. Di Primo C, Lebars I (2007) Determ<strong>in</strong>ation of refractive <strong>in</strong>dex <strong>in</strong>crement ratios for prote<strong>in</strong>-nucleic acid complexes by surface plasmon resonance. Anal<br />

Biochem 368: 148-155.<br />

44. Some D (2013) Light-scatter<strong>in</strong>g-based analysis of biomolecular <strong>in</strong>teractions. Biophys Rev 5: 147-158.<br />

45. Nobbmann U, Connah M, Fish B, Varley P, Gee C, et al. (2007) Dynamic light scatter<strong>in</strong>g as a relative tool for assess<strong>in</strong>g the molecular <strong>in</strong>tegrity and<br />

stability of monoclo006Eal antibodies. Biotechnol Genet Eng Rev 24: 117-128.<br />

46. Chi-san Wu (2003) Handbook Of Size Exclusion Chromatography And Related Techniques: Revised and Expanded. CRC Press, Florida, USA.<br />

47. Bruce J. Berne, Robert Pecora (2000) Dynamic Light Scatter<strong>in</strong>g: With Applications to Chemistry, Biology and Physics. Courier Dover Publications, USA.<br />

48. Daniel Some, Sophia Kenrick (2012) Prote<strong>in</strong> Interactions, Bio<strong>chemistry</strong>, Genetics and Molecular Biology.<br />

49. Hoppe CC, Nguyen LT, Kirsch LE, Wiencek JM (2008) Characterization of seed nuclei <strong>in</strong> glucagon aggregation us<strong>in</strong>g light scatter<strong>in</strong>g methods and<br />

field-flow fractionation. J Biol Eng 2: 10.<br />

50. Arthur KK, Gabrielson JP, Hawk<strong>in</strong>s N, Anafi D, Wypych J, et al. (2012) In vitro stoichiometry of complexes between the soluble RANK ligand and the<br />

monoclonal antibody denosumab. Bio<strong>chemistry</strong> 51: 795-806.<br />

51. Fountoulakis M, Zulauf M, Lustig A, Garotta G (1992) Stoichiometry of <strong>in</strong>teraction between <strong>in</strong>terferon gamma and its receptor. Eur J Biochem 208:<br />

781-787.<br />

52. Mogridge J (2004) Us<strong>in</strong>g light scatter<strong>in</strong>g to determ<strong>in</strong>e the stoichiometry of prote<strong>in</strong> complexes. Methods Mol Biol 261: 113-118.<br />

53. Reschiglian P, Rambaldi DC, Zattoni A (2011) Flow field-flow fractionation with multiangle light scatter<strong>in</strong>g detection for the analysis and characterization<br />

of functional nanoparticles. Anal Bioanal Chem 399: 197-203.<br />

54. W I Goldburg (1999) Dynamic light scatter<strong>in</strong>g. American Journal of Physics 67: 1152-1160.<br />

55. Peter Brimblecombe (1996) Air composition and <strong>chemistry</strong>. In: Cambridge environmental <strong>chemistry</strong> series 6. (2ndedn), Cambridge University Press,<br />

Cambridge, UK.<br />

56. Shiba K, Niidome T, Katoh E, Xiang H, Han L, et al. (2010) Polydispersity as a parameter for <strong>in</strong>dicat<strong>in</strong>g the thermal stability of prote<strong>in</strong>s by dynamic<br />

light scatter<strong>in</strong>g. Anal Sci 26: 659-663.<br />

57. Borgstahl GE (2007) How to use dynamic light scatter<strong>in</strong>g to improve the likelihood of grow<strong>in</strong>g macromolecular crystals. Methods Mol Biol 363: 109-129.<br />

58. Wilson WW (2003) Light scatter<strong>in</strong>g as a diagnostic for prote<strong>in</strong> crystal growth--a practical approach. J Struct Biol 142: 56-65.<br />

59. Habel JE, Ohren JF, Borgstahl GE (2001) Dynamic light-scatter<strong>in</strong>g analysis of full-length human RPA14/32 dimer: purification, crystallization and selfassociation.<br />

Acta Crystallogr D Biol Crystallogr 57: 254-259.<br />

60. Layne E (1957) Spectrophotometric and Turbidimetric Methods for Measur<strong>in</strong>g Prote<strong>in</strong>s. Methods <strong>in</strong> Enzymology 3: 447-455.<br />

61. Stoscheck CM (1990) Quantitation of Prote<strong>in</strong>s. Methods <strong>in</strong> Enzymology 182: 50-68.<br />

62. Aitken A, Leamonth MP (2002) Prote<strong>in</strong> Determ<strong>in</strong>ation by UV Absorption. Spr<strong>in</strong>ger Protocols: 3-6.<br />

63. Nienhaus K, Nienhaus GU (2005) Prob<strong>in</strong>g heme prote<strong>in</strong>-ligand <strong>in</strong>teractions by UV/visible absorption spectroscopy. Methods Mol Biol 305: 215-242.<br />

64. Nienhaus K, Kriegl JM, Nienhaus GU (2004) Structural dynamics <strong>in</strong> the active site of mur<strong>in</strong>e neuroglob<strong>in</strong> and its effects on ligand b<strong>in</strong>d<strong>in</strong>g. J Biol Chem<br />

279: 22944-22952.<br />

65. Giordano D, Boron I, Abbruzzetti S, Van Leuven W, Nicoletti FP, et al. (2012) Biophysical characterisation of neuroglob<strong>in</strong> of the icefish, a natural<br />

knockout for hemoglob<strong>in</strong> and myoglob<strong>in</strong>. Comparison with human neuroglob<strong>in</strong>. PLoS One 7: 44508.<br />

66. Sedlak J, L<strong>in</strong>dsay RH (1968) Estimation of total, prote<strong>in</strong>-bound, and nonprote<strong>in</strong> sulfhydryl groups <strong>in</strong> tissue with Ellman’s reagent. Anal Biochem 25:<br />

192-205.<br />

67. Riener CK, Kada G, Gruber HJ (2002) Quick measurement of prote<strong>in</strong> sulfhydryls with Ellman’s reagent and with 4,4’-dithiodipyrid<strong>in</strong>e. Anal Bioanal<br />

Chem 373: 266-276.<br />

68. Kelly SM, Jess TJ, Price NC (2005) How to study prote<strong>in</strong>s by circular dichroism. Biochim Biophys Acta 1751: 119-139.<br />

69. Mart<strong>in</strong> SR, Schilstra MJ (2008) Circular dichroism and its application to the study of biomolecules. Methods Cell Biol 84: 263-293.<br />

70. Corrêa DHA, Ramos CHI (2009) The use of circular dichroism spectroscopy to study prote<strong>in</strong> fold<strong>in</strong>g, form and function. African Journal of Bio<strong>chemistry</strong><br />

Research 3: 164-173.<br />

71. Greenfield NJ (2006) Us<strong>in</strong>g circular dichroism spectra to estimate prote<strong>in</strong> secondary structure. Nat Protoc 1: 2876-2890.<br />

72. Dodero VI, Quirolo ZB, Sequeira MA (2011) Biomolecular studies by circular dichroism. Front Biosci (Landmark Ed) 16: 61-73.<br />

73. Greenfield NJ (2006) Analysis of the k<strong>in</strong>etics of fold<strong>in</strong>g of prote<strong>in</strong>s and peptides us<strong>in</strong>g circular dichroism. Nat Protoc 1: 2891-2899.<br />

74. Whitmore L, Wallace BA (2004) DICHROWEB, an onl<strong>in</strong>e server for prote<strong>in</strong> secondary structure analyses from circular dichroism spectroscopic data.<br />

Nucleic Acids Res 32: W668-673.<br />

75. Whitmore L, Wallace BA (2008) Prote<strong>in</strong> secondary structure analyses from circular dichroism spectroscopy: methods and reference databases.<br />

Biopolymers 89: 392-400.<br />

76. Perez-Iratxeta C, Andrade-Navarro MA (2008) K2D2: estimation of prote<strong>in</strong> secondary structure from circular dichroism spectra. BMC Struct Biol 8: 25.<br />

77. Woody AY, Woody RW (2003) Individual tyros<strong>in</strong>e side-cha<strong>in</strong> contributions to circular dichroism of ribonuclease. Biopolymers 72: 500-513.<br />

78. Freskgård PO, Mårtensson LG, Jonasson P, Jonsson BH, Carlsson U (1994) Assignment of the contribution of the tryptophan residues to the circular<br />

dichroism spectrum of human carbonic anhydrase II. Bio<strong>chemistry</strong> 33: 14281-14288.<br />

79. Ptitsyn OB (1995) Molten globule and prote<strong>in</strong> fold<strong>in</strong>g. Adv Prote<strong>in</strong> Chem 47: 83-229.<br />

80. Price NE, Price NC, Kelly SM, McDonnell JM (2005) The key role of prote<strong>in</strong> flexibility <strong>in</strong> modulat<strong>in</strong>g IgE <strong>in</strong>teractions. J Biol Chem 280: 2324-2330.<br />

81. Kelly SM, Price NC (2006) Circular dichroism to study prote<strong>in</strong> <strong>in</strong>teractions. Curr Protoc Prote<strong>in</strong> Sci Chapter 20: Unit 20.<br />

OMICS Group eBooks<br />

016

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!