31.10.2014 Views

Profile Rail Linear Guides

Profile Rail Linear Guides

Profile Rail Linear Guides

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Profile</strong> <strong>Rail</strong> <strong>Linear</strong> <strong>Guides</strong><br />

Applied Loading Calculations<br />

The majority of applications utilize a four carriage or<br />

bearing and two rail design for stability. Shown are four<br />

typical configurations and calculations for the resultant<br />

loads applied to each bearing. Resultant loads are<br />

divided into a horizontal and a vertical components,<br />

which represent the static or constant velocity condition<br />

and account for gravity but not acceleration.<br />

Use the appropriate configuration to determine the<br />

hori zontal and vertical components of the resultant<br />

applied load on the most heavily loaded carriage or<br />

bearing. These values will be referred to henceforth as<br />

FH & FV, respectively.<br />

Terms :<br />

d 0 = distance between centerlines of carriages or<br />

bearings (in) or (mm)<br />

d = 1 distance between centerlines of rails (in)<br />

or (mm)<br />

d 2 = distance from centerline of carriage or bearing<br />

to load action point (in) or (mm)<br />

d 3 = distance from centerline of carriage or bearing<br />

to load action point (in) or (mm)<br />

W = Applied Load (lbf) or (N)<br />

FNH = Horizontal component of resultant applied<br />

load with respect to each carriage or bearing<br />

(lbf) or (N)<br />

FNV = Vertical component of resultant applied<br />

load with respect to each carriage or bearing<br />

(lbf) or (N)<br />

Reminder:<br />

• Be sure to use consistent units (English or metric).<br />

• Be sure to use the appropriate sign (positive or<br />

negative).<br />

• A negative number is used when the actual force is<br />

in the opposite direction represented by the arrow.<br />

(<br />

F 1v = W +<br />

W d 2<br />

• -<br />

W d 3<br />

•<br />

4 2 d 0 2 d 1<br />

(<br />

F 2v = W -<br />

W d 2<br />

• -<br />

W d 3<br />

•<br />

4 2 d 0 2 d 1<br />

(<br />

F 3v = W -<br />

W d 2<br />

• + W • d3<br />

4 2 d 0 2 d 1<br />

(<br />

F 4v = W +<br />

W d 2<br />

• +<br />

W d 3<br />

•<br />

4 2 d 0 2 d 1<br />

(<br />

(<br />

(<br />

(<br />

(<br />

(<br />

(<br />

(<br />

(<br />

(<br />

(<br />

(<br />

d3<br />

4 3<br />

L<br />

1 2<br />

d0<br />

2<br />

d2<br />

d0<br />

F1v F4v W<br />

F2v F3v<br />

Horizontal Application I<br />

At the time of movement with uniform velocity or at the time of stop.<br />

(<br />

F 1v = W +<br />

W d 2<br />

• -<br />

W d 3<br />

•<br />

4 2 d 0 2 d 1<br />

(<br />

F 2v = W -<br />

W d 2<br />

• -<br />

W d 3<br />

•<br />

4 2 d 0 2 d 1<br />

(<br />

F 3v = W -<br />

W d 2<br />

• + W • d3<br />

4 2 d 0 2 d 1<br />

(<br />

F 4v = W +<br />

W d 2<br />

• +<br />

W d 3<br />

•<br />

4 2 d 0 2 d 1<br />

(<br />

(<br />

(<br />

(<br />

(<br />

(<br />

(<br />

(<br />

(<br />

(<br />

(<br />

(<br />

d3<br />

W<br />

d2<br />

1 2<br />

4 3<br />

d0<br />

W<br />

2<br />

d0<br />

F1v F4v<br />

F2v F3v<br />

Horizontal Application II<br />

At the time of movement with uniform velocity or at the time of stop.<br />

F 1v = F 2v = -<br />

F 3v = F 4v = +<br />

W •<br />

d 3<br />

2 d 1<br />

W •<br />

d 3<br />

2 d 1<br />

F 1H = F 4H = W +<br />

W d 2<br />

•<br />

4 2 d 0<br />

F 1H = F 4H = W -<br />

W d 2<br />

4 2 •<br />

d 0<br />

(<br />

(<br />

(<br />

(<br />

(<br />

(<br />

(<br />

(<br />

W<br />

d2<br />

F1H<br />

1 2<br />

F4H<br />

4 3<br />

d0<br />

2<br />

d0<br />

F3H<br />

F2H<br />

d1<br />

d1<br />

2<br />

d1<br />

d1<br />

2<br />

W<br />

d3<br />

F1v, F2v<br />

F3v, F4v<br />

Side Mounted Application<br />

At the time of movement with uniform velocity or at the time of stop.<br />

d1<br />

F 1v = F 4v = -<br />

F 3v = F 4v = +<br />

(<br />

(<br />

W •<br />

d 2<br />

2 d 0<br />

W •<br />

d 2<br />

2 d 0<br />

F 1H = -F 2H = -F 3H = F 4H = W • d3<br />

2 d 0<br />

(<br />

(<br />

F1H<br />

d0<br />

F2H<br />

F1v<br />

F4v<br />

d1 F2v<br />

d2<br />

W<br />

d3<br />

Engineering<br />

Guide<br />

Vertical Application<br />

At the time of movement with uniform velocity or at the time of stop.<br />

At the time of start & stop, the load varies because of inertia.<br />

www.thomsonlinear.com 99

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!