05.11.2014 Views

Qubit-Coupled Mechanics - IFSC

Qubit-Coupled Mechanics - IFSC

Qubit-Coupled Mechanics - IFSC

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Qubit</strong>-<strong>Coupled</strong> <strong>Mechanics</strong><br />

Matt LaHaye – Syracuse University<br />

São Carlos Institute of Physics- 19 April 2013


Mechanical Systems in the Quantum Regime<br />

Develop and study mechanical quantum devices; devices which under ordinary<br />

conditions are perfectly well-described by classical laws of physics<br />

Devices like:<br />

Microtoroid Resonators<br />

Nanomechanical Beams<br />

Cleland & Roukes<br />

Kippenberg<br />

Just a small subset of types of devices being explored.<br />

*See M.Poot & H.S. van der Zant, Physics Reports 2012,<br />

for a recent and comprehensive review of devices*<br />

LIGO<br />

Macroscopic<br />

Mirrors


Mechanical Systems in the Quantum Regime<br />

Develop and study mechanical quantum devices; devices which under ordinary<br />

conditions are perfectly well-described by classical laws of physics<br />

Devices like:<br />

Microtoroid Resonators<br />

Nanomechanical Beams<br />

Cleland & Roukes<br />

Kippenberg<br />

Vibrational modes normally<br />

‘ring’ as one would expect<br />

for classical S.H.O.<br />

e.g. well-defined x and p;<br />

Continuous energy spectra<br />

LIGO<br />

Macroscopic<br />

Mirrors


Mechanical Systems in the Quantum Regime<br />

No reason that we know of why the motion of such objects shouldn’t<br />

exhibit characteristics of quantum S.H.O. (under the right conditions)<br />

Roukes<br />

Cantilever in a quantum superposition<br />

of spatially-separated states<br />

From Schwab & Roukes,<br />

Phys. Today 2005<br />

m<br />

k<br />

x<br />

Discrete Energy<br />

Levels<br />

Zero-point<br />

fluctuations


What do We Hope to Accomplish With These Studies?<br />

Fundamental studies of quantum mechanics<br />

- Perform experiments to shed light on fundamental issues with QM (e.g.<br />

quantum-classical ‘boundary’; the measurement problem)<br />

Development of new technologies<br />

- Quantum information<br />

- Bio-sensing and imaging<br />

- …<br />

e.g.<br />

Long-distance quantum communication<br />

Studying new frontiers in nature<br />

- Gravitational wave detection<br />

- Energy transfer at the nanoscale and<br />

non-equilbrium fluctuation theorems<br />

e.g.<br />

LIGO interferometer<br />

Rabl, Lukin et al.


Hybrid Quantum Systems<br />

Individual spins coupled to a cantilever<br />

LaHaye (SU); Roukes & Schwab (Caltech)<br />

Rugar (IBM, Almaden)<br />

Bose-Einstein Condensate <strong>Coupled</strong> to Cantilever<br />

Treutlein (Basel)<br />

Superconducting ‘QUBIT’ coupled to nanobeam<br />

Integrating mechanical, atomic,<br />

optical, microwave, spin and<br />

solid-state quantum systems<br />

A veritable toolbox of quantum<br />

systems at our disposal!


The Future: Quantum Machines?


Outline<br />

• Getting to the quantum regime of mechanics<br />

• <strong>Qubit</strong>-coupled mechanics:<br />

An important system for manipulating/measuring<br />

quantum states of motion<br />

Future prospects and experiments that are in the<br />

works at Syracuse


What does it take to get to the quantum<br />

regime of mechanics?


What does it take to see quantum behavior of<br />

mechanical objects?<br />

- Extensive subject<br />

- Lots of subtleties related to measurement, the<br />

nature of various quantum states of motion, and to<br />

the interaction of harmonic systems with their<br />

Environment<br />

- Book by Braginsky is a great place to start (began<br />

thinking about these issues in the context of<br />

gravitational wave detection back in the 1970’s)<br />

*Another nice, general overview: Schwab and Roukes,<br />

Physics Today, July 2005.*


Thermal Noise<br />

E<br />

Energy Spectrum<br />

The Environment: (e.g. charge fluctuations ;<br />

phonons from substrate, EM radiation, etc)<br />

Energy levels only account Roukes for<br />

KE and PE due to restoring force<br />

PE<br />

ħω 0<br />

Oscillator<br />

Embedded in<br />

an ‘environment’<br />

H = 1 2 k 0χ̂0 2 + p̂0 2<br />

2m 0<br />

KE<br />

E = ħω 0 N + 1 2<br />

N = 1<br />

N = 0<br />

N = 3<br />

N = 2<br />

x<br />

Environment is<br />

Source of random<br />

fluctuations that ‘kick’<br />

And damp resonator.<br />

Nanoresonator as S.H.O.<br />

k<br />

m x<br />

Environment<br />

Temp. T


Thermal Noise<br />

B-E: p N = NN /(N + 1) N+1<br />

The Environment: (e.g. charge fluctuations ;<br />

phonons from substrate, EM radiation, etc)<br />

E<br />

Energy Spectrum<br />

ħω<br />

Energy levels only account Roukes for<br />

Rule of Thumb: KE and PE due to restoring force<br />

Need k BT<br />

≲ 1 PE<br />

ħω<br />

Oscillator<br />

Embedded in<br />

an ‘environment’<br />

H = 1 2 k 0χ̂0 2 + p̂0 2<br />

2m 0<br />

KE<br />

If k B T ≫ ħω<br />

In equilibrium:<br />

N = 1<br />

N = 0<br />

N = 3<br />

N = 2<br />

x<br />

Environment is<br />

Source of random<br />

fluctuations that ‘kick’<br />

And damp resonator.<br />

→ E ~k B T Fluctuations ‘wash out’ discrete levels<br />

Nanoresonator as S.H.O.<br />

m<br />

k<br />

x<br />

Environment<br />

Temp. T


Chasing the Ground State<br />

Cooling the environment (or, equivalently, increasing ω)<br />

Thermal Occupation Vs. Temperature<br />

For Several different frequencies (ω/2π)<br />

Dashed lines are average<br />

# of quanta N tt ≈ k B T/ħω<br />

(solid lines: BE occupation factor)<br />

N tt<br />

Frequencies correspond to<br />

typical nano/micro-mechanical<br />

fundamental mode<br />

‘Freeze- out’ to<br />

Quantum regime<br />

T (mm)<br />

This temperature regime<br />

Accessible with standard<br />

Cryogenic methods


Approaching the Ground State<br />

Cleland et al., Nature, 2010<br />

Dilatational oscillator<br />

ω 0<br />

2π ~ 6 GGG!<br />

k B T<br />

ħω 0<br />

~1 at ~ 300 mm!<br />

Cleland et al. put this device on a dilution refrigerator<br />

and cooled it down so that N tt < . 1!


Approaching the Ground State: Back-Action Cooling<br />

Use the measurement process to cool mechanical mode!<br />

Schwab et al. Nature 2010<br />

Micro<br />

‘drum head’<br />

Teufel et al. Nature 2011<br />

N tt = 3. 8<br />

Coherent State Transfer<br />

Palomaki et al. Nature 2013<br />

N tt =0.34<br />

Observation of zero-point fluctuations<br />

Safavi-Naeini et al. PRL 2012<br />

Optomechanical crystal<br />

Chan, Alegre, et al. Nature 2011<br />

In these examples, a mechanical mode is<br />

coupled to EM cavity, which does work on<br />

the mode cooling it below environment T<br />

*See M.Poot & H.S. van der Zant, Physics Reports,<br />

for a recent and comprehensive review *<br />

N tt =0.85


Now that mechanical structures have been<br />

cooled near the ground state, how do you<br />

prepare and measure quantum states of these<br />

structures?


Limitations of Linear Displacement Detectors<br />

Typically, displacement transducers are linear<br />

x<br />

k<br />

m<br />

Linear<br />

Detector<br />

Output is linearly proportional to x<br />

Obviously, many examples: capacitive, magnetomotive, piezoelectric, transistor current<br />

However, linear detectors generally should drive resonator into<br />

‘classical-like’ states, coherent states of motion<br />

Coherent<br />

State<br />

|α(t)⟩ = e −iωω− α 2 (αe−iii ) n<br />

|n⟩<br />

n!<br />

∞<br />

n=0<br />

x(t) =<br />

ħ<br />

mω<br />

α cosωω


<strong>Qubit</strong>-<strong>Coupled</strong> <strong>Mechanics</strong><br />

First proposed by A. Armour, M. Blencowe & K. Schwab: PRL 88 (2002) & Physica B 316 (2002).<br />

Cooper-pair box (CPB) charge qubit<br />

Nano-electromechanical resonator<br />

+<br />

Nakamura et al., Nature, 398 29 Apr. 1999 Cleland & Roukes, APL 69 28 Oct. 1996<br />

electrostatic interaction<br />

=<br />

artificial<br />

atom<br />

λ<br />

x<br />

|2><br />

|1><br />

|0><br />

|n><br />

Harmonic oscillator<br />

<strong>Qubit</strong>- coupled<br />

resonator analogous<br />

to atom-coupled<br />

photon cavity


Schematic of Coupling Between a Cooper-Pair Box<br />

(CPB) Charge <strong>Qubit</strong> and Nanoresonator<br />

Flexural motion of resonator modulates CPB electrostatic energy<br />

Pauli Matrices<br />

V NR<br />

d<br />

CPB <strong>Qubit</strong><br />

B<br />

J. Junctions<br />

V g<br />

σ z = 1 0<br />

0 −1<br />

nanoresonator<br />

Aluminum<br />

C NR<br />

N or N+1<br />

Charges<br />

(Cooper-Pairs)<br />

Silicon Nitride<br />

σ x = 0 1<br />

1 0<br />

Full Hamiltonian<br />

Interaction strength<br />

H = E ee V g σ z<br />

CPB<br />

electrostatic<br />

Energy<br />

+ E J B σ x + ħω a † a + 1 + ħλ(a † + a) ∙ σ<br />

2<br />

z<br />

CPB<br />

Josephson<br />

Energy<br />

NR<br />

displacement<br />

CPB<br />

charge


Schematic of Coupling Between a Cooper-Pair Box<br />

(CPB) Charge <strong>Qubit</strong> and Nanoresonator<br />

Flexural motion of resonator modulates CPB electrostatic energy<br />

V NR<br />

d<br />

nanoresonator<br />

Aluminum<br />

CPB <strong>Qubit</strong><br />

C NR<br />

B<br />

N or N+1<br />

Charges<br />

(Cooper-Pairs)<br />

J. Junctions<br />

V g<br />

Silicon Nitride<br />

Full Hamiltonian<br />

Full Hamiltonian is<br />

formally analogous to<br />

the Jaynes-Cummings<br />

Hamiltonian in quantum<br />

Optics/CQED<br />

See E.K. Irish and K.C. Schwab,<br />

PRB, 2004 for more details.<br />

Also, Haroche/Raimond, Exploring<br />

the Quantum for JC in general<br />

Interaction strength<br />

H = E ee V g σ z<br />

CPB<br />

electrostatic<br />

Energy<br />

+ E J B σ x + ħω a † a + 1 + ħλ(a † + a) ∙ σ<br />

2<br />

z<br />

CPB<br />

Josephson<br />

Energy<br />

NR<br />

displacement<br />

CPB<br />

charge


Schematic of Coupling Between a Cooper-Pair Box<br />

(CPB) Charge <strong>Qubit</strong> and Nanoresonator<br />

Flexural motion of resonator modulates CPB electrostatic energy<br />

V NR<br />

d<br />

CPB <strong>Qubit</strong><br />

B<br />

J. Junctions<br />

V g<br />

Question: How can<br />

one use this to observe<br />

quantum properties<br />

of the nanoresonator?<br />

C NR<br />

nanoresonator<br />

Aluminum<br />

N or N+1<br />

Charges<br />

(Cooper-Pairs)<br />

Silicon Nitride<br />

Full Hamiltonian<br />

See E.K. Irish and K.C. Schwab,<br />

PRB, 2004 for more details.<br />

Also, Haroche/Raimond, Exploring<br />

the Quantum for JC in general<br />

Interaction strength<br />

H = E ee V g σ z<br />

CPB<br />

electrostatic<br />

Energy<br />

+ E J B σ x + ħω a † a + 1 + ħλ(a † + a) ∙ σ<br />

2<br />

z<br />

CPB<br />

Josephson<br />

Energy<br />

NR<br />

displacement<br />

CPB<br />

charge


The Dispersive Coupling Limit<br />

Typically ħλ ≪ ΔE − ħω<br />

Full Hamiltonian<br />

H = E ee V g σ z + E J B σ x + ħω a † a + 1 2 + ħλ(a† + a) ∙ σ z<br />

Some typical parameters<br />

λ ~ 1 − 10 ′ s MHz<br />

ΔE ~ 1 − 10 ′ s GHz<br />

Coupling Strength<br />

CPB Energy Scale<br />

Interaction results in<br />

simple shifts in energies of<br />

the two systems<br />

(Dispersive or non-resonant<br />

Coupling limit)<br />

where<br />

ΔE =<br />

ω ~ 10 ′ s − 100 ′ s MHz<br />

E 2 2<br />

ee + E J<br />

Mechanical Frequency<br />

The dispersive shift of each<br />

system depends on the<br />

state of the other system<br />

*See: Irish & Schwab, PRB 68, 155311 (2003); Haroche & Raimond, Exploring the Quantum: Atoms, Cavities & Photons*


The Dispersive Coupling Limit<br />

Interaction Leads to Shift in Energy of CPB and NEMS<br />

Analogous To dispersive shifts in CQED<br />

Two Dispersive Effects Occur<br />

CPB-state-dependent<br />

Frequency<br />

Shift in NR<br />

Analogous to single-atom<br />

refractive shift in CQED<br />

δω ± ≈ ±ħλ 2 /ΔE<br />

Energy levels w/o interaction<br />

N = 2<br />

N = 1<br />

N = 0<br />

…<br />

…<br />

ħω 0<br />

∆E<br />

|−⟩ |+⟩<br />

Energy levels with interaction<br />

2<br />

1<br />

NR- dependent<br />

shift in CPB<br />

transition energy<br />

N ≡ # Quanta in NR<br />

Analogous<br />

to Lamb Shift<br />

δE ≈ ħλ 2 (2N + 1)/ΔE<br />

Analogous<br />

to Stark Shift<br />

N = 2<br />

N = 1<br />

N = 0<br />

…<br />

…<br />

ħω +<br />

0<br />

ħω −<br />

∆E + δδ<br />

|−⟩ |+⟩<br />

1<br />

*See: Irish & Schwab, PRB 68, 155311 (2003)<br />

ω ± = ω + δω ±


First Realization of <strong>Qubit</strong>-<strong>Coupled</strong> Nanoresonator<br />

NR Response with No Coupling to <strong>Qubit</strong><br />

CPB<br />

<strong>Qubit</strong>


First Realization of <strong>Qubit</strong>-<strong>Coupled</strong> Nanoresonator<br />

NR Response <strong>Coupled</strong> to <strong>Qubit</strong> in Ground State<br />

CPB<br />

<strong>Qubit</strong><br />

Expect (-) Shift:<br />

δω − ≈ −ħλ 2 /ΔE


Nanomechanical Probe of Quantum Interference<br />

in a CPB <strong>Qubit</strong><br />

From M.D. LaHaye et al., Nature 459 , 960 (2009).<br />

Positive Frequency<br />

Shift of <strong>Mechanics</strong><br />

<strong>Qubit</strong> in Excited<br />

State on Average<br />

Frequency Shift of<br />

<strong>Mechanics</strong> ∆ ω /2π NR (Hz)<br />

2.5<br />

2.0<br />

-400 -200 0 200 400 600<br />

V rf<br />

V (V) µ<br />

(V)<br />

Gave us confirmation that 1.5simple JC model captured the physics of this qubit-coupled<br />

Mechanical devices (at least in the dispersive limit).<br />

1.0<br />

Negative Frequency<br />

Shift of <strong>Mechanics</strong><br />

<strong>Qubit</strong> in Ground<br />

State On Average<br />

0.5<br />

-4<br />

-3<br />

-3<br />

-10.0 -8.0 -6.0 -4.0 -2.0<br />

V<br />

V cpb<br />

(mV)<br />

0 (V)<br />

φ is a function of<br />

<strong>Qubit</strong> parameters V rf and V 0<br />

-4<br />

<strong>Qubit</strong>’s State Vector<br />

|Ψ(t)⟩ = Ψ − (t)|−⟩ + Ψ(t) + |+⟩<br />

Ψ − (t) ∝ sin (φ)<br />

Ψ + (t) ∝ cos (φ)


Milestone in Quantum Measurement<br />

Nature April 1 2010<br />

UCSB Group<br />

Resonant Limit (∆E ≈ ω) of Jaynes-Cummings<br />

<strong>Qubit</strong> Excited<br />

State probability<br />

H = ∆Eσ z + ħω a † a + 1 2 + ħλ(a† σ − + aσ + )<br />

<strong>Qubit</strong>-Resonator Swap Quanta


The Dispersive Coupling Limit<br />

*See: Irish & Schwab, PRB 68, 155311 (2003)<br />

Interaction Leads to Shift in Energy of CPB and NEMS<br />

Analogous To dispersive shifts in CQED<br />

Two Dispersive Effects Occur<br />

CPB-state-dependent<br />

Frequency<br />

Shift in NR<br />

NR- dependent<br />

shift in CPB<br />

transition energy<br />

N ≡ # Quanta in NR<br />

χ = 2λ 2 /ΔE<br />

Analogous to single-atom<br />

refractive shift in CQED<br />

δω ± ≈ ±ħχ<br />

Analogous<br />

to Lamb Shift<br />

δE ≈ ħχ(2N + 1)<br />

Analogous<br />

to Stark Shift<br />

Energy levels w/o interaction<br />

N = 2<br />

N = 1<br />

N = 0<br />

…<br />

…<br />

…<br />

ħω 0<br />

∆E<br />

|−⟩ |+⟩<br />

Energy levels with interaction<br />

N = 2<br />

N = 1<br />

N = 0<br />

∆E + 3ħχ<br />

…<br />

∆E + ħχ<br />

|−⟩ |+⟩<br />

2<br />

1<br />

1<br />

0<br />

Dispersive interaction is non-destructive: H iii ∝ σ z ⋅ a † a ⇒ H 0 , H iii = 0


The Dispersive Coupling Limit<br />

*See: Irish & Schwab, PRB 68, 155311 (2003)<br />

Interaction Leads to Shift in Energy of CPB and NEMS<br />

Analogous To dispersive shifts in CQED<br />

Two Dispersive Effects Occur<br />

CPB-state-dependent<br />

Frequency<br />

Shift in NR<br />

NR- dependent<br />

shift in CPB<br />

transition energy<br />

N ≡ # Quanta in NR<br />

χ = 2λ 2 /ΔE<br />

Analogous to single-atom<br />

refractive shift in CQED<br />

δω ± ≈ ±ħχ<br />

Analogous<br />

to Lamb Shift<br />

δE ≈ ħχ(2N + 1)<br />

Analogous<br />

to Stark Shift<br />

Energy levels w/o interaction<br />

N = 2<br />

N = 1<br />

N = 0<br />

…<br />

…<br />

…<br />

ħω 0<br />

∆E<br />

|−⟩ |+⟩<br />

Energy levels with interaction<br />

N = 2<br />

N = 1<br />

N = 0<br />

∆E + 3ħχ<br />

…<br />

∆E + ħχ<br />

|−⟩ |+⟩<br />

2<br />

1<br />

1<br />

0<br />

Measurements of Stark shift just recently done in the high-N limit: Pirkklainen et al. Nature 2013


Next step: Dispersive measurements of the number-state<br />

statistics of a mechanical mode<br />

Perform spectroscopy on the qubit<br />

while it is coupled to the<br />

mechanical resonator<br />

ω<br />

= 300 MHz<br />

2π<br />

χ<br />

= 0.6 MHz<br />

2π<br />

k B T~1.7ħω<br />

<strong>Qubit</strong> Linewidth<br />

γ qq<br />

= 0.5 MHz<br />

2π<br />

Absorption spectrum of qubit<br />

for nanoresonator in thermal<br />

state at T = 25 mm<br />

Absorption<br />

Rate (A.U.)<br />

*Calculations based on CLERK & UTAMI, PRA 75, 042302 (2007)<br />

‘Stark’-Shifted <strong>Qubit</strong> Transitions<br />

N = 2<br />

N = 1<br />

N = 0<br />

…<br />

N = 0<br />

Simulation of Stark Shift<br />

…<br />

∆E + ħχ<br />

|−⟩ |+⟩<br />

2<br />

∆E + 5ħχ<br />

1<br />

∆E + 3ħχ<br />

N = 1<br />

0.1 1.0 10<br />

ω s − ΔE (MHz)<br />

0<br />

N = 2


Engineering the qubit read-out: Embed <strong>Qubit</strong>-<strong>Mechanics</strong> in<br />

Superconducting LC Circuit<br />

ω p<br />

∼<br />

50 Ω Feedline<br />

Cryo Amp<br />

L<br />

C<br />

C Q<br />

<strong>Qubit</strong> State Changes LC Frequency - Probe By Transmission Measurement of Feedline


Engineering the qubit read-out: Embed <strong>Qubit</strong>-<strong>Mechanics</strong> in<br />

Superconducting LC Circuit<br />

Probe qubit state |±⟩ via ‘pull’<br />

of LC resonator frequency<br />

0<br />

Feedline Transmission Simulation<br />

<strong>Qubit</strong> Capacitance<br />

If qubit is in |−⟩, C Q > 0<br />

If qubit is in |+⟩, C Q < 0<br />

S21<br />

Amp<br />

(dB)<br />

-4<br />

-8<br />

-12<br />

|−⟩<br />

|+⟩<br />

1.768 1.772 1.776 1.780 1.784<br />

Probe Frequency - ω p /2π (GHz)


Present Status of Our Efforts at Syracuse - Lab<br />

Dilution fridge cooled down for<br />

first time on 11/3/11.<br />

Base Temp. < 33 mm!<br />

LaHaye Lab<br />

Research Team<br />

NSF-DMR Career Award: #1056423<br />

Postdoc<br />

Francisco<br />

Rouxinol<br />

Visiting Scientist<br />

Seung-Bo Shim<br />

Grad Student<br />

Hugo Hao


Present Status of Our Efforts at Syracuse – LC<br />

Circuit Read-out of Superconducting <strong>Qubit</strong><br />

Making samples at Cornell<br />

Nanofabrication Facility (CNF) and in<br />

the Plourde Lab at SU<br />

Coupling<br />

To LC<br />

50 Ω feedline<br />

<strong>Qubit</strong><br />

nanoresonator<br />

LC Circuit<br />

*Fabrication By: Francisco Rouxinol and Seung-Bo Shim<br />

*Measurements By: Hugo Hao, MDL, FR & SBS<br />

LC and Ground Plane: Niobium<br />

Nanoresonator and <strong>Qubit</strong>: Aluminum<br />

Signal Amplitude (nV)<br />

100<br />

10<br />

1<br />

Feedline Transmission Measurements<br />

.5Φ 0 change<br />

in Φ to qubit<br />

Q i ~ 12 − 15 × 10 3<br />

Q c ~ 300 − 350<br />

1.938 1.944 1.950 1.956<br />

Probe Frequency - ω p /2π (GHz)


LC Circuit Read-out of <strong>Qubit</strong> vs. Applied B-field<br />

• LC response modulates<br />

periodically with applied<br />

magnetic field:<br />

E J ∝ cos (πΦ/Φ 0 )<br />

LC Probe Frequency (GHz)<br />

1.96<br />

1.95<br />

1.94<br />

Amplitude<br />

0.0<br />

-5.0<br />

-10.0<br />

Transmission Amplitude (dB)<br />

LC Probe Frequency (GHz)<br />

1.96<br />

1.95<br />

1.94<br />

Phase<br />

*fridge temperature ≲ 30 mK*<br />

1.0<br />

0.5<br />

0.0<br />

-0.5<br />

Transmission Phase (rad.)<br />

-5.0 5.0 15.0 25.0 35.0<br />

Magnet Current (mA)


LC Circuit Read-out of <strong>Qubit</strong> vs. Applied B-field<br />

• LC response modulates<br />

periodically with applied<br />

magnetic field:<br />

E J ∝ cos (πΦ/Φ 0 )<br />

• Model parameters<br />

• E C = 1.3 GGG<br />

• E J = 12.7 GGG<br />

• λ/2π = 160 MMM<br />

• ω/2π = 1.945 GGG<br />

• General agreement with<br />

Jaynes-Cummings Model<br />

for qubit-coupled LC<br />

• Model Needs Improvement<br />

• Charge noise<br />

• Finite temperature<br />

LC Probe Frequency (GHz)<br />

LC Probe Frequency (GHz)<br />

1.96<br />

1.95<br />

1.94<br />

1.96<br />

1.95<br />

1.94<br />

___<br />

…….<br />

Amplitude<br />

Phase<br />

<strong>Coupled</strong> qubit & LC<br />

Uncoupled qubit &LC<br />

*fridge temperature ≲ 30 mK*<br />

-1.5 0.5 0.5 1.5<br />

Magnetic Flux (πΦ/Φ 0 )<br />

0.0<br />

-5.0<br />

-10.0<br />

1.0<br />

0.5<br />

0.0<br />

-0.5<br />

Transmission Amplitude (dB)<br />

Transmission Phase (rad.)


Details of the UHF Flexural Nanomechanical Resonator<br />

Close Up of Nanoresonator<br />

Resonator Geometric Properties<br />

- ~100 nm thick aluminum<br />

- 200 nm width<br />

- 1.8 micron length<br />

- Expect in-plane f 0 ~ 300 MHz<br />

Resonator etched using SF 6 RIE etch<br />

Engineered 70 nm gap between<br />

Al resonator and Al qubit electrode<br />

COMSOL Simulation:<br />

<strong>Qubit</strong>-Resonator Capacitance ~ 180 aF*<br />

*Should yield strong qubit-nanoresonator<br />

Coupling (λ/2π~10 ′ s MHz)*<br />

*Fabrication By: Francisco Rouxinol and Seung-Bo Shim


Details of the UHF Flexural Nanomechanical Resonator<br />

Close Up of Nanoresonator<br />

Resonator Geometric Properties<br />

- ~100 nm thick aluminum<br />

- 200 nm width<br />

- 1.8 micron length<br />

- Expect in-plane f 0 ~ 300 MHz<br />

COMSOL Simulation<br />

Calculated In-plane flexural<br />

fundamental mode: 291MHz<br />

Signal Amplitude (nV)<br />

0<br />

-40<br />

-80<br />

Preliminary Magnetomotive Measurements<br />

(On a 4K Probe Station)<br />

Q~1350<br />

0 Tesla<br />

7 Tesla<br />

Fit to EM<br />

Impedance<br />

288.7 289.0 289.3 289.6 289.9<br />

Drive Frequency - ω/2π (MHz)<br />

*Simulation and magnetomotive measurements by Seung-Bo Shim and Sang Goon Kim


LC Read-out of <strong>Qubit</strong>: Two-Tone Spectroscopy<br />

10<br />

<strong>Qubit</strong> Absorption Spectrum Vs. Magnetic Flux<br />

January 21st Data, 10dBm MW - Simulation: Ec=1.7GHz;Ej0=11.6GHz;<br />

15<br />

9<br />

10<br />

Microwave Frequency (GHz)<br />

Microwave Frequency (GHz)<br />

8<br />

7<br />

6<br />

5<br />

Want to Zoom-in<br />

Look for phonon<br />

Stark shift, but…<br />

<strong>Qubit</strong> transition energy<br />

model parameters:<br />

• E c =1.3 GHz<br />

• E j0 =11.9 GHz<br />

5<br />

0<br />

-5<br />

-10<br />

-15<br />

LC<br />

Phase<br />

(Deg.)<br />

4<br />

-1.5 -1 -0.5 0 0.5 1 1.5<br />

Flux (π)<br />

Flux (πΦ/Φ 0 )<br />

-20<br />

- Resonant microwaves applied to qubit modify the dispersive shift of the LC<br />

- Tuning flux modifies qubit transition via E J ∝ cos (πΦ/Φ 0 ) .


Two-Tone Spectroscopy – ‘Extra’ Features<br />

10<br />

<strong>Qubit</strong> Absorption Spectrum Vs. Magnetic Flux<br />

January 21st Data, 10dBm MW - Simulation: Ec=1.7GHz;Ej0=11.6GHz;<br />

15<br />

9<br />

10.5<br />

10<br />

Higher resolution spectroscopy<br />

Microwave Frequency (GHz)<br />

Microwave Frequency (GHz)<br />

8<br />

7<br />

6<br />

5<br />

What is the<br />

Extra Structure?<br />

4<br />

-1.5 -1 -0.5 0 0.5 1 1.5<br />

Flux (π)<br />

Flux (πΦ/Φ 0 )<br />

10.0<br />

9.5<br />

5<br />

0<br />

-5<br />

-10<br />

-0.5 0.0<br />

0.5<br />

-15<br />

-20<br />

LC<br />

Phase<br />

(Deg.)<br />

~300 MHz<br />

~300 MHz<br />

- ‘Extra’ structure looks like a series of avoided-level crossings<br />

- Can’t rule out multi-photon processes , longitudinal dressed states, etc. (e.g. ~10 photons in LC)


Two-Tone Spectroscopy – ‘Extra’ Features<br />

10<br />

<strong>Qubit</strong> Absorption Spectrum Vs. Magnetic Flux<br />

January 21st Data, 10dBm MW - Simulation: Ec=1.7GHz;Ej0=11.6GHz;<br />

15<br />

Microwave Frequency (GHz)<br />

Microwave Frequency (GHz)<br />

9<br />

8<br />

7<br />

6<br />

5<br />

Working with Fred and<br />

Amir Caldeira for model<br />

including LC,CPB & NR<br />

Unfortunately, sample<br />

destroyed before fully<br />

studied. .. We’re<br />

making new ones now.<br />

What is the<br />

Extra Structure?<br />

4<br />

-1.5 -1 -0.5 0 0.5 1 1.5<br />

Flux (π)<br />

Flux (πΦ/Φ 0 )<br />

- ‘Extra’ structure looks like a series of avoided-level crossings<br />

- Can’t rule out multi-photon processes , longitudinal dressed states, etc. (e.g. ~10 photons in LC)<br />

- Could it be related to the mechanical resonator? ~300 MHz spacing is suggestive<br />

10.5<br />

10.0<br />

9.5<br />

10<br />

Higher resolution spectroscopy<br />

5<br />

0<br />

-5<br />

-10<br />

-0.5 0.0<br />

0.5<br />

-15<br />

-20<br />

LC<br />

Phase<br />

(Deg.)<br />

~300 MHz<br />

~300 MHz


Conclusions<br />

- <strong>Mechanics</strong> has become a new quantum technology with<br />

many possible applications and potential for addressing<br />

fundamental questions in quantum mechanics<br />

- <strong>Qubit</strong>-mechanics will serve as an important test-bed for<br />

mechanical quantum systems. Analogous to what CQED has<br />

been for studying quantum properties of light.<br />

Experiments at Syracuse performed with<br />

Francisco Rouxinol & Hugo Hao - SYR<br />

Seung-Bo Shim & Sang Goon Kim - KRISS

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!