07.11.2014 Views

Algorithm Theoretical Based Document (ATBD) - CESBIO

Algorithm Theoretical Based Document (ATBD) - CESBIO

Algorithm Theoretical Based Document (ATBD) - CESBIO

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

SO-TN-ESL-SM-GS-0001<br />

Issue 1.a<br />

Date: 31/08/2006<br />

SMOS level 2 processor<br />

Soil moisture <strong>ATBD</strong><br />

ε<br />

'<br />

w<br />

= ε<br />

ε<br />

− ε<br />

w0<br />

w∞<br />

w∞ +<br />

Eq 37<br />

2<br />

1 + (2πrτ<br />

w f )<br />

:<br />

'' 2π<br />

rτ<br />

w f ( ε w0<br />

− ε w∞<br />

) σ i<br />

ε w =<br />

+<br />

2<br />

1+<br />

(2π<br />

rτ<br />

f ) 2πε<br />

f<br />

w<br />

0<br />

Eq 38<br />

Note that in the following equations (Eq 39a Eq 41e) the temperature, T, is in °C.<br />

σ i is the ionic conductivity for saline water (in S/m) function of temperature and salinity:<br />

i<br />

−φ<br />

( ) ( )<br />

( S,<br />

∆<br />

S,<br />

T = σ 25, S ⋅e<br />

)<br />

σ Eq 39a<br />

Where ( 25 S )<br />

i<br />

i ,<br />

i<br />

σ is the ionic conductivity of sea water at 25°C and is given by:<br />

2<br />

3<br />

( 25,<br />

S ) = S ⋅ ( ow + ow ⋅ S + ow ⋅ S + ow ⋅ S )<br />

σ Eq 39b<br />

23<br />

And the function φ depends on S and ∆ = 25 −T<br />

24<br />

25<br />

2<br />

2<br />

( ∆, S ) = ∆ ⋅ ( ow + ow ⋅ ∆ + ow ⋅ ∆ − S ⋅ ( ow + ow ⋅ ∆ + ow ⋅ ∆<br />

)<br />

27<br />

28<br />

29<br />

26<br />

φ Eq 39c<br />

For pure water S=0, thus the ionic conductivity is also null, σ ( 0 , T ) = 0<br />

The magnitude of the high frequency dielectric constant<br />

30<br />

31<br />

i<br />

32<br />

ε<br />

w∞<br />

was determined by Lane and Saxton [69] to be 4.9.<br />

There are separate algorithms for calculating the static dielectric constant, ε w0<br />

and the relaxation time, 2 πrτ w , of<br />

fresh and saline water..<br />

• The static dielectric constant of fresh water, ε w0 , is a function of temperature as described by Klein and Swift [70]:<br />

2<br />

3<br />

( T ) = ow + ow · T + ow · T ow T<br />

ε Eq 40a<br />

w 0 1 2 3 + 4 ·<br />

The relaxation time of pure water, rτ w , is given by Stogryn [71]:<br />

2<br />

3<br />

( T ) = ow + ow · T + ow · T ow<br />

2π rτ<br />

w + T<br />

Eq 40b<br />

14 15 16 17·<br />

• For saline water with a salinity SAL or SSS = S, the static dielectric constant of water, ε sw0 , is given [70] as<br />

ε sw0 (S,T) = ε sw0 (T,0) a ST (S,T)<br />

with<br />

2<br />

3<br />

( T, ) = ow + ow ⋅T<br />

+ ow ⋅T<br />

+ ow ⋅T<br />

sw0 0<br />

5<br />

6<br />

7<br />

8<br />

Eq 41a<br />

ε Eq 41b<br />

a ST<br />

2<br />

3<br />

( S, T ) ow + ow ⋅ S ⋅T<br />

+ ow ⋅ S + ow ⋅ S + ow ⋅ S<br />

= Eq 41c<br />

9<br />

10<br />

The relaxation time of saline water, rτ sw , is given by Stogryn [71]:<br />

11<br />

( S,<br />

T ) 2π<br />

r ( T ) b ( S T )<br />

12<br />

13<br />

2π rτ<br />

= τ<br />

Eq 41d<br />

b ST<br />

sw w ST ,<br />

2<br />

3<br />

( S, T ) ow + ow ⋅ S ⋅T<br />

+ ow ⋅ S + ow ⋅ S + ow ⋅ S<br />

= Eq 41e<br />

18<br />

19<br />

Coefficients OW1 to OW32 are supplied in TGRD UPF.<br />

20<br />

21<br />

Idealised forward/inverse modelling indicates that a 1% (absolute) underestimate in the weighted field of view occupied<br />

by water can give rise to a 0.01 m 3 m -3 error in soil moisture retrieval, in cases of high soil moisture (0.4 m 3 m -3 ) and<br />

dense vegetation cover (optical depth 0.6).<br />

22<br />

.<br />

43

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!