14.11.2014 Views

Scales - George E King Petroleum Engineering Oil and Gas ...

Scales - George E King Petroleum Engineering Oil and Gas ...

Scales - George E King Petroleum Engineering Oil and Gas ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Scales</strong><br />

• Usually a precipitate from a brine that<br />

becomes saturated with a material due to a<br />

change in the flowing fluid conditions within a<br />

well.<br />

• Scale precipitation may be driven by mixing<br />

incompatible waters, but can also be caused<br />

by out-gassing, shear, turbulence, <strong>and</strong><br />

temperature <strong>and</strong> pressure loss – upsets in the<br />

flowing equilibrium.<br />

3/14/2009 1<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


<strong>Scales</strong><br />

• calcium carbonate - upset<br />

driven<br />

• calcium sulfate - mixing<br />

waters, upset, CO 2<br />

• barium sulfate - mixing<br />

waters, upset<br />

• iron scales - corrosion,<br />

H 2 S, low pH, O 2<br />

• rarer scales - heavy brines<br />

Saturation Index<br />

1.5<br />

1<br />

0.5<br />

0<br />

-0.5<br />

Saturation Indices for Scale Formation Potential for an<br />

Example Formation Water<br />

Calcite (CaCO3)<br />

Gypsum (CaSO4)<br />

90 140 190 240<br />

-1<br />

-1.5<br />

Temperature, F<br />

3/14/2009 2<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Some scales form in layers, often driven by an “upset” in the flow dynamics of the system.<br />

These deposits can form almost anywhere, on any surface, but the deposits are usually just<br />

downstream of the location of an upset in the flow system. The location of the scale is often an<br />

indicator of what is causing the precipitation.<br />

3/14/2009 3<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Calcium sulfate scale from slow growth in a high water cut reservoir.<br />

3/14/2009 4<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


A rapidly formed deposit of calcium sulfate formed after an acid was mixed with a scale<br />

dissolver chemical that had removed a deposit of calcium sulfate scale at the perforations.<br />

3/14/2009 5<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Calcium Sulfate scale that completely blocked a section of<br />

downhole tubing – this piece was from a connection.<br />

3/14/2009 6<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


A very unusual form of calcium carbonate scale – small pellets – 1/8” or 3 mm of carbonate<br />

scale formed around a grain of s<strong>and</strong>. Bailed from an East Texas well with natural flow (strong<br />

water drive) <strong>and</strong> significant rolling water in the bottom. When the pellets got so heavy they<br />

could not be supported, they sank. <strong>Oil</strong> Well Pearls?<br />

3/14/2009 7<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Calcium sulfate crystals removed from a flow line in West Texas.<br />

3/14/2009 8<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Barium Sulfate deposition from topsides piping on a North Sea platform in the early 1990’s. The<br />

scale was not radioactive, but was nearly pure BaSO4. There was almost no reaction in several<br />

days in a test with the best EDTA <strong>and</strong> DPTA Barium dissolvers.<br />

3/14/2009 9<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


NORM <strong>Scales</strong><br />

• NORM is Naturally Occurring Radioactive<br />

Material<br />

• <strong>Scales</strong> which form concentrates of various<br />

naturally occurring radionuclides (NOR’s),<br />

present in almost all of the earth’s crust.<br />

• NOR’s present in water, gas, sludge <strong>and</strong> scale.<br />

3/14/2009 10<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


What’s Radioactive?<br />

• Uranium series 238 U <strong>and</strong> 226 Ra<br />

• Thorium series, 232 Th<br />

• Potassium 40 K<br />

• And their gamma-ray emitting products.<br />

3/14/2009 11<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Scale Location<br />

• at pressure drops - perfs, profiles<br />

• water mixing points - leaks, flood breakthru<br />

• outgassing points - hydrostatic sensitive<br />

• shear points - pumps, perfs, chokes,<br />

• gravel pack - formation interface<br />

3/14/2009 12<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Why Does Scale Form?<br />

• Sulphates:<br />

Ba 2+ + SO<br />

2-<br />

4 BaSO 4<br />

FW SW<br />

–Mixing of Incompatible waters (e.g. Formation <strong>and</strong> Sea<br />

water)<br />

–e.g. when Sea water breaks through in a production well<br />

already containing Formation water<br />

–e.g. When injecting Sea water into a Reservoir water Leg,<br />

or in the presence of Connate or Formation water<br />

3/14/2009 13<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Temperature <strong>and</strong> Pressure<br />

• Carbonate is Less Soluble with increasing temperature<br />

<strong>and</strong> Reducing Pressure<br />

• Sulphates tend to be more soluble with increasing<br />

temperature <strong>and</strong> pressure (less of an effect)<br />

• These are general rules, but there are exceptions...each<br />

scale needs to be evaluated under prevailing conditions<br />

• Increasing salinity tends to increase solubility of both<br />

3/14/2009 14<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Scale Prediction<br />

• Chemical models - require water analysis <strong>and</strong><br />

well conditions<br />

• Predictions are usually a “worst case” - this is<br />

where the “upset” factor comes in.<br />

– added shear - increased drawdown, choke<br />

changes, etc.<br />

– acidizing<br />

– venting pressure<br />

3/14/2009 15<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Water Composition<br />

Concentration (ppm)<br />

Ion<br />

Sea Water<br />

Forties<br />

Miller<br />

Gyda<br />

Prudhoe Bay<br />

Na<br />

K<br />

Mg<br />

Ca<br />

Sr<br />

Ba<br />

CI<br />

SO 4<br />

HCO 3<br />

10890<br />

460<br />

1368<br />

428<br />

8<br />

0<br />

19700<br />

2960<br />

124<br />

29370<br />

372<br />

504<br />

2808<br />

574<br />

252<br />

52360<br />

0<br />

496<br />

28780<br />

1830<br />

115<br />

1060<br />

110<br />

1050<br />

47680<br />

0<br />

2090<br />

65340<br />

5640<br />

2325<br />

30185<br />

1085<br />

485<br />

167400<br />

0<br />

76<br />

8000<br />

83<br />

84<br />

180<br />

24<br />

4<br />

11500<br />

10<br />

2222<br />

3/14/2009 16<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Example of North Sea Scaling Indices<br />

for Formation / Sea Water Mixture<br />

450<br />

400<br />

350<br />

Calcite<br />

Anhydrite<br />

Barite<br />

Celestite<br />

300<br />

250<br />

200<br />

150<br />

100<br />

• SI = 1 equilibrium<br />

• SI > 1 over saturated, pptn predicted<br />

50<br />

0<br />

0 10 20 30 40 50 60 70 80 90 100<br />

% Seawater<br />

3/14/2009 17<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Calcium sulfate growth rates for various stimulation methods (upsets).<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

3/14/2009 18<br />

GEK<strong>Engineering</strong>.com


How do we Control Scale?<br />

• Inhibition<br />

– Downhole<br />

– Subsea<br />

– Topsides<br />

• Stop mixing of incompatible waters<br />

– PWRI Vs SWI (Harding)<br />

– Use De-Sulphated sea water (Marathon)<br />

– Train segregation (Bruce, ETAP)<br />

• Remedial Action<br />

– Chemical Dissolution<br />

– Mechanical Removal<br />

3/14/2009 19<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


How Do They Work?<br />

• Crystal Modifiers<br />

– These chemicals are believed to work predominantly by<br />

retarding crystal growth.<br />

– Promote the formation of small crystals, which act as<br />

nucleation sites, yet prevent them from becoming large<br />

enough to precipitate from solution<br />

– The initial nucleation reduces the supersaturation of the<br />

solution quickly<br />

– The large molecules attach to active crystal growth planes<br />

<strong>and</strong> block growth in one particular direction<br />

3/14/2009 20<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


How Do They Work<br />

• Threshold Inhibitors<br />

– These chemicals inhibit predominantly by preventing<br />

crystal nucleation<br />

– They stop the ions from aggregating together <strong>and</strong> in effect<br />

delay scale formation<br />

3/14/2009 21<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Inhibitor Deployment<br />

Above the Packer<br />

• Continuous Injection via Chemical Injection<br />

Control Line (Macaroni string)<br />

– Well integrity (leak path)<br />

– Increases well completion running times (rig<br />

costs?)<br />

– Blockage issue<br />

• Continuous Injection via <strong>Gas</strong> Lift<br />

– Atomisation <strong>and</strong> Gunking issue<br />

– Orifice to Packer Volume<br />

3/14/2009 22<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Inhibitor Deployment<br />

Below the Packer<br />

• Matrix squeezes with scale inhibitor<br />

– Adsorption <strong>and</strong> Absorption<br />

– Precipitation squeezes<br />

• Impregnated proppant (short lived)<br />

• Continuous Inhibition from capillary<br />

• Inhibitor placement in the rat hole<br />

3/14/2009 23<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Scale Inhibitor Squeeze Treatments<br />

• Bull heading<br />

– Chemicals pumped directly down<br />

well (rate 3-30 bpm)<br />

• Pre-flush flush<br />

– typical vol. 50bbls<br />

– maximize contact with rock <strong>and</strong><br />

minimizes near well bore damage<br />

• Main treatment<br />

– typical vol. 50 – 500 bbls of actual<br />

chemical required for inhibition,<br />

mixed in compatible fluid.<br />

• Overflush<br />

– typical vol. 50 to over 1000bbls<br />

– ensures deeper placement of<br />

chemicals<br />

S tag e 1: Preflush<br />

Stage 2: Pump Scale Inhibitor<br />

Stage 3: Pump Overflush<br />

Stage 4: Shut in<br />

Stage 5: Return the well to production - inhibitor is slowly<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

3/14/2009 24<br />

GEK<strong>Engineering</strong>.com<br />

released into the well.


Inhibitors can be squeezed into the formation, returning slowly. There is a “threshold” level of<br />

inhibitor needed to prevent scale in a specific well system. When the inhibitor level falls below<br />

the threshold, scale can form.<br />

Optimizing inhibitor squeeze design can change the useful inhibitor life from a few weeks to 12<br />

to 18 months.<br />

60.<br />

Milne Point L-40 well. Inhibitor return data<br />

Active Inhibitor Content / ppm<br />

50.<br />

40.<br />

30.<br />

20.<br />

10.<br />

0.<br />

0 50 100 150 200<br />

Elapsed Time / days<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

3/14/2009 25<br />

GEK<strong>Engineering</strong>.com<br />

AEA


Scale Removal<br />

• Calcium Carbonate - HCl, EDTA<br />

• Calcium Sulfate - EDTA <strong>and</strong> converters<br />

• Barium Sulfate mixtures - PDTA <strong>and</strong> EDTA<br />

• Pure Barium Sulfate - mechanical<br />

• Thick deposits of any sulfate scale -<br />

mechanical removal<br />

3/14/2009 26<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Scale Removal<br />

• Chemical Dissolution – Scale Dissolvers<br />

• Carbonates<br />

– Mineral Acids (e.g. HCl, Acetic Acid) <strong>and</strong> EDTA <strong>and</strong> DPTA<br />

• Calcium Sulfate<br />

– Chelants (e.g. EDTA <strong>and</strong> DPTA based) <strong>and</strong> Converters (strong bases)<br />

• Barium Sulfate – treat only scale mixtures, too slow on pure BaSO4 under pressure.<br />

• Mechanical Removal<br />

– Milling with carefully selected mills – also watch the hydraulics.<br />

– Under-reaming under restrictions (under-reamers are slower than mills).<br />

• Multiple trips in tapered diameter completion string<br />

• Problems with nipple profiles<br />

– Jetting with Solid Beads (e.g. abrasives) – tubing damage potential is moderate to high.<br />

– Shock (e.g. String Shot) – 1 to a maximum of 4 str<strong>and</strong>s of 90 grain RDX.<br />

3/14/2009 27<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


<strong>Scales</strong><br />

• calcium carbonate - upset driven<br />

• calcium sulfate - mixing waters, upset, CO 2<br />

• barium sulfate - mixing waters, upset<br />

• iron scales - corrosion, H 2 S, low pH, O 2<br />

• rarer scales - heavy brines create zinc <strong>and</strong><br />

other metal sulfides.<br />

3/14/2009 28<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Problems with over-running the dissolver or<br />

converter with acid – the resulting reaction<br />

can re-precipitate everything!<br />

Calcium sulfate scale precipitated from a<br />

scale dissolver solution of EDTA when<br />

treated with 15% HCl..<br />

Most dissolvers <strong>and</strong> converters cannot hold<br />

the by-products in solution as pH drops.<br />

3/14/2009 29<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Sale – Know Why.<br />

• <strong>Scales</strong> precipitate due to fluid mixing, upsets<br />

in flowing conditions, cooling, heating,<br />

corrosion, acidizing <strong>and</strong> other factors.<br />

Underst<strong>and</strong> why.<br />

• Is it easier to prevent the scale or remove it<br />

once it has formed? It depends on the<br />

individual well conditions, e.g., access, cost,<br />

impact, etc.<br />

3/14/2009 30<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!