18.11.2014 Views

T 7.2.1.3 Amplitude Modulation

T 7.2.1.3 Amplitude Modulation

T 7.2.1.3 Amplitude Modulation

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

T <strong>7.2.1.3</strong><br />

<strong>Amplitude</strong><br />

<strong>Modulation</strong><br />

by Klaus Breidenbach<br />

New Edition, November 2002<br />

LEYBOLD DIDACTIC GMBH . Leyboldstrasse 1 . D-50354 Hürth . Phone (02233) 604-0 . Fax (02233) 604-222 . e-mail: info@leybold-didactic.de<br />

©by Leybold Didactic GmbH<br />

Printed in the Federal Republic of Germany<br />

Technical alterations reserved


“The sensitive electronics of the equipment contained in the present experiment literature<br />

can be impaired due to the discharge of static electricity. Consequently, electrostatic build<br />

up should be avoided (particularly by utilizing appropriate rooms) or eliminated by discharging<br />

(e.g. at the panel frames or similar).”


TPS <strong>7.2.1.3</strong><br />

Contents<br />

Note on EMC<br />

European stipulations pertaining to electromagnetic compatibility (EMC) oblige the<br />

manufacturer of electronic training and educational equipment to draw the operator's<br />

attention to the following possible sources of interference. The types of interference<br />

listed below could arise but by no means have to. As the case arises it may prove necessary<br />

to implement one of the measures recommended for the appropriate case.<br />

Note regarding the interference immunity of the equipment and<br />

experiment set-ups<br />

The sensitive electronics used in the equipment can be interfered with by strong electromagnetic<br />

fields arising from large-scale experiment arrangements. This can occur in<br />

such a manner that the equipment operates insufficiently, in particular field effects can<br />

cause digital displays to fail.<br />

Precautionary and corrective measures:<br />

Make sure that no RF generating equipment (e.g. cellular phones) which does not belong<br />

to the experiment set-up is operating in the classroom or in its proximity and that<br />

connecting leads which can act as potential antennas are kept as short as possible.<br />

Note regarding protection against electrostatic discharge (ESD)<br />

The sensitive electronic components in the equipment can be impaired or even damaged<br />

by the discharge of static electricity.<br />

Precautionary measures:<br />

Select work areas where electrostatic energy cannot be built up by the user and/or<br />

equipment (eliminate carpeting and similar items, ensure equipotential bonding).<br />

Note regarding protection from line-bound, high-frequency voltage<br />

bursts<br />

Switching operations involving large loads can occassionally bring about line-bound<br />

high-frequency voltage bursts which can lead to the temporary impairment of sensitive<br />

electronic components which could cause equipment operating failure (e.g. data losses<br />

or to changes in the mode of operation).<br />

Corrective measures:<br />

In order to avoid this malfunction, the mains line can be specially filtered. Furthermore,<br />

making occasional data back-ups is recommended. Any interference which might arise<br />

can be eliminated simply by switching the device off and back on again.<br />

3


TPS <strong>7.2.1.3</strong><br />

Contents<br />

Note:<br />

The oscillographs in the experiment results were recorded with a HP 54600 A<br />

oscilloscope (100 MHz) and further processed with the bench link<br />

HP 34810 A software.<br />

The oscilloscope recommended in the equipment set is a low-cost version,<br />

with limited operation and display comfort (30 MHz display), but in principle<br />

delivers the same results.<br />

The experiment results given here are just examples. Therefore, the curves<br />

and results specified in the solutions section should only be taken as guidelines.<br />

The calculation and representation of the spectra was carried out with EXCEL<br />

5.0.<br />

4


TPS <strong>7.2.1.3</strong><br />

Contents<br />

Contents<br />

Equipment overview ..............................................................................................................7<br />

Symbols and abbreviations .................................................................................................... 8<br />

Schrifttum .............................................................................................................................. 8<br />

1 Introduction ......................................................................................................................... 9<br />

Signals9<br />

Time and spectral domain...................................................................................................... 10<br />

<strong>Modulation</strong> ............................................................................................................................ 10<br />

The communications system according to Shannon.............................................................. 12<br />

2 Measuring instruments ..................................................................................................... 13<br />

2.1 Oscilloscope and spectrum analyzer .......................................................................... 13<br />

2.2 Equipment descriptions .............................................................................................. 16<br />

726 94 Spectrum analyzer .......................................................................................... 16<br />

726 961 Function generator 200kHz .......................................................................... 17<br />

726 99 Frequency counter 0..10 MHz ...................................................................... 18<br />

736 201 CF transmitter 20 kHz .................................................................................. 18<br />

736 221 CF receiver 20 kHz ...................................................................................... 19<br />

2.3 A measurement example ........................................................................................... 20<br />

3 Review of amplitude modulation (AM) .......................................................................... 23<br />

The spectrum of amplitude modulation ................................................................................. 24<br />

Representing amplitude modulation with a vector diagram ................................................... 24<br />

AM demodulation .................................................................................................................. 25<br />

Questions ............................................................................................................................... 26<br />

4 Required equipment and accessories ............................................................................. 28<br />

Training objectives: ................................................................................................................ 28<br />

5 Double Sideband-AM ........................................................................................................ 29<br />

The DSB SC<br />

. ............................................................................................................................ 29<br />

5.1 Investigations on the dynamic characteristic of the DSB .......................................... 30<br />

5.1.1 DSB ............................................................................................................................ 30<br />

5.1.2 DSB SC<br />

................................................................................................................................................................................................................31<br />

5.2 Spectrum of the DSB................................................................................................. 31<br />

5.2.1 DSB ............................................................................................................................ 31<br />

5.2.2 DSB SC<br />

................................................................................................................................................................................................................33<br />

5.2.3 The AM spectrum for modulation with a square-wave signal .................................. 33<br />

5.3 AM demodulation (synchronous demodulation) ........................................................ 34<br />

5.3.1 DSB ............................................................................................................................ 34<br />

5.3.2 Carrier recovery ........................................................................................................ 35<br />

5.3.3 DSB SC<br />

Demodulation ................................................................................................. 37<br />

5.4 Beats .......................................................................................................................... 37<br />

5


TPS <strong>7.2.1.3</strong><br />

Contents<br />

6 The Single Sideband AM (SSB) ....................................................................................... 41<br />

6.1 Investigations on the dynamic characteristic of the SSB ........................................... 42<br />

6.1.1 SSB RC<br />

......................................................................................................................... 42<br />

6.1.2 SSB SC<br />

.......................................................................................................................... 42<br />

6.2 Spectrum of the SSB .................................................................................................. 43<br />

6.2.1 SSB RC<br />

......................................................................................................................... 43<br />

6.2.2 SSB SC<br />

.......................................................................................................................... 43<br />

6.3 SSB demodulation ...................................................................................................... 44<br />

7 The Ring Modulator .......................................................................................................... 47<br />

7.1 Dynamic response of the ring modulator ................................................................... 49<br />

7.2 Spectrum at the output of the ring modulator ............................................................ 50<br />

Solutions ................................................................................................................................. 51<br />

Keywords .............................................................................................................................. 65<br />

6


TPS <strong>7.2.1.3</strong><br />

Contents<br />

Equipment overview<br />

Equipment<br />

TPS 7.2.2.3 Experiments<br />

2.3 A measurement example<br />

5.1 Investigations on the dynamic characteristic of the DSB<br />

5.2 Spectrum and vector representation of the DSB<br />

5.3 AM demodulation (synchronous demodulation)<br />

5.4 Beats<br />

6.1 Investigations on the dynamic characteristic of the SSB<br />

6.2 Spectrum representation and vector diagram of the SSB<br />

6.3 SSB demodulation<br />

7.1 Dynamic response of the ring modulator<br />

7.2 Spectrum at the output of the ring modulator<br />

DC power supply ±15 V, 3 A 726 86 1 1 1 1 1 1 1 1 1 1<br />

Function generator 0...200 kHz 726 961 1 1 1 1* 1 1 1 1 1 1<br />

Spectrum analyzer 726 94 1 _ 1 _ 1 _ 1 _ _ 1<br />

Frequency counter 0-10 MHz 726 99 1 _ 1 _ 1 _ 1 _ _ 1<br />

CF transmitter 20 kHz 736 201 _ 1 1 1 1 1 1 1 1 1<br />

CF receiver 20 kHz 736 211 _ _ _ 1 _ _ _ 1 _ _<br />

Analog multimeter C.A. 406 531 16 1 _ 1 _ 1 _ 1 _ _ 1<br />

Digital storage oscilloscope 305 575 292 1 1 1 1 1 1 1 1 1 1<br />

Probes 100 MHz, 1:1/10:1 575 231 2 2 2 2 2 2 2 2 2 2<br />

Sets of 10 bridging plugs, black 501 511 1 1 2 2 2 3 3 3 2 2<br />

Cable pair, black, 100 cm 501 461 2 _ 1 _ 2 _ 1 _ _ 2<br />

* Optional: 2nd function generator recommended<br />

Note:<br />

Instead of the 20 kHz CF system you can also use the 16 kHz system (cat. no. 736 211 and 736 231).<br />

This does not have any significant impact on the experiment results. In particular the spectra are shifted<br />

by 4 kHz into the lower frequency range. However, their general structures remain unaffected.<br />

7


TPS <strong>7.2.1.3</strong><br />

Contents<br />

Symbols and abbreviations<br />

A : <strong>Amplitude</strong><br />

∆A C : <strong>Amplitude</strong> deviation<br />

A C : Carrier amplitude<br />

A M : <strong>Amplitude</strong> of the modulating signal<br />

A D : <strong>Amplitude</strong> of the demodulated signal<br />

A(f) : Transmission factor<br />

AM : <strong>Amplitude</strong> modulation<br />

A R : Square-wave amplitude<br />

DSB SC : Double sideband AM with suppressed carrier<br />

BP : Bandpass<br />

b : Bandwidth<br />

d : Attenuation<br />

SSB : Single sideband AM<br />

f : Frequency<br />

f M : Frequency of the modulating signal<br />

m : <strong>Modulation</strong> index<br />

USL : Upper sideline<br />

R : Frequency resolution<br />

s(t) : Signal function in the time domain, general<br />

s D (t) : Demodulated signal<br />

s M (t) : Information signal, modulating signal<br />

s C (t) : Carrier signal<br />

S(n) : <strong>Amplitude</strong> spectrum, general<br />

S AM (n) : Spectrum of the AM signal<br />

s AM (t) : Dynamic characteristic of the AM signal<br />

S R (n) : Spectrum of the square-wave signal<br />

T : Period duration<br />

LP : Lowpass filter<br />

LSL : Lower sideline<br />

η : Efficiency<br />

DSB : Double sideband AM<br />

Bibliography<br />

E. Stadler <strong>Modulation</strong>sverfahren<br />

Vogel Buchverlag, Würzburg<br />

3rd edition 1983<br />

Herter, Röcker,Lörcher<br />

Nachrichtentechnik, Übertragung, Vermittlung, Verarbeitung<br />

Hanser, München, Wien<br />

3rd edition 1984<br />

G. Kennedy Electronic Communication Systems,<br />

McGraw Hill Book Company, Singapore,<br />

3rd edition 1985<br />

D.G. Fink D. Christiansen<br />

Electronic Engineer’s Handbook<br />

McGraw Hill Book Company<br />

2nd edition 1982<br />

D. Roddy, J. Coolen Electronic Communications<br />

Prentice Hall International, Reston Verginia,<br />

3rd edition 1984<br />

Hewlett Packard Measurement, Computation, Systems, catalog 1986,<br />

Palo Alto California<br />

Dipl. Ing. Klaus Breidenbach<br />

Hürth, February 1997<br />

8


TPS <strong>7.2.1.3</strong><br />

Introduction<br />

1 Introduction<br />

Signals<br />

In electrical telecommunications engineering,<br />

messages are usually in the form of time-dependent<br />

electrical quantities, for example, voltage u(t)<br />

or current i(t). These kinds of quantities which are<br />

described by time functions are called signals. In<br />

order to transmit messages a parameter of the<br />

electrical signal must be suitably influenced. In<br />

cases where a signal defined as a time function is<br />

known and the signal value can be determined<br />

exactly at any given point in time, then the signal<br />

is called deterministic. Examples of deterministic<br />

signals are:<br />

1. Harmonic oscillation<br />

u(t) = A · sin (2 π ft + φ) (1.1)<br />

2. Symmetrical square wave<br />

u(t) = u(t + nT) n = 1, 2, 3... (1.2)<br />

A t T<br />

u()= t<br />

⎧ for 0 < < / 2<br />

⎨<br />

⎩ 0 for T/ 2 < t< T .<br />

Deterministic telecommunications is useless from<br />

the point of view of information theory. Only unknown,<br />

i.e. unpredictable messages are important<br />

for the message receiver. Nevertheless, when discussing<br />

modulation methods it is standard procedure<br />

to work with harmonic signals. The results<br />

which can be obtained are then clearer and more<br />

straightforward. If the signal value for any given<br />

point in time cannot be given because the signal<br />

curve appears totally erratic, then the signal is<br />

called stochastic. An example for a stochastic signal<br />

is noise. Stochastic signals can be described<br />

using methods of probability mathematics, but<br />

they will not be taken into consideration here. Signals<br />

are distinguished according to the characteristic<br />

curves of their time and signal coordinates. If<br />

the signal function s(t) produces a signal value at<br />

any random point in time, the signal function is<br />

called time-continuous (continuous w.r.t. time).<br />

In contrast, if the signal values differ from 0 only<br />

at definite, countable points in time, i.e. its time<br />

characteristic shows “gaps”, then this is referred<br />

to as time-discrete (discrete w.r.t. time). What is<br />

true for the time coordinate, can also be applied to<br />

the signal coordinates. Accordingly, a signal is<br />

called level-continuous, if it can assume any<br />

given value within the system limits. It is called<br />

value-discrete or n-level, if only a finite number<br />

Fig 1-1: Classification of signals<br />

(a) time- and level-continuous<br />

(b) time-discrete (sampled), level-continuous<br />

(c) time-continuous, level-discrete (quantized)<br />

(d) time- and level-discrete<br />

9


TPS <strong>7.2.1.3</strong><br />

Introduction<br />

of signal values are permitted. Two important signal<br />

classes can be defined using these 4 terms:<br />

Analog signals<br />

A signal is called analog if it is both time as well<br />

as value-continuous.<br />

Digital signals<br />

A signal is called digital, if it is both time as well<br />

as value-discrete.<br />

Fig. 1-1 shows the various kinds of signals.<br />

Time and spectral domain<br />

In the technical sciences there exists, in addition<br />

to the “time domain”, signal representation in the<br />

“frequency” or “spectral domain”. The equivalence<br />

of the two types of representation can be<br />

seen in the depictions in Fig. 1-2.<br />

If you first consider the harmonic function as<br />

specified in (1.1), then a display on the oscilloscope<br />

results in the familiar, dynamic (time) characteristic<br />

according to Fig. 1-2-A. The sinusoidal<br />

time function is described by the amplitude A and<br />

the period duration T. However, a totally equivalent<br />

representation of this function is reproduced<br />

when the variables A and f = 1/T are used instead<br />

of the parameters A and T. If the amplitude is displayed<br />

on the frequency axis, then this form of<br />

representation is called the amplitude spectrum.<br />

Time domain<br />

Thus, a single line can depict a harmonic function.<br />

Now, after Fourier, every non-harmonic, periodic<br />

function can be represented as the superimposition<br />

of harmonic oscillations with fixed<br />

amplitudes S(n). As an example Fig. 1-2-B<br />

presents a symmetrical square-wave signal with<br />

the amplitude A R and the period of oscillation T R .<br />

We can see from the corresponding amplitude<br />

spectrum S R (n) in Fig. 1-2-D that the squarewave<br />

function is produced from the superposition<br />

of many (an infinite number of) harmonic oscillations.<br />

Their frequencies are odd numbered multiples<br />

of<br />

f = 1/T R and their amplitudes decrease as a function<br />

of the ordinal number n, see Table on pg. 11.<br />

Note: Any precise and comprehensive discussion<br />

of the spectra not only takes the amplitude<br />

spectrum S(n) into consideration<br />

but also the phase spectrum φ(n). However,<br />

in many practical exercises it suffices<br />

to determine the amplitude spectrum.<br />

<strong>Modulation</strong><br />

When speaking of modulation, one generally refers<br />

to the conversion of a modulation signal s M (t)<br />

into a time function with altered characteristics<br />

using a carrier signal. The message signal influences<br />

a parameter of the carrier in a suitable fash-<br />

Spectral domain<br />

(A)<br />

(C)<br />

(B)<br />

(D)<br />

Fig. 1-2:<br />

Time and spectral representation<br />

(A) Harmonic function, time representation (C) Harmonic function, spectral representation<br />

(B) Symmetrical square-wave oscillation, (D) Symmetrical square-wave oscillation,<br />

time representation<br />

spectral representation<br />

10


TPS <strong>7.2.1.3</strong><br />

Introduction<br />

Harmonic Frequency <strong>Amplitude</strong><br />

1<br />

2<br />

3<br />

4<br />

n<br />

f R = 1/T R SR(1)= 4 A<br />

π<br />

3 f R<br />

5 f R<br />

7 f R<br />

(2 n – 1) f R<br />

S R (1)<br />

3<br />

S R (1)<br />

5<br />

S R (1)<br />

7<br />

SR (1)<br />

2n<br />

−1<br />

<strong>Amplitude</strong> spectrum of a symmetrical squarewave<br />

signal n = 1, 2, 3, 4, ...<br />

ion. Either harmonic oscillations or pulse trains<br />

are used as carrier signals. If, for example, a harmonic<br />

carrier is used with the form:<br />

s C<br />

(t) = A C<br />

cos (2 f C<br />

t + φ ), (1.3)<br />

then the message signal s M (t) can have an effect<br />

either on the amplitude A C , the carrier frequency<br />

f C or the zero phase angle φ. These effects result in<br />

the analog modulation methods:<br />

– <strong>Amplitude</strong> modulations (AM)<br />

– Frequency modulation (FM)<br />

– Phase modulation (PM).<br />

In the case of analog modulation methods, the<br />

modulation process means a continuous conversion<br />

of the modulating signal s M (t) into a higher<br />

frequency band (frequency conversion). The mod-<br />

R<br />

ulating signal is shifted from the baseband (AF<br />

range, original frequency band), into an RF frequency<br />

band. It no longer appears in the spectrum<br />

of the modulated oscillation. A modulation always<br />

requires that the carrier and the modulation<br />

signal interact. Both of these signals are fed into a<br />

modulator. The original signal s M (t) is recovered<br />

from the modulated signal through demodulation.<br />

Consequently, modulation and demodulation are<br />

mutually related, inverse processes. The complexities<br />

involved in modulation and demodulation are<br />

considerable. The following reasons explain why<br />

modulation is worthwhile:<br />

1. <strong>Modulation</strong> enables the matching of the<br />

modulating signal to the characteristics of the<br />

transmission channel. (radio links e.g. are<br />

only possible above a certain frequency.)<br />

2. Existing transmission channels can be multiply<br />

exploited using modulation, (frequency<br />

or time division multiplex systems).<br />

3. Improved signal-to-noise ratios can be obtained<br />

using modulation.<br />

The communications system according to Shannon<br />

Electrical communications engineering is divided<br />

into three classical subfunctions:<br />

1. Transmission of the message<br />

2. Processing of the message<br />

3. Relaying the message (telephone technology)<br />

If only a single transmission channel is examined,<br />

(i.e. no telephone technology), then we can concentrate<br />

on the remaining functions illustrated by<br />

the scheme in Fig. 1-3.<br />

Fig. 1-3: The telecommunications system<br />

(A) The telecommunications system<br />

(B) Message transmission<br />

(C) Message processing<br />

1 Message source<br />

(human being, measurment sensor etc.)<br />

2 Converter (microphone,<br />

television camera,<br />

strain gauges, thermo sensor etc.)<br />

3 Transmitter<br />

4 Transmission channel (radio link,<br />

transmission cable, data storage system)<br />

5 Receiver<br />

6 Converter<br />

7 Message recipient<br />

8 Interference source<br />

11


TPS <strong>7.2.1.3</strong><br />

Introduction<br />

The telecommunication system (A) consists of<br />

equipment used for message transmission (B) and<br />

message processing (C). The message source (1)<br />

generates the information, which is to be made<br />

available to the message recipient (7). The signals<br />

generated are of the most varied physical nature,<br />

e.g. sound, light, pressure, temperature, etc. It is<br />

the function of the converter (2) to convert the<br />

non-electrical signal of the source into an electrical<br />

one. The transmitter (3) converts the converter<br />

signal into one better suited for transmission via<br />

the channel. Thus the modulation process takes<br />

place in (3). The transmission channel (4) serves<br />

either to bridge a spatial distance, or to overcome<br />

a period of time. The modulated signal, generally<br />

distorted by the interference source (8), reaches<br />

the receiver (5), where it is then reconverted into<br />

its original electrical signal there (demodulation).<br />

Finally, the converter (6) transforms the electrical<br />

signal back into the physical signal required by<br />

the message recipient (7). The message recipient<br />

can take the form of the human being with eyes<br />

and ears or a machine in a process control loop.<br />

12


TPS <strong>7.2.1.3</strong><br />

Measuring instruments<br />

2 Measuring instruments<br />

2.1 Oscilloscope and spectrum analyzer<br />

The oscilloscope<br />

The oscilloscope is amongst the most important<br />

measuring instruments used in electrical engineering.<br />

It is used to graphically display signal<br />

voltages u(t) in the time domain. It can also be<br />

regarded as a two dimensional voltmeter. The signal<br />

is displayed in the form of Cartesian coordinates.<br />

The abcissa (x-axis) shows the time scale,<br />

(e.g. ms/Div) and the y-axis shows the voltage<br />

scale (e.g. V/Div). The oscilloscope provides immediate<br />

information on the signal shape and is<br />

therefore superior to moving coil instruments or<br />

digital voltmeters. The prerequisite for all forms<br />

of pointer instruments and multimeters is that the<br />

time characteristic or curve of the electrical signals<br />

is known. As a rule only DC voltages or harmonic<br />

AC voltages can be measured using these<br />

kinds of instruments. The oscilloscope is used for<br />

the voltage measurement of signals with unknown,<br />

random time characteristics. Here a distinction<br />

is drawn between two different cases:<br />

1. The voltage signal is non-sinusoidal, but periodic<br />

with “higher” frequency.<br />

The oscilloscope is operated in repeating real time<br />

mode. This operating mode is the most frequently<br />

one used. A sawtooth generator is started each<br />

time the signal to be measured has exceeded an<br />

adjustable level (trigger level). This produces a<br />

time-linear voltage used for the horizontal deflection<br />

of the cathode ray tube. The sawtooth generator<br />

is part of the time base. The vertical deflection<br />

is controlled by the measurement signal itself. The<br />

result is a standing image of the voltage signal on<br />

the screen. In real time operation the oscilloscope<br />

has a slow-motion function. Thus, processes<br />

which are too fast for the human eye can be made<br />

visible.<br />

2. The voltage signal to be measured is non-periodic,<br />

or has a very long period duration.<br />

The signal to be measured is digitalized and input<br />

into a storage system. The contents of the storage<br />

unit can then be output periodically. Processes<br />

which are too long can be displayed in the storage<br />

mode.<br />

The oscilloscope masks out the amplitude and<br />

time windows from the signal characteristic, see<br />

Fig. 2.1-1.<br />

Fig. 2.1-1:Functioning of the oscilloscope<br />

(A) <strong>Amplitude</strong> window<br />

(T) Time window<br />

The spectrum analyzer<br />

Spectrum analyzers are used to display signals in<br />

the spectral domain. These analyzers operate<br />

either digitally with the aid of mathematical algorithms<br />

(Fast Fourier Transformation) or in analog<br />

mode as a filter bank i.e. according to the principle<br />

of frequency conversion. The latter principle<br />

is implemented in the spectrum analyzer 726 94<br />

training panel. For that reason we shall study this<br />

in more detail with the aid of Fig. 2.1-2.<br />

The harmonic signal supplied by the VCO is fed<br />

into the mixer with the input signal. Depending on<br />

its spectral quality and the oscillator frequency, an<br />

AC voltage signal appears at the mixer output<br />

which lies in the passband of the bandpass filter.<br />

The IF signal at the output of the bandpass filter is<br />

produced for the individual spectral components<br />

of the input signal for correspondingly different<br />

VCO frequencies. If its frequency is linearly dependent<br />

on its control voltage, then this can be<br />

used for the X-deflection of a display unit. Thus<br />

the X-axis also achieves linear frequency scaling.<br />

The rectified, amplified output voltage of the IF<br />

filter is used for Y-deflection. Consequently each<br />

spectral amplitude of the input signal can be measured<br />

by adjusting the VCO. The spectrum<br />

analyzer thus constitutes an application of the superheterodyne<br />

principle used in radio technology,<br />

whereby the bandfilter can be regarded as a<br />

spectral window. The position of this window in<br />

the frequency domain is determined by the VCO<br />

13


TPS <strong>7.2.1.3</strong><br />

Measuring instruments<br />

Fig. 2.1-2: Design of a spectrum analyzer according to the superheterodyne principle<br />

(A) Signal path<br />

1Input amplfier/ attenuator V 1<br />

2Mixer<br />

3Bandpass (BP)<br />

4Rectifier<br />

5Output amplifier V 2<br />

(B) Oscillator<br />

6VCO<br />

7Sawtooth generator<br />

(C) Display unit<br />

frequency. The width of the window is determined<br />

by the selected bandwidth of the bandpass filter,<br />

see Fig. 2.1-3.<br />

The time law of electrical telecommunications<br />

engineering<br />

The use of analyzers according to the<br />

superhetrodyne principle requires that the time<br />

law of electrical telecommunications be observed.<br />

According to this law, the pulse response of a<br />

lowpass system becomes longer, the smaller its<br />

bandwidth b is, see Fig. 2.1-4.<br />

This statement can also be applied to the<br />

bandpasses present in the spectrum analyzer. The<br />

time law is similar to the uncertainty relation in<br />

nuclear physics. It states that it is impossible to<br />

decrease both the duration T as well as the bandwidth<br />

b of a signal. When tuning the VCO, the<br />

slower it takes for the VCO frequency to change,<br />

the longer the mixer output signal is in the<br />

passband of the downstream bandpass (BP). The<br />

frequency change with respect to the time unit<br />

depends on:<br />

1. (Periods of the sawtooth generator (SCAN<br />

TIME)<br />

2. Absolute frequency domain passed through<br />

by the VCO (SPAN).<br />

Fig. 2.1-3:The functioning principle of a spectrum<br />

analyzer<br />

1 Bandpass with bandwidth b<br />

(spectral window)<br />

2 Signal spectrum<br />

14


TPS <strong>7.2.1.3</strong><br />

Measuring instruments<br />

Fig. 2.1-4:The time law of electrical telecommunications engineering<br />

(A): Input signals: pulses with equal amplitude A and period T<br />

(B): Lowpasses with critical frequencies f c1<br />

and f c2<br />

; f c1<br />

< f c2<br />

(C): Output signals: pulse of varying period and amplitude<br />

If, for example, a spectrum analysis has to be performed<br />

over a wide frequency domain, and, in<br />

addition, a very short sawtooth period is selected,<br />

then the result of this is a very large change in frequency<br />

per unit time. The mixer output signal<br />

passes through the mid-frequencies of the BPF<br />

with corresponding speed. According to the time<br />

law the selected bandwidth of the BPF now has to<br />

be “sufficiently” large if the BPF is to attain the<br />

input amplitude. However, at greater bandwidth<br />

of the bandpass filter the analyzer's spectral resolution<br />

capacity drops. For that reason, work with<br />

the spectrum analyzer always involves the compromise<br />

between spectral RESOLUTION and<br />

fault-free reproduction of the amplitude. For the<br />

relationship between the SCAN TIME T, bandwidth<br />

b and frequency window SPAN the following<br />

approximately applies:<br />

b = 20 ( f − f )<br />

T<br />

max min (2.1)<br />

Where:<br />

f max : maximum frequency<br />

f min : minimum frequency<br />

b : bandwidth of the filter<br />

T : sawtooth period SCAN TIME.<br />

The difference f max – f min is called frequency<br />

window = SPAN.<br />

15


TPS <strong>7.2.1.3</strong><br />

Measuring instruments<br />

2.2 Equipment descriptions<br />

726 94 Spectrum analyzer<br />

The spectrum analyzer is depicted in Fig. 2.2-1.<br />

A. Setting the signal path<br />

Always set the gain settings V 1 and V 2 as high as<br />

possible to increase the sensitivity of the signal<br />

path. However, overdrive - recognizable by the<br />

lighting up of the OVER-LEDs, must be avoided<br />

(overdrive falsifies the measurement results).<br />

B. Setting the oscillator component<br />

Frequency tuning is performed with the aid of a<br />

sawtooth-controlled VCO. The sawtooth generator<br />

is set with the controllers SCAN TIME and<br />

SCAN MODE. The selection of the SCAN TIME<br />

depends on the time law of electrical telecommunications<br />

engineering (2.1).<br />

1. Setting the upper limit of the frequency: This<br />

is carried out in SCAN MODE f max using the<br />

corresponding controller.<br />

2. Setting the lower frequency limit: This is carried<br />

out in SCAN MODE f min using the corresponding<br />

controller.<br />

The frequencies can be read off directly at the<br />

connected COUNTER (TTL). In SCAN MODE<br />

RUN the VCO runs through the set frequency<br />

range once (important when using the XY recorder).<br />

An LED indicates when the upper frequency<br />

limit is reached.<br />

Only in the SCAN MODE STOP is the locking<br />

mechanism of the RESET function disabled. In<br />

this setting manual operation using a toggle<br />

switch is possible. The setting “UP” of the toggle<br />

switch enables the VCO to run in the f max direction,<br />

while the setting “DOWN” causes a corresponding<br />

reduction in frequency.<br />

Attention:For the run through time T = 1/25 s the<br />

set frequency window is passed through<br />

in RUN auto-repeat mode. This enables<br />

us to also use the spectrum<br />

analyzer as a sweep generator.<br />

C. Connection of the display unit<br />

The following external measuring instruments can<br />

be used as display units:<br />

– Analog voltmeter<br />

– Storage oscilloscope<br />

– XY recorder.<br />

Fig. 2.2-1:The spectrum analyzer<br />

Note:<br />

The analyzer operates in manual mode as<br />

a frequency-selective voltmeter. This operating<br />

mode is particularly suitable for<br />

quantitative evaluations. Due to the beat<br />

effects in the analyzer the output signal<br />

can start oscillating particularly when<br />

working with V 2 = 10. To obtain as accurate<br />

a reading of the output voltage S(n) as<br />

possible, a slight frequency adjustment is<br />

recommended if this should occur.<br />

16


TPS <strong>7.2.1.3</strong><br />

Measuring instruments<br />

726 961 Function generator 200kHz<br />

1. Safety instruction:<br />

Read the instruction sheet provided with the device!<br />

The function generator is illustrated in Fig. 2-1.<br />

Where:<br />

1 Mains switch<br />

2 FUNCTION: selection of the output signal<br />

3 MODE: selection of the signal parameter adjustable<br />

using the control knob<br />

4 Control knob for the selected signal parameters<br />

5 TTL output<br />

6 Output (50 Ω)<br />

7 Toggle switch for output attenuator<br />

8 Multifunction display in LCD technology<br />

8 Power bus lines and ground<br />

Multifunction display in LCD technology with:<br />

- Function symbols and signs<br />

- Numerical display with decimal points<br />

- Signal parameter<br />

Putting the system into operation<br />

Connect the mains plug into the socket. Actuate<br />

mains switch 1. When the device is on the mains<br />

switch lights up. The desired output signal is set<br />

by actuating the FUNCTION button. By<br />

repeatedly pressing the FUNCTION button you<br />

shuttle cyclically through the sequence of output<br />

signals available, sinussoidal, triangular, squarewave,<br />

DC. With the MODE pushbutton the<br />

following signal parameters are selected:<br />

– Frequency<br />

– <strong>Amplitude</strong> (peak-to-peak value)<br />

– DC offset<br />

– Duty cycle (only for square-wave)<br />

You can shuttle cyclically through the program<br />

menus by pressing the MODE pushbutton repeatedly.<br />

After the desired signal parameter has been<br />

set its magnitude can be varied by turning the control<br />

knob. The maximum output voltage of the device<br />

lies at approx. ±12 V.<br />

Fig. 2.2-2:<br />

DC<br />

FUNCTION<br />

MODE<br />

726 961<br />

FUNKTIONSGENERATOR 200 kHz<br />

FUNCTION GENERATOR 200 kHz<br />

The function generator and the multifunction<br />

display<br />

Storing the last setting<br />

After switch off all of the settings are retained.<br />

They are at your disposal unchanged after you<br />

switch the unit back on.<br />

Calling up the base setting<br />

If you simultaneously press either the MODE or<br />

FUNCTION buttons with the device switched on,<br />

the function generator supplies a sinusoidal signal<br />

with 1 kHz and 10 V PP , DC = 0 V. The base setting<br />

for the duty cycle (for square-wave signal) is<br />

50%.<br />

kHz<br />

V<br />

pp<br />

=<br />

%<br />

ATT<br />

dB<br />

0<br />

20<br />

40<br />

OUT<br />

TTL<br />

17


TPS <strong>7.2.1.3</strong><br />

Measuring instruments<br />

726 99 Frequency counter 0..10 MHz<br />

1 8-digit 7-segment display<br />

2 TTL inputs (Channel A), f max = 10 MHz.<br />

3 Analog input (Channel A), f max = 10 MHz.<br />

4 TTL input (Channel B), f max = 2 MHz.<br />

5 Toggle switch for switchover between TTL<br />

and analog input of channel A<br />

6 Function switch<br />

FREQ.A<br />

: Frequency measurement of channel<br />

A, display in kHz.<br />

PERIOD A : Period duration channel A,<br />

display µs. The last respective<br />

measurement value is stored<br />

f max = 2 MHz.<br />

RATIO A/B : Frequency ratio f A /f B . Signal<br />

B with TTL level! f max = 2 MHz.<br />

TIME A-B<br />

: Time interval between a negative<br />

edge of signal A and the<br />

next negative edge of the signal<br />

B, f max = 2 MHz.<br />

COUNT A : Event counting in channel A<br />

from 0 - 10.000.000.<br />

7 Gate : Gate time (meas. duration)<br />

0.01s/0.10s/1.00s/10.0s<br />

Note:<br />

The analog input is coupled with AC power. Due<br />

to an unfavorable set up (long connecting leads)<br />

of the experiment and despite shielding, a display<br />

might appear even without an input signal, if a signal<br />

is applied in TTL channel A. This crosstalk<br />

can be attributed to the high sensitivity of the analog<br />

input and the spatial proximity of the input<br />

sockets. For that reason always connect the analog<br />

input to a signal source using a short connection<br />

cable after switching to ANALOG.<br />

736 201 CF transmitter 20 kHz<br />

The training panel contains the following components:<br />

1. Input filter<br />

The input filter sets the upper critical frequency<br />

limit of the modulating signal to f c = 3.4 kHz. Gain<br />

in the bandpass: +1.<br />

2. Modulator M2<br />

Product modulator with 2 freely accessible inputs:<br />

– Input for the modulating signal (LF-input)<br />

0,1s<br />

0,01s<br />

GATE<br />

1s<br />

10s<br />

RATIO A/B<br />

PERIOD A<br />

FREQ A<br />

FUNCTION<br />

TIME A-B<br />

COUNT A<br />

CHECK<br />

TTL - IN(A)<br />

TTL - IN(A)<br />

TTL - IN(B)<br />

ANALOG (A)<br />

726 99<br />

FREQUENZZAEHLER 0-10MHz<br />

FREQUENCY COUNTER 0-10MHz<br />

Fig. 2.2-3: The frequency counter<br />

Fig. 2.2-4: The CF transmitter 20 kHz<br />

18


TPS <strong>7.2.1.3</strong><br />

Measuring instruments<br />

– Input for the carrier oscillation (RF input)<br />

In addition, the carrier in the output signal of the<br />

modulator can be enabled or disabled using a toggle<br />

switch. (CARRIER, ON-OFF)<br />

3. Channel filter CH2<br />

The channel filter is needed for the generation of<br />

SSB-AM. It suppresses the lower sideband. The<br />

passband range of approx. 20 kHz...30 kHz extends<br />

beyond the upper sideband.<br />

Gain in the passband: +1.<br />

Both filters (1 and 3) are equipped with freely accessible<br />

inputs and outputs, which permits the recording<br />

of amplitude frequency responses.<br />

4. Output summer<br />

The output summer (4) has two inputs with the<br />

gain levels +1. The component is used to linearly<br />

superimpose signal components of the AM signal.<br />

At the output of the summing unit you have at<br />

your disposal the complete AM signal, i.e.<br />

including any existing pilot tone or, in the case of<br />

FMUX operation, the multiplex signal for<br />

transmission via the transmission channel.<br />

736 221 CF receiver 20 kHz<br />

The training panel is used for the demodulation of<br />

amplitude-modulated signals. The auxiliary carrier<br />

required for synchronous demodulation can<br />

be forwarded either directly via an external source<br />

e.g. to the corresponding CF transmitter or<br />

internally from the subassembly “carrier<br />

recovery”.<br />

Design:<br />

The device contains the following components:<br />

1. Channel filter CH2<br />

Bandpass filter for the filtering out of the wanted<br />

SSB signals. The passband from approx.<br />

20...30 kHz extends beyond the upper sideband.<br />

Gain in the passband: +1. For the demodulation of<br />

single sideband-AM (SSB) a bridging plug is<br />

needed between the output of the channel filter<br />

CH2 (1) and the input of the demodulator D2 (2).<br />

Should the CF receiver demodulate the double<br />

sideband-AM (DSB), then the SSB-signal has to<br />

Subassembly for “carrier generation”<br />

(CARRIER)<br />

Frequency division f 0 /8 (5) is used to generate the<br />

carrier frequency of 20 kHz out of the pilot tone.<br />

The unipolar TTL signal is converted into a bipolar<br />

square-wave signal with 4 V PP in the TTL/<br />

square-wave converter (6). Conversion into a bipolar<br />

sine oscillation also with 4 V PP is performed<br />

in the square-wave/sine converter (7). The adjustable<br />

phase-shifter (8) φ = 0 0 ...150 0 introduces a<br />

defined phase-shift between the carrier on the<br />

modulator side (M2) and the auxiliary carrier on<br />

the demodulator side. The phase-shifter permits<br />

the features of coharent demodulation to be examined.<br />

Furthermore, together with the CF transmitter<br />

16 kHz (736 211), it is able to generate<br />

quadrature modulation.<br />

Subassembly “pilot tone generation”<br />

(PILOT TONE)<br />

The quartz oscillator (9) generates the primary<br />

master clock pulse, symmetrical square-wave,<br />

TTL with a frequency of 160 kHz. The converter<br />

(10) and the attenuator (11) connected in series<br />

form an attenuated unipolar square-wave signal<br />

of approx. 200 mV pp out of the TTL signal, which<br />

is transmitted to the CF receiver to recover the<br />

carrier signal.<br />

Fig. 2.2-5: The CF receiver 20 kHz<br />

19


TPS <strong>7.2.1.3</strong><br />

Measuring instruments<br />

+15V<br />

(+5V)<br />

kHz<br />

V<br />

pp<br />

=<br />

DC<br />

%<br />

I ><br />

FUNCTION<br />

MODE<br />

OUT<br />

U<br />

ATT<br />

dB<br />

0<br />

U<br />

20<br />

40<br />

I ><br />

M1<br />

TTL<br />

0V<br />

Fig. 2.3-1: Experiment setup for learning to handle the spectrum analyzer<br />

be fed directly into the input of the demodulator<br />

D2 after the bridging plug has been removed.<br />

2. Synchronous demodulator D2<br />

A multiplier IC takes over the function of the synchronous<br />

demodulator. The AM signal (DSB or<br />

SSB) and an auxiliary carrier are supplied to the<br />

demodulator. In addition to the wanted LF signal,<br />

higher frequency signal components also appear<br />

in its output signal.<br />

3. Lowpass filter<br />

Synchronous demodulation requires a subsequent<br />

filtering for the suppression of the higher frequency<br />

signal components. The filter (3) used<br />

here has an upper critical limit f c = 3.4 kHz and a<br />

gain of +1.<br />

Subassembly "carrier recovery"<br />

Carrier recovery is performed using a PLL circuit<br />

with subsequent frequency division. The synchronization<br />

of the PLL circuit is performed by a pilot<br />

tone of 160 Hz sent by the CF transmitter, which<br />

is processed in the receiver by a bandpass filter (4)<br />

and an amplitude limiter (5). The PLL circuit consists<br />

of the phase comparator (6), the loop filter<br />

(7) and the VCO (8). In standard operation the<br />

output of the loop filter is connected directly to<br />

the input of the VCO using a bridging plug.<br />

However, the VCO can also be tuned using an<br />

external DC voltage 0...+5 V. After locking into<br />

the pilot tone a recovered auxiliary oscillation f 0 =<br />

160 kHz is available at the output of the PLL. This<br />

signal is then divided down to the required carrier<br />

frequency f T = 20 kHz in a frequency divider (9).<br />

2.3 A measurement example<br />

Required equipment and material<br />

1 Spectrum analyzer 726 94<br />

1 Frequency counter 0...10 MHz 726 99<br />

1 Analog multimeter C. A 406 531 16<br />

Additionally required:<br />

1 Function generator 0...200 kHz 726 961<br />

1 DC power supply ±15 V, 3 A 726 86<br />

1 Digital storage oscilloscope 305 575 292<br />

2 Probes 100 MHz, 1:1/10:1 575 231<br />

1 Set of 10 bridging plugs, black 501 511<br />

2 Cable pairs, black 100 cm 501 461<br />

Additionally recommended:<br />

1 XY recorder e.g. 575 663<br />

Preliminary remark<br />

The measurement station described here consists<br />

of a spectrum analyzer, oscilloscope and frequency<br />

counter. Using this measurement station<br />

signals can be measured in the time and spectral<br />

20


TPS <strong>7.2.1.3</strong><br />

Measuring instruments<br />

domain. This will be used a lot in the following<br />

experiments.<br />

Experiment procedure<br />

Set up the experiment as specified in Fig. 2.3-1.<br />

Set a square-wave signal with A R = 5 V and<br />

f R = 2 kHz on the function generator. The TTL input<br />

A of the frequency counter remains permanently<br />

connected to the analyzer via bridging<br />

plugs. In order to test the signal frequency f R plug<br />

a connecting lead into the analog input and actuate<br />

the toggle switch.<br />

Record the spectrum of the square-wave signal in<br />

the frequency range of approx. 1.5 kHz....20 kHz.<br />

1. Manual operation with the analog voltmeter.<br />

Connect an analog voltmeter 10 V DC to the<br />

analyzer output.<br />

V 1 : 1<br />

V 2 : 5, 10<br />

Analyzer settings<br />

f r / kHz: 20 b/Hz: 500<br />

Tabelle 2.3-1: Spectrum square wave signal<br />

Signal parameter<br />

A R : V<br />

τ/T P :<br />

f R : kHz<br />

n<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

f<br />

kHz<br />

Measurements<br />

S(n)<br />

V<br />

Analyzer settings<br />

V 1 :<br />

b : Hz<br />

f r : kHz<br />

T : s<br />

S R (n)<br />

V 2<br />

V<br />

Theory<br />

S<br />

R<br />

V<br />

(n)<br />

SPAN/kHz: 0.5...20<br />

T/s: 20<br />

9<br />

10<br />

When V 1 = 2, 5, 10 the input stage is overdriven,<br />

the OVER LED lights up and the<br />

measurement results are falsified.<br />

Now record the spectrum of the square-wave<br />

signal by starting the VCO in SCAN MODE<br />

RUN. In the spectral energy range the output<br />

signal demonstrates a brief increase. Then<br />

stop the VCO and manually adjust it around<br />

the frequency of the spectral line using the<br />

pushbutton up/down. Read off the spectral<br />

amplitude S(n) on the voltmeter. In this manner<br />

enter all the amplitudes S(n), the index n<br />

and the corresponding frequencies f into the<br />

Table 2.3-1. Also the analyzer settings are to<br />

be noted down there. Plot the spectrum in a<br />

graph in Diagram 2.3-1.<br />

Discuss your results.<br />

2. Automatic operation with the XY recorder<br />

or the storage oscilloscope.<br />

In automatic operation the scanning process<br />

is performed without interruption. Also the<br />

gain settings V 1 , V 2 remain unchanged.<br />

Diagram 2.3-1:<br />

Spectrum of the square-wave signal<br />

τ<br />

A R<br />

= 5 V, = 0.5<br />

T P<br />

2.1 Using an XY recorder<br />

Connect the X+ input of the recorder to the X<br />

socket of the analyzer. Connect the Y+ input<br />

of the recorder to the analyzer output; X–,<br />

Y– to earth. Both recorder axes have to be<br />

calibrated. The X-axis is set to f max . The Y-<br />

axis is aligned to the highest spectral amplitude<br />

(test it out!). The analyzer cycle is<br />

21


TPS <strong>7.2.1.3</strong><br />

Measuring instruments<br />

triggered by switching to SCAN MODE<br />

RUN.<br />

2.2 Using the storage oscilloscope<br />

The simplest operation is the recording of<br />

spectra with the storage oscilloscope in the<br />

ROLL mode. Then all of the problems involving<br />

triggering are avoided. The holding<br />

time base is set so that its period is greater<br />

than the SCAN TIME set on the analyzer.<br />

The analyzer output is connected to a Y-input<br />

of the oscilloscope. By selecting a suitable Y-<br />

gain setting the screen surface is optimally<br />

exploited for the spectral display. Once the<br />

spectrum is completely reproduced on the<br />

screen, the ROLL modus can be disabled by<br />

pressing the SINGLE pushbutton. The screen<br />

contents are then “frozen”. When in SINGLE<br />

storage mode you have to trigger externally<br />

on the falling edge of the sawtooth signal<br />

(socket X). Try out the most effective trigger<br />

filter.<br />

Repeat the recording of the spectra one after<br />

the other for the bandwidths b = 100 Hz,<br />

b = 50 Hz, b = 10 Hz, b = 5 Hz. What do you<br />

observe?<br />

22


TPS <strong>7.2.1.3</strong><br />

Review<br />

3 Review of amplitude modulation<br />

In amplitude modulation (AM) the momentary<br />

value of the message signal s M (t) has an<br />

immediate effect on the amplitude of the carrier<br />

oscillation s C (t). This takes place in a modulator,<br />

see Fig.3-1.<br />

Here it would be:<br />

s C<br />

(t) = A C<br />

cos (2 π f C<br />

t) (3-1)<br />

for the high-frequency carrier and:<br />

1. s M<br />

(t) = A M<br />

cos (2 π f M<br />

t) (3-2)<br />

for the low frequency message signal. The combining<br />

of the carrier and message signal in the<br />

modulator then provides the following modulation<br />

product:<br />

s AM<br />

(t) = [A C<br />

+ α s M<br />

(t)] cos (2 π f C<br />

t) (3-3)<br />

= [A C<br />

+ α A M<br />

cos (2 π f M<br />

t)]<br />

cos (2 π f C<br />

t).<br />

Where α stands for the modulator constant, which<br />

expresses the affect of the message signal s M (t)<br />

on the amplitude A C of the carrier. Normally (3-3)<br />

is described in more general terms. For this you<br />

need the following definitions:<br />

∆A C<br />

= α A M<br />

<strong>Amplitude</strong> deviation (3-4)<br />

A<br />

m = ∆ C<br />

A<br />

C<br />

<strong>Modulation</strong> index (3-5)<br />

<strong>Amplitude</strong> deviation ∆A C describes the maximum<br />

change away from the original value A C in the carrier<br />

amplitude. The modulation index m reproduces<br />

the ratio of the amplitude deviation to the carrier<br />

Fig. 3-1: Generation of amplitude modulation<br />

amplitude. Thus it is possible to convert (3-3) as<br />

follows:<br />

⎡ ∆A<br />

⎤<br />

C<br />

sAM<br />

( t) = A ⎢<br />

C 1+ cos( 2π<br />

fMt)<br />

⎥cos<br />

2π<br />

fCt<br />

⎢<br />

⎣<br />

A<br />

⎥<br />

C<br />

⎦<br />

A 1 mcos<br />

2π<br />

f t cos 2π<br />

f t<br />

C M C<br />

( )<br />

[ ] ( )<br />

= + ( )<br />

(3-6)<br />

Fig. 3-2 shows the amplitude modulated signal according<br />

to (3-6). The modulating signal s M (t) can<br />

be recognized in the envelope curve.<br />

Normally the following holds true: 0 < m < 1.<br />

The following limiting cases for m are interesting:<br />

m = 0 : no modulation effect<br />

m = 1 : full modulation, the envelopes bordering<br />

the modulating signal just touch at their<br />

minimum values<br />

m > 1 : overmodulation, the envelopes permeate<br />

each other, modulation distortion arises.<br />

m = 0%<br />

A C<br />

s AM<br />

T C<br />

Envelope<br />

∆A C<br />

∆A C<br />

m = 100%<br />

T M<br />

Envelope<br />

m > 100%<br />

Fig. 3-2: The amplitude modulated signal<br />

Fig. 3-3: Limiting cases for the modulation factor<br />

23


TPS <strong>7.2.1.3</strong><br />

Review<br />

Special cases are depicted in Fig. 3-3.<br />

The spectrum of amplitude modulation<br />

The expression in the brackets of (3-6) describes<br />

the envelope of amplitude modulation. If you<br />

multiply the dynamic (time) characteristic of the<br />

carrier oscillation in this expression, you obtain:<br />

s AM<br />

(t) = A C<br />

[cos (2 π f C<br />

t)<br />

+ m cos (2 π f T<br />

t) cos (2 π f M<br />

t)] (3-7)<br />

The application of the addition theorem:<br />

1<br />

cos x⋅ cos y= cos( x−y)+ cos x+<br />

y<br />

2<br />

provides:<br />

s ( t) A cos 2π<br />

f t<br />

AM C C<br />

[ ( )]<br />

= ( )<br />

m<br />

+ cos 2π<br />

( fC<br />

− fM<br />

) t<br />

2<br />

[ ]<br />

m<br />

+ cos 2π<br />

( fC<br />

+ fM<br />

) t<br />

2<br />

[ ]<br />

(3-8)<br />

From (3-8) you can see the spectral composition of<br />

amplitude modulation, see Fig. 3-4.<br />

From the spectrum we can see that besides the<br />

carrier oscillation with the frequency f C , there are<br />

also 2 side oscillations with the frequencies f C + f M<br />

and f C – f M contained in s AM (t). According to (3-8)<br />

the amplitudes of the equal side oscillations depend<br />

on the modulation index. The oscillation with the<br />

lower frequency f C – f M is called the lower sideline,<br />

the one with the higher frequency is the upper<br />

sideline f C + f M . The lower sideline (LSL) slips further<br />

into the range of lower frequencies as the<br />

signal frequency f M increases. This frequency response<br />

of the LSL is referred to as inverted position.<br />

The upper sideline (USL) shifts into the<br />

higher range of frequencies with increasing signal<br />

frequency. It lies in the normal position. In Fig. 3-<br />

5 the terms are in standard representation for the<br />

transmission of an information band, which extends<br />

from a lower frequency limit f u up to the<br />

upper frequency limit f o .<br />

The representation according to Fig. 3-5 is standard<br />

particularly in carrier frequency technology.<br />

The bandwidth requirement of AM equals twice<br />

the maximum message frequency f Mmax :<br />

b = 2 f Mmax<br />

(3-9)<br />

Representing amplitude modulation with a<br />

vector diagram<br />

The vector diagram constitutes an important tool in<br />

the representation of modulation methods. It frequently<br />

permits the immediate assessment of interference<br />

effects or manipulations during modulation.<br />

For example, asymmetrical attenuation of the<br />

sideband oscillations in AM can lead to the<br />

formation of parasitic angular modulation.<br />

From Fig. 3-6 the following features of amplitude<br />

modulation can be read off directly:<br />

An AM signal can be represented by 3 complex<br />

vectors ( 2 sideband vectors and a vector for the<br />

carrier). The 3 vectors are displayed in a joint diagram<br />

for any given point in time, see Fig. 3-6.<br />

S AM<br />

S AM<br />

A C<br />

m/2<br />

A C<br />

m/2<br />

f M f C<br />

(f)<br />

f C – f M<br />

Fig. 3-4: The spectrum of amplitude modulation<br />

s M<br />

f u f o<br />

s AM<br />

f C – f o f C f C + f o<br />

1<br />

1<br />

f C<br />

f C + f M<br />

(f)<br />

f<br />

Fig. 3-5: Normal and inverted position<br />

f<br />

24


TPS <strong>7.2.1.3</strong><br />

Review<br />

t = t 1<br />

s AM<br />

USL<br />

USL<br />

t = t 2<br />

LSL<br />

LSL<br />

s C<br />

s C<br />

s AM<br />

Fig. 3-6: <strong>Amplitude</strong> modulation in a vector diagram Fig. 3-7: Relationship between envelope and vector<br />

representation<br />

1. The carrier oscillation is depicted with a constant<br />

direction (normally perpendicular upwards),<br />

although in absolute terms it rotates in<br />

counterclockwise rotation with 2 π f C .<br />

2. The length of the carrier vector remains constant.<br />

3. The sideband vectors are symmetrical with<br />

respect to the carrier. The vector of the USL<br />

rotates counterclockwise around the tip of the<br />

carrier vector. The vector of the LSL rotates<br />

in clockwise rotation.<br />

4. The vector for the amplitude modulated oscillation<br />

is obtained through vector addition, i.e.<br />

construction of the vector parallelogram,<br />

made up of the vector of the carrier and the<br />

side oscillations. The resulting vector always<br />

has the direction of the carrier vector.<br />

As you can see from Fig. 3-7, the tips of the resulting<br />

vectors, if you draw them as a function of time,<br />

again produce the envelope of the amplitude<br />

modulated oscillation.<br />

1. A DC voltage component<br />

2. The original signal with the frequency f M .<br />

3. Components with higher frequencies f C ,<br />

f C + f M , 2 f C + f M , etc.<br />

Fourier expansion shows that rectification of the<br />

AM signal produces many new spectral components<br />

which are not present at the input of the rectifier.<br />

A suitable filter is used to suppress these<br />

unwanted spectral components. Envelope demodulation<br />

belongs to the so-called incoherent<br />

demodulation methods, as neither the carrier phase<br />

nor the carrier frequency are of any importance.<br />

Fig. 3-9 reproduces the possible circuit configuration<br />

of an envelope demodulator.<br />

AM demodulation<br />

Envelopes and synchronous demodulation<br />

1st envelope demodulation<br />

First the AM signal is rectified, see Fig. 3-8.<br />

The dynamic characteristic of the current passing<br />

through the recifier can be subjected to Fourier<br />

series expansion. It can be shown that a rectified<br />

AM signal contains the following signal components:<br />

Fig. 3-8: Envelope curve demodulation<br />

25


TPS <strong>7.2.1.3</strong><br />

Review<br />

s AM (t) C 1 R 1 s D (t)<br />

S AM (t)<br />

S D (t)<br />

S H (t)<br />

Fig. 3-9: The envelope demodulator<br />

Fig. 3-10: Synchronous demodulation<br />

Envelope demodulation always requires the carrier.<br />

After rectification this produces a DC voltage,<br />

which establishes the working point of the diode. In<br />

practice envelope demodulation is frequently used<br />

in AM radio communications due to its simple<br />

circuitry.<br />

2. Synchronous demodulation<br />

In principle synchronous demodulation is simply<br />

another modulation process. To carry it out, you<br />

need an auxiliary oscillation in the receiver, which<br />

in terms of frequency and phase corresponds exactly<br />

to the carrier oscillation in the modulator. The<br />

auxiliary carrier s Aux (t) and the modulated signal<br />

s AM (t) are supplied to a circuit with multiplying capabilities,<br />

see. Fig. 3-10:<br />

Three cases can be distinguished DSB, DSB sc and<br />

SSB:<br />

1. Demodulation of DSB<br />

⎧⎪<br />

m<br />

sAM ( t) = AC⎨cos( 2π<br />

fC t)+ cos 2π( fC − fM<br />

) t<br />

⎩⎪<br />

2<br />

m<br />

+ cos 2π<br />

( fC<br />

+ fM<br />

) t<br />

2<br />

s t cos 2π<br />

f t φ<br />

( 3 10)<br />

Aux<br />

( ) = +<br />

[ ] ⎫ ⎬ ⎪ ⎭ ⎪<br />

Aux<br />

[ ]<br />

( ) −<br />

The amplitude of the auxiliary oscillation is negligible,<br />

furthermore it is true that f C = f Aux (i.e. frequency<br />

equality prevails between carrier and<br />

auxiliary carrier). After lowpass filtering we obtain<br />

the demodulated signal:<br />

AC<br />

m<br />

sD( t) = ACcosφ+ cos( 2 π fMt)<br />

cosφ<br />

(3-11)<br />

2<br />

2. Demodulation of DSB sc .<br />

The constant DC voltage component A C cos φ is<br />

omitted:<br />

A m<br />

s D ( t ) = C<br />

cos ( 2π f t ) M cosφ (3-12)<br />

2<br />

3. Demodulation of SSB SC .<br />

s D ( t )<br />

= AC<br />

m<br />

cos(<br />

2π f ± ) M φ (3-13)<br />

4<br />

In the synchronous demodulation of DSB a phase<br />

error φ reduces the amplitude of the demodulated<br />

signal by the factor cos φ. In the case of SSB, the<br />

phase error leads to a shift in the demodulated signal.<br />

In both cases the phase between the carrier<br />

and the auxiliary carrier has a noticeable effect on<br />

the demodulation process. Due to this phase sensitivity<br />

synchronous demodulation is also called coherent<br />

demodulation.<br />

Questions<br />

3.1 What is meant by modulation? Mixing?<br />

3.2 Name the reasons for performing modulation!<br />

3.3 In DSB the carrier's peak values are affected<br />

by the instantaneous value of the message<br />

signal, but the spectrum shows that the<br />

carrier amplitude remains constant! How do<br />

you explain the apparent contradiction?<br />

3.4 Which are the characteristic features of a<br />

beat?<br />

3.5 Define amplitude deviation and the modulation<br />

index.<br />

3.6 Which methods of AM demodulation are<br />

you familiar with and how do they differ?<br />

26


TPS <strong>7.2.1.3</strong><br />

Review<br />

3.7 In radio links the carrier is normally attenuated<br />

to 5%...10%. What advantages does this<br />

have compared to transmission with 100%<br />

carrier amplitude? Why isn't the carrier<br />

completely suppressed?<br />

3.8 How high is the maximum efficiency in<br />

DSB? How can the efficiency be increased?<br />

3.9 Which methods of carrier suppression are<br />

there?<br />

3.10 Which demodulation method is used for AM<br />

with supressed carrier?<br />

27


TPS <strong>7.2.1.3</strong><br />

Review<br />

4 Required equipment and accessories<br />

1 CF transmitter 20 kHz 736 201<br />

1 CF receiver 20 kHz 736 211<br />

Additionally required<br />

1 Spectrum analyzer 726 94<br />

1 Function generator 0...200 kHz 726 961<br />

1 Frequency counter 0-10 MHz 726 99<br />

1 DC power supply ±15 V, 3 A 726 86<br />

1 Digital storage oscilloscope 305 575 292<br />

2 Probes 100 MHz, 1:1/10:1 575 231<br />

1 Analog multimeter C.A. 406 531 16<br />

2 Sets of 10 bridging plugs, black 501 511<br />

1 Cable pair, black, 100 cm 501 461<br />

Additionally recommended<br />

1 XY-Yt recorder e.g. 575 663<br />

Training objectives:<br />

Distinguish between modulation and linear<br />

superpositioning.<br />

The investigation of line spectra in AM.<br />

The AM as linear modulation (normal position and<br />

inverted position of sidebands)<br />

The bandwidth requirement for AM<br />

<strong>Amplitude</strong> deviation and modulation index are determined.<br />

The residual carrier can be measured out.<br />

Synchronous demodulation is investigated.<br />

Problems regarding carrier recovery in synchronous<br />

demodulation are looked at in detail.<br />

The dynamic characteristic of the output signal at<br />

the ring modulator is investigated.<br />

The frequency-periodic structure of the output<br />

spectra at a ring modulator can be recognized.<br />

28


TPS <strong>7.2.1.3</strong><br />

Double Sideband AM<br />

5 Double Sideband AM<br />

OSL<br />

s AM<br />

1<br />

USL<br />

m/2<br />

s C<br />

f C<br />

(f)<br />

Fig. 5-1: Representation of DSB<br />

f C – f M<br />

f C + f M<br />

The features of the DSB are summarized in Fig. 5-<br />

1.<br />

s DSB<br />

(t) = [A C<br />

+ αs M<br />

(t)] cos (2π f C<br />

t) (5-1)<br />

Demodulation methods : Envelope<br />

demodulation<br />

: Synchronous<br />

demodulation<br />

Bandwidth : b = 2 · f Mmax (5-2)<br />

Application<br />

: Radio technology<br />

The DSB SC<br />

.<br />

If in (5-1) the constant component A C inside the<br />

brackets is suppressed, then we obtain:<br />

s αs t cos 2π<br />

f t<br />

= ( ) ( )<br />

DSBSC M C<br />

= α AM cos( 2π fM t) cos( 2π<br />

fC<br />

t )<br />

α AM<br />

= cos[ 2π<br />

( fC<br />

− fM<br />

) t]<br />

(5-3)<br />

2<br />

α AM<br />

+ cos[ 2π<br />

( fC<br />

+ fM<br />

) t]<br />

2<br />

The DSB SC consists of the superimposition of 2<br />

harmonic oscillations, whose frequencies f C + f M ,<br />

resp. f C – f M are in direct proximity due to the fact<br />

that f C >> f M . Therefore, the dynamic characteristic<br />

of the DSB sc is a beat. Here the side oscillations<br />

arise on account of the frequency conversion<br />

from f M to f C – f M resp. f C + f M . Since there is no<br />

carrier, the modulation depth m cannot be defined.<br />

Overmodulation is not possible. The amplitude of<br />

the modulation product s DSBSC (t) is directly proportional<br />

to the instantaneous value of the modulating<br />

signal s M (t). The upper and lower envelope curves<br />

have the abcissa as a joint reference line, instead<br />

of the positive or negative carrier amplitude. The<br />

features of the DSB SC are summarized in Fig. 5-2.<br />

Clear to be seen in the dynamic characteristic is<br />

the abrupt phase change of 180° at the zero<br />

crossover of the envelope curve.<br />

The envelope curve contains sinusoidal halfwaves<br />

of double the signal frequency.<br />

Demodulation methods<br />

: Synchronous<br />

demodulation<br />

Bandwidth : b = 2 · f Mmax (5-4)<br />

Application<br />

: Radio transmission<br />

USL<br />

s AM<br />

1<br />

LSL<br />

m/2<br />

s C<br />

f C<br />

(f)<br />

Fig. 5-2: Representation of the DSB SC<br />

.<br />

f C – f M<br />

f C + f M<br />

29


%<br />

0<br />

TPS <strong>7.2.1.3</strong><br />

Double Sideband AM<br />

Experiment procedure<br />

Assemble the experiment as specified in Fig. 5-3.<br />

Switch on the carrier. Connect the output of the<br />

function generator directly to the modulator input.<br />

Set the function generator to: sine, A M = 2 V and<br />

f M = 2 kHz.<br />

5.1 Investigations on the dynamic<br />

characteristic of the DSB<br />

5.1.1 DSB<br />

Set toggle switch to CARRIER ON setting. Display<br />

the output signal of the modulator M2 on the<br />

oscilloscope (this signal is called the modulation<br />

product) and the modulating signal s M (t) of the<br />

function generator and sketch them. (<strong>Modulation</strong><br />

product on channel 2, modulating signal on channel<br />

1 of the oscilloscope). Use Diagram 5.1.1-1.<br />

GATE<br />

1s<br />

10s<br />

0,1s<br />

0,01s<br />

TIME A-B<br />

COUNT A<br />

CHECK<br />

FUNCTION<br />

RATIO A/B<br />

PERIOD A<br />

FREQ A<br />

TTL - IN(A) TTL - IN(A)<br />

ANALOG (A)<br />

TTL - IN(B)<br />

Diagram 5.1.1-1: Dynamic (time) characteristic of the DSB<br />

signal<br />

(1): Modulating signal s M<br />

(t)<br />

(2): <strong>Modulation</strong> product at the output M2<br />

Shift the AF signal to the upper or lower envelope<br />

curve of the AM signal. Vary the frequency f M<br />

and the amplitude A M of the modulating signal.<br />

What do you observe?<br />

Settings on the Oscilloscope<br />

Input attenuator channel 1<br />

Input attenuator channel 2<br />

2V/DIV<br />

2V/DIV<br />

kHz<br />

V pp<br />

=<br />

MODE<br />

OUT<br />

ATT<br />

dB<br />

20<br />

40<br />

TTL<br />

Time base<br />

Trigger<br />

200 µs/DIV<br />

s M (t)<br />

DC<br />

FUNCTION<br />

Trigger to the modulating signal s M (t). Reduce the<br />

A M signal to approx. 1 V. Determine the modulation<br />

depth m. The following applies for the modulation<br />

depth m:<br />

∆ A D d<br />

m = C −<br />

=<br />

(5.1.1-1)<br />

A D + d<br />

C<br />

+15V<br />

(+5V)<br />

I ><br />

U<br />

U<br />

Fig. 5-3: Experiment set-up for DSB<br />

I ><br />

M1<br />

0V<br />

30


TPS <strong>7.2.1.3</strong><br />

Double Sideband AM<br />

Diagram 5.1.1-2: The modulation trapezoid<br />

Where:<br />

D: Peak-to-peak value of the maximum of the<br />

AM signal<br />

d: Peak-to-peak value of the minimum of the<br />

AM signal.<br />

Use Diagram 5.1.1-1 to determine m. Distortion<br />

can only be detected with difficulty when determining<br />

the modulation depth directly from the modulated<br />

signal. A better approach is to determine m<br />

from the modulation trapezoid. For this the oscilloscope<br />

is operated in XY modus and the message<br />

signal s M (t) is used for horizontal deflection. The<br />

result obtained on the screen is a trapezoid which<br />

opens to the left. Sketch the modulation trapezoid<br />

in Diagram 5.1.1-2.<br />

Explain how the modulation trapezoid is generated.<br />

5.1.2 DSB SC<br />

Set the toggle switch to CARRIER OFF. Set the<br />

oscilloscope as specified in the Table.<br />

Settings on the oscilloscope<br />

Input attenuator channel 1<br />

Input attenuator channel 2<br />

Time base<br />

Trigger / external<br />

2V/DIV<br />

2V/DIV<br />

200 µs/DIV<br />

mod. signal<br />

Proceed as described under point 5.1.1. Use Diagram<br />

5.1.2-1. What is this kind of signal called?<br />

What characteristics does it have? Display the<br />

modulation trapezoid im Diagram 5.1.2-2, assess<br />

the modulation distortion. Repeat the experiment.<br />

This time feed the modulating signal s M (t) via the<br />

LP filter in modulator M2. Vary f M . What do you<br />

observe?<br />

Diagram 5.1.2-1: Dynamic characteristic of the DSB SC<br />

signal<br />

Diagram 5.1.2-2: The modulation trapezoid<br />

(1): Modulating signal s M<br />

(t)<br />

(2): <strong>Modulation</strong> product at the output M2<br />

5.2 Spectrum of the DSB<br />

5.2.1 DSB<br />

Set the toggle switch to the CARRIER ON position.<br />

Set the spectrum analyzer as shown in the<br />

Table.<br />

V 1 :1<br />

V 2 :10<br />

SPAN/kHz:1.5 ... 20<br />

Analyzer settings<br />

f r /kHz: 50 b/Hz: 100<br />

T/s:40<br />

Connect its input to the output of the modulator<br />

M2. Use a sinusoidal signal with A M = 2 V and<br />

f M = 2 kHz as the modulating signal s M (t). Feed<br />

the modulating signal into the input filter of the CF<br />

transmitter. Measure the AM spectrum in the<br />

range from approx. 15 kHz up to 25 kHz. Enter the<br />

measurement values S(n) from the output of the<br />

analyzer with the corresponding frequencies in<br />

31


TPS <strong>7.2.1.3</strong><br />

Double Sideband AM<br />

Table 5.2.1-1. The amplitude values of the desired<br />

spectral components are obtained from:<br />

S<br />

AM<br />

S(n)<br />

(n) =<br />

V ⋅ V<br />

1 2<br />

Calculate the spectral components S AM (n) with the<br />

aid of (3-8). Also enter the calculated values for<br />

S AM (n) into Table 5.2.1-1. Plot the curve of the<br />

AM spectrum in a graph. Mark the lower and upper<br />

sidelines appropriately with LSL and USL.<br />

Repeat the experiment for s M (t): Sinusoidal, A M =<br />

1 V and f M = 3 kHz. Feed the modulating signal<br />

s M (t) directly into the modulator M2 (why?). Keep<br />

the analyzer settings unchanged. Use Table 5.2.1-<br />

2 and Diagram 5.2.1-2.<br />

Table 5.2.1-1: DSB spectrum<br />

Signal parameter Analyzer settings<br />

A C : V V 1 :<br />

f C : kHz b : Hz<br />

f r : kHz<br />

A M : V T : s<br />

f M : kHz<br />

Table 5.2.1-2: DSB spectrum<br />

Signal parameter Analyzer settings<br />

A C : V V 1 :<br />

f C : kHz b : Hz<br />

f r : kHz<br />

A M : V T : s<br />

f M : kHz<br />

Measurements<br />

Theory<br />

Measurements<br />

Theory<br />

V 2<br />

f<br />

KHz<br />

Name<br />

S( n)<br />

V<br />

S AM (n)<br />

V<br />

S AM (n)<br />

V<br />

V 2<br />

f<br />

KHz<br />

Name<br />

S( n)<br />

V<br />

S AM (n)<br />

V<br />

S AM (n)<br />

V<br />

Diagram 5.2.1-1: DSB spectrum<br />

Diagram 5.2.1-2: DSB spectrum<br />

32


TPS <strong>7.2.1.3</strong><br />

Double Sideband AM<br />

Compare the results. How does the USL respond<br />

as a function of the signal frequency f M ? What<br />

about the LSL? What is the frequency response of<br />

the LSL and USL? Determine the transmission<br />

bandwidth of the AM signal based on the measurements.<br />

Generalize your results for a randomly taken<br />

modulating signal. Determine the modulation<br />

depth m from the various spectra.<br />

5.2.2 DSB SC<br />

Set the toggle switch to CARRIER OFF. Use a<br />

sinusoidal signal with A M = 2 V and f M = 2 kHz as<br />

a modulating signal. Measure the spectrum as in<br />

point 5.2.1. Enter all your results in Table 5.2.2-1<br />

and Diagram 5.2.2-1.<br />

Table 5.2.2-1: DSB SC Spectrum<br />

Signal parameter<br />

Analyzer settings<br />

A C : V V 1 :<br />

f C : kHz b : Hz<br />

f r : kHz<br />

A M : V T : s<br />

f M : kHz<br />

s AM<br />

f g f C – f g f C f C + f g<br />

Fig. 5.2-1:<br />

AM for randomly taken spectrum of the<br />

modulating signal.<br />

5.2.3 The AM spectrum for modulation with<br />

a square-wave signal<br />

The AM spectrum is linear. For that reason we<br />

can draw direct conclusions as to the AM spectrum<br />

based on our knowledge of the spectrum of<br />

the input signal. Now let us assume that the input<br />

signal s(t) consists of a frequency mix, whose<br />

spectrum S(f) is shown in Fig. 5.2-1. What should<br />

the corresponding AM spectrum look like?<br />

Repeat the recording of the spectrum for a modulating<br />

square-wave signal with A M = 2 V and<br />

f M = 2.0 kHz. Feed the square-wave signal directly<br />

into the modulator M2. Use Table 5.2.3-1.<br />

Display the spectrum in Diagram 5.2.3-1. Elucidate<br />

your findings.<br />

f<br />

V 2<br />

f<br />

KHz<br />

Measurements<br />

S( n)<br />

Name<br />

V<br />

S AM (n)<br />

V<br />

Theory<br />

S AM (n)<br />

V<br />

V 1 :2<br />

V 2 :1<br />

Analyzer settings<br />

f r /kHz: 50 b/Hz: 100<br />

SPAN/kHz: 1 ... 25<br />

T/s:40<br />

Diagram 5.2.2-1: DSB SC<br />

spectrum<br />

33


TPS <strong>7.2.1.3</strong><br />

Double Sideband AM<br />

A C : V V 1 :<br />

f C : kHz b : Hz<br />

f r : kHz<br />

A M : V T : s<br />

f M : kHz<br />

V 2<br />

Table 5.2.3-1: AM spectrum for<br />

square-wave modulation<br />

Signal parameter<br />

f<br />

KHz<br />

Measuerements<br />

Name<br />

S( n)<br />

V<br />

Analyzer settings<br />

S AM (n)<br />

V<br />

Theory<br />

S AM (n)<br />

V<br />

5.3 AM demodulation (synchronous<br />

demodulation)<br />

5.3.1 DSB<br />

Settings on the oscilloscope<br />

Input attenuator channel 1<br />

Input attenuator channel 2<br />

Time base<br />

Trigger / external<br />

1 V/DIV<br />

1 V/DIV<br />

200 µs/DIV<br />

s M (t)<br />

Start with the settings from point 5.1. Set the phase<br />

controller on the CF transmitter to far left limit.<br />

Feed the DSB signal from the output of the<br />

modulator M2 directly into the demodulator D2<br />

(do not use channel filter CH2!) Using a connecting<br />

lead feed the carrier signal (f C = 20 kHz) of the<br />

CF transmitter into the auxiliary carrier input of the<br />

demodulator D2. What have you achieved by this?<br />

Display the modulating signal s M (t) on the oscilloscope<br />

as well as the demodulated signal s D (t) at the<br />

output of the LP filter of the CF receiver. Sketch<br />

the curve of the modulating signal and the demodulated<br />

signal in Diagram 5.3.1-1.<br />

Tap the auxiliary carrier for the demodulator D2 in<br />

front of the phase shifter of the CF transmitter.<br />

Diagram 5.2.3-1: AM spectrum for square-wave modulation<br />

Diagram 5.3.1-1: Modulating and demodulated signal for<br />

the DSB, fixed phase relation<br />

(1): Modulating signal s M (t)<br />

(2): Demodulated signal s D<br />

(t)<br />

34


TPS <strong>7.2.1.3</strong><br />

Double Sideband AM<br />

Using the oscilloscope set the phase-shifts between<br />

the carrier of the transmitter and the carrier<br />

of the receiver as entered in Table 5.3.1-1. Measure<br />

the amplitude A D of the demodulated signal as<br />

a function of the phase φ. Complete Table 5.3.1-1.<br />

Plot the curve of A D /A Dmax in Diagram 5.3.1-1.<br />

Table 5.3.1-1: Phase response of the DSB<br />

φ<br />

degrees<br />

0<br />

18<br />

36<br />

54<br />

72<br />

90<br />

108<br />

s M (t): Sine A M = 2 V, f M = 2 kHz<br />

A D<br />

V<br />

A<br />

A<br />

D<br />

Dmax<br />

cos φ<br />

5.3.2 Carrier recovery<br />

Carrier recovery is performed in the CF receiver<br />

using a PLL circuit. The PLL circuit is a control<br />

loop whose function is to match the frequency and<br />

phase of an oscillator to the reference oscillation.<br />

Fig. 5.3.2-1 illustrates the structure of a PLL circuit.<br />

Let's assume that the input signal s 1 (t) is supplied<br />

with the frequency f 1 to the phase detector. You<br />

can be fairly certain that the VCO is not going to<br />

be so friendly as to oscillate precisely at the same<br />

frequency. So its frequency f 2 will initially differ<br />

from f 1 . At the output of the phase detector an AC<br />

voltage is generated whose frequency is equal to<br />

the difference f 2 – f 1 . This AC voltage is now supplied<br />

to the input of the VCO via the loop filter.<br />

The VCO will respond to an AC voltage at its input<br />

with a corresponding change in frequency. In<br />

turn the VCO's changing frequency is detected by<br />

the phase detector. With a little luck the PLL locks<br />

into the frequency of the input signal. The PLL<br />

corrects the VCO until the input frequency and the<br />

VCO frequency coincide. A voltage U Φ arises<br />

behind the PD based on the phase shift. This is<br />

supplied to the VCO free of interfering AC components<br />

(U F ) through the loop filter. The following<br />

relationship prevails between the control voltage<br />

U F and the frequency f VCO of the VCO:<br />

f VCO<br />

= k F<br />

· U F<br />

(5.3.2-1)<br />

Diagram 5.3.1-1:<br />

Demodulated signal A D<br />

/A Dmax<br />

as a function of the phase φ<br />

Note:<br />

The synchronous demodulation is performed<br />

according to Equation (3-11),<br />

or (3-12)<br />

The control characteristic of the VCO (CF<br />

receiver)<br />

Remove the bridging plug between the loop filter<br />

and VCO input at the PLL. Feed a variable DC<br />

voltage U 1 from the function generator into the<br />

VCO input. Use this variable DC voltage to control<br />

the frequency of the VCO. Note down your measurement<br />

results in Table 5.3.2-1. Sketch the results<br />

in Diagram 5.3.2-1.<br />

Attention: 0 V< U F<br />

< 5 V<br />

W<br />

S 1 (t)<br />

X<br />

U Φ<br />

U F<br />

Fig. 5.3.2-1:<br />

Design of a PLL<br />

1 Phase detector PD<br />

2 Loop filter LF<br />

3 VCO<br />

35


TPS <strong>7.2.1.3</strong><br />

Double Sideband AM<br />

Synchronous demodulation with the aid of a<br />

free-wheeling VCO.<br />

Table 5.3.2-1:<br />

Control characteristic of the VCO<br />

U F<br />

V<br />

0.5<br />

1.0<br />

1.5<br />

2.0<br />

2.5<br />

3.0<br />

3.5<br />

4.0<br />

f VCO<br />

kHz<br />

Option: This experiment requires a second<br />

function generator 726 961.<br />

Feed an AM signal into the input of the CF receiver.<br />

The modulating signal is harmonic and has<br />

approximately a frequency of f M = 1000 Hz. Display<br />

the signal present at the output of the receiver<br />

on the oscilloscope. Connect the counter in parallel<br />

to the output. By tuning the controlling DC voltage<br />

U F of the VCO it is possible to achieve f M = f D !<br />

Attention: the tuning has to be carried out with<br />

care! This is critical!<br />

Synchronous demodulation with the aid of a<br />

PLL-controlled VCO.<br />

Remove the cable connected to the auxilary carrier<br />

input of the demodulator D2. For this insert the<br />

bridging plug between the CARRIER RECOV-<br />

ERY and auxiliary carrier input of D2. Use now<br />

for demodulation the recovered auxilary carrier<br />

from the PLL CARRIER RECOVERY. Sketch<br />

the pilot tone of the transmitter and the recovered<br />

signal in the receiver at the output of the PLL circuit<br />

in Diagram 5.3.2-2.<br />

4.5<br />

5.0<br />

Diagram 5.3.2-1:<br />

The control characteristic of the VCO in the PLL circuit of<br />

the CF receiver<br />

Diagram 5.3.2-2:<br />

Pilot tone and recovered signal of the receiver<br />

(1): Pilot tone at the CF transmitter<br />

(2). Recovered pilot at the output of the PLL (receiver)<br />

Hint:<br />

The required auxiliary carrier oscillation is generated<br />

out of the pilot tone recovered in the PLL<br />

circuit by means of frequency division f/8. Depending<br />

on the initial state of the frequency divider<br />

this creates a fixed phase shift between the auxiliary<br />

carrier and carrier oscillation. Consequently,<br />

the demodulated signal shows an amplitude<br />

error. (For the sake of testing connect and disconnect<br />

the bridging plug in the PLL-circuit of the CF<br />

receiver and observe the amplitude of the demodulated<br />

signal.<br />

36


TPS <strong>7.2.1.3</strong><br />

Double Sideband AM<br />

Sketch the 20 kHz square-wave carrier of the<br />

transmitter at the output of the divider and the corresponding<br />

recovered signal in the receiver in Diagram<br />

5.3.2-3. Disconnect and reconnect the<br />

bridging plug at the receiver between the VCO input<br />

and the output of the loop filter on the PLL circuit.<br />

Diagram 5.3.2-3:<br />

(1): 20 kHz - carrier at the transmitter<br />

(2): The recovered auxiliary carrier at the receiver<br />

Discuss the results.<br />

5.3.3 DSB SC<br />

Demodulation<br />

Set the toggle switch to CARRIER OFF. Repeat<br />

the experiment in accordance with point 5.3.1.<br />

Settings on the oscilloscope<br />

Input attenuator channel 1<br />

Input attenuator channel 2<br />

Time base<br />

Trigger / AC<br />

2 V/DIV<br />

2 V/DIV<br />

200 µs/DIV<br />

mod. signal<br />

Summarize the requirements made on the auxiliary<br />

carrier in synchronous demodulation.<br />

5.4 Beats<br />

<strong>Modulation</strong> is only produced if the carrier s C (t) and<br />

modulating signal s M (t) are combined by a non-linear<br />

element. The following experiment describes<br />

the linear superimposition of harmonic signals. For<br />

this the carrier and the message signal are fed to a<br />

linear quadripole. This is available in the form of an<br />

summing amplifier on the CF transmitter. Set up<br />

the experiment as specified in Fig. 5-4. Use the<br />

connecting lead to feed the sinusoidal carrier of the<br />

CF transmitter (A 2 = 2 V) into an input of the output<br />

summer and feed a sine signal from the function<br />

generator with f 1 = 2.0 kHz, A 1 = 2 V into the<br />

other input. Display the addition of both signals at<br />

the output of the summing amplifier (Σ) on the oscilloscope.<br />

Settings on the oscilloscope<br />

Input attenuator channel 1<br />

Input attenuator channel 2<br />

Time base<br />

Trigger / AC<br />

2 V/DIV<br />

_____<br />

500 µs/DIV<br />

Sketch the curve of the modulating signal and the<br />

demodulated signal in Diagram 5.3.3-1. Discuss<br />

the results.<br />

Diagram 5.4-1:<br />

Additive superpositioning of 2 sinusoidal signals with the<br />

same amplitudes but very different frequencies.<br />

Sketch the signal curve in Diagram 5.4-1. Record<br />

the spectrum of the superpositioned signal at the<br />

output of the summer (summing amplifier). Use<br />

Table 5.4-1. Depict the spectrum in Diagram 5.4-<br />

2.<br />

Diagram 5.3.3-1:<br />

Modulating and demodulated signal in DSB SC<br />

(1): Demodulated signal s D (t)<br />

(2): Modulating signal s M<br />

(t)<br />

37


%<br />

0<br />

TPS <strong>7.2.1.3</strong><br />

Double Sideband AM<br />

Settings on the oscilloscope<br />

Input attenuator channel 1<br />

2 V/DIV<br />

GATE<br />

1s<br />

10s<br />

0,1s<br />

0,01s<br />

TIME A-B<br />

COUNT A<br />

CHECK<br />

FUNCTION<br />

RATIO A/B<br />

PERIOD A<br />

FREQ A<br />

TTL - IN(A) TTL - IN(A)<br />

ANALOG (A)<br />

TTL - IN(B)<br />

Input attenuator channel 2<br />

Time base<br />

Trigger / AC<br />

______<br />

500 µs/DIV<br />

Table 5.4-1: Spectrum of a beat<br />

Signal parameter<br />

Analyzer settings<br />

A 2 : V V 1 :<br />

f 2 : kHz b : Hz<br />

f r : kHz<br />

A 1 : V T : s<br />

f 1 : kHz SPAN : kHz<br />

Measurements<br />

Theory<br />

n<br />

f<br />

KHz<br />

Name<br />

S( n)<br />

V2<br />

S AM (n)<br />

V<br />

S AM (n)<br />

V<br />

kHz<br />

V pp<br />

=<br />

MODE<br />

OUT<br />

ATT<br />

dB<br />

20<br />

40<br />

TTL<br />

DC<br />

FUNCTION<br />

I ><br />

I ><br />

U<br />

U<br />

+15V<br />

(+5V)<br />

0V<br />

M1<br />

Fig. 5-4: Experiment set-up for beats<br />

Diagram 5.4-2: Spectrum of the beat<br />

38


TPS <strong>7.2.1.3</strong><br />

Double Sideband AM<br />

Repeat the experiment for the message signal of<br />

f 1 = approx. 20 kHz. Sketch the result in Diagram<br />

5.4-3.<br />

Diagram 5.4-3:<br />

Additive superimposing of 2 sinusoidal signals with equal<br />

amplitudes and approx. equal frequencies<br />

Depict the spectrum in Diagram 5.4-4.<br />

Table 5.4-2: Spectrum of a beat<br />

Signal parameter<br />

Analyzer settings<br />

A 2 : V V 1 :<br />

f 2 : kHz b : Hz<br />

f r : kHz<br />

A 1 : V T : s<br />

f 1 : kHz SPAN : kHz<br />

Measurements<br />

Theory<br />

n<br />

f<br />

KHz<br />

Name<br />

S( n)<br />

V2<br />

S(n)<br />

V<br />

S(n)<br />

V<br />

Diagram 5.4-4: Spectrum of a beat<br />

39


TPS <strong>7.2.1.3</strong><br />

Double Sideband AM<br />

40


TPS <strong>7.2.1.3</strong><br />

Single Sideband AM<br />

6 The Single Sideband AM (SSB)<br />

1<br />

m/2<br />

f C<br />

f C + f M<br />

(f)<br />

Fig. 6-1: Representation of SSB<br />

In DSB each sideband carries all of the information<br />

contents. The transmission bandwidth could<br />

thus be reduced by half, if one sideband is suppressed.<br />

It does not matter which sideband is used<br />

for transmission and which one is suppressed. The<br />

upper sideband appears in the normal position, the<br />

lower one in the inverted position. If, for example,<br />

we suppress the lower sideband in (3-8) then we<br />

obtain:<br />

s ( t) A cos 2π<br />

f t<br />

= ( )<br />

SSB C C<br />

m<br />

+ cos 2π<br />

( fC<br />

+ fM<br />

) t<br />

2<br />

[ ]<br />

(6-1)<br />

To suppress a sideband, a bandpass filter with<br />

sharp cutoff is used which only allows the desired<br />

spectral components to pass.<br />

The dynamic characteristic of SSB resembles that<br />

of the DSB SC . However the envelope curve is<br />

somewhat more distorted.<br />

Demodulation method : Synchronous demodulation<br />

Bandwidth requirement : b = f Mmax (6-2)<br />

Application<br />

: Line-bound transmission<br />

of telephone<br />

signals in frequencydivision<br />

multiplex<br />

technology<br />

The SSB with residual carrier<br />

If instead of the unattenuated carrier only a defined<br />

fraction k of the carrier amplitude is transmitted,<br />

then you obtain the SSB with residual carrier:<br />

⎡<br />

m<br />

sESB,T ( t)= ⎢ AC kcos( 2π<br />

fC<br />

t) +<br />

⎣⎢<br />

2<br />

cos[ 2π<br />

( fC<br />

+ fM<br />

) t]]<br />

Demodulation method : Synchronous demodulation<br />

Bandwidth requirement : b = f Mmax .<br />

Application<br />

: SSB radio links<br />

(6-3)<br />

The vestigial sideband AM (VSB)<br />

In message or information signals with very low<br />

frequency components bandpass filters with very<br />

sharp cutoffs are required for the filtering out of<br />

the unwanted sideband. Since this leads to phase<br />

distortion, part of the unwanted sideband is also<br />

transmitted. Then the filters used may have cutoffs<br />

which are less sharp, on the other hand, the slope<br />

characteristic has to be precisely defined (Nyquist<br />

slope).<br />

USL<br />

1<br />

m/2<br />

s C<br />

f C<br />

f C + f M<br />

(f)<br />

Fig. 6-2: SSB with residual carrier<br />

41


TPS <strong>7.2.1.3</strong><br />

Single Sideband AM<br />

The overlapping transmission range has to run<br />

symmetrically with respect to the carrier frequency.<br />

Demodulation method : Synchronous<br />

demodulation<br />

Bandwidth requirement : f Mmax < b < 2 f Mmax<br />

Application<br />

: TV technology<br />

s<br />

f C + f M<br />

f C<br />

f C + f M<br />

(f)<br />

Experiment procedure<br />

Set up the experiment as specified in Fig. 6-4.<br />

Connect the output of the function generator directly<br />

to the AF input of the modulator M2. Set the<br />

function generator to: sinusoidal, A M = 2 V and f M<br />

= 2 kHz.<br />

6.1 Investigations on the dynamic<br />

characteristic of the SSB<br />

6.1.1 SSB RC<br />

Set the toggle switch to CARRIER ON. Display<br />

the output signal of the channel filter CH2 and the<br />

modulating signal s M (t) of the function generator<br />

on the oscilloscope and sketch the signals. (<strong>Modulation</strong><br />

product on channel 2, modulating signal on<br />

channel 1 of the oscilloscope). Use Diagram 6.1.1-<br />

1. Shift the AF signal to the upper or lower<br />

envelope curve of the AM signal. Vary the frequency<br />

f M and the amplitude A M of the modulating<br />

signal. What do you observe?<br />

Settings on the oscilloscope<br />

Input attenuator channel 1<br />

Input attenuator channel 2<br />

Time base<br />

Trigger<br />

2 V/DIV<br />

1 V/DIV<br />

200 µs/DIV<br />

mod. signal<br />

Fig. 6-3: Filter characteristic with Nyquist slope for VSB<br />

Trigger to the modulating signal s M (t). Switch the<br />

modulating signal off. Measure the unattenuated<br />

carrier amplitude A C at the input of the channel<br />

filter, as well as the amplitude A RC of the attenuated<br />

carrier at the output of the channel filter.<br />

Calculate the ratio k = A RC /A C . Determine the carrier<br />

suppression t in dB according to (6-4):<br />

m<br />

t = 20 log (6-4)<br />

2 k<br />

6.1.2 SSB SC<br />

Set the toggle switch to CARRIER OFF. Set the<br />

oscilloscope as specified in the Table.<br />

Proceed as described in point 6.1.1. Use Diagram<br />

6.1.2-1. What features does the SSB SC signal<br />

have?<br />

Settings on the oscilloscope<br />

Input attenuator channel 1<br />

Input attenuator channel 2<br />

Time base<br />

Trigger / external<br />

2 V/DIV<br />

1 V/DIV<br />

200 µs/DIV<br />

mod. signal<br />

Diagram 6.1.1-1: Dynamic characteristic of the SSB RC<br />

Signals<br />

(1): Modulating signal s M<br />

(t)<br />

(2): <strong>Modulation</strong> product at the output of CH2<br />

Diagram 6.1.2-1: Dynamic characteristic of the SSB SC<br />

(1): Modulating signal s M<br />

(t)<br />

(2): <strong>Modulation</strong> product at the output of CH2<br />

42


%<br />

0<br />

TPS <strong>7.2.1.3</strong><br />

Single Sideband AM<br />

6.2 Spectrum of the SSB<br />

6.2.1 SSB RC<br />

Set the toggle switch to CARRIER ON.<br />

GATE<br />

1s<br />

10s<br />

0,1s<br />

0,01s<br />

TIME A-B<br />

COUNT A<br />

CHECK<br />

FUNCTION<br />

RATIO A/B<br />

PERIOD A<br />

FREQ A<br />

TTL - IN(A) TTL - IN(A)<br />

ANALOG (A)<br />

TTL - IN(B)<br />

Analyzer settings<br />

V 1 :1<br />

V 2 :10<br />

f r /kHz: 50 b/Hz: 100<br />

SPAN/kHz:1.5 ... 20<br />

T/s:40<br />

Set the spectrum analyzer as specified in the Table.<br />

Connect its input to the output of the modulator<br />

M2. As the modulating signal use a sinusoidal<br />

signal with A M = 2 V and f M = 2 kHz. Feed the<br />

modulating signal into the input filter of the CF<br />

transmitter. Measure the SSB spectrum in the<br />

range of approx. 15 kHz up to 25 kHz and enter the<br />

measured values S(n) from the output of the<br />

analyzer with their corresponding frequencies in<br />

Table 6.2.1-1. The amplitude values of the wanted<br />

spectral components are obtained from:<br />

S<br />

AM<br />

S(n)<br />

(n) =<br />

V ⋅ V<br />

1 2<br />

Calculate the spectral components S AM (n) with the<br />

aid of (3-8). Also enter the calculated values for<br />

S AM (n) in Table 6.2.1-1. Plot the curve of the<br />

spectrum in Diagram 6.2.1-1. Label the spectral<br />

lines.<br />

Determine the transmission bandwidth of the AM<br />

signal based on the measurements. Generalize the<br />

results for the case of any modulating signals.<br />

kHz<br />

V pp<br />

=<br />

DC<br />

MODE<br />

FUNCTION<br />

OUT<br />

ATT<br />

dB<br />

20<br />

40<br />

TTL<br />

6.2.2 SSB SC<br />

Set the toggle switch to CARRIER OFF. Use a<br />

sinusoidal signal with A M = 2 V and f M = 2 kHz as<br />

a modulating signal. Measure the spectrum as described<br />

in point 6.2.1. Enter your results in Table<br />

6.2.2-1 and Diagram 6.2.2-1.<br />

Evaluate your measurement results as shown in<br />

point 6.2.1.<br />

I ><br />

I ><br />

U<br />

U<br />

+15V<br />

(+5V)<br />

0V<br />

M1<br />

Fig. 6-4: Experiment setup for SSB<br />

43


TPS <strong>7.2.1.3</strong><br />

Single Sideband AM<br />

Table 6.2.1-1: SSB RC spectrum<br />

Signal parameter Analyzer settings<br />

A C : V V 1 :<br />

f C : kHz b : Hz<br />

f r : kHz<br />

A M : V T : s<br />

f M : kHz<br />

Table 6.2.2-1: SSB SC spectrum<br />

Signal parameter Analyzer settings<br />

A C : V V 1 :<br />

f C : kHz b : Hz<br />

f r : kHz<br />

A M : V T : s<br />

f M : kHz<br />

Measurements<br />

Theory<br />

Measurements<br />

Theory<br />

V 2<br />

f<br />

KHz<br />

Name<br />

S( n)<br />

V<br />

S AM (n)<br />

V<br />

S AM (n)<br />

V<br />

V 2<br />

f<br />

KHz<br />

Name<br />

S( n)<br />

V<br />

S AM (n)<br />

V<br />

S AM (n)<br />

V<br />

Diagram 6.2.1-1: SSB RC<br />

spectrum f M<br />

= 2 kHz<br />

Diagram 6.2.2-1: SSB SC<br />

spectrum f M<br />

= 2 kHz<br />

6.3 SSB demodulation<br />

Settings on the oscilloscope<br />

Input attenuator channel 1<br />

Input attenuator channel 2<br />

Time base<br />

Trigger<br />

2 V/DIV<br />

1 V/DIV<br />

200 µs/DIV<br />

mod. signal<br />

Start with the settings given in point 6.1. With the<br />

aid of a connecting lead feed the carrier signal<br />

(f C = 20 kHz) of the CF transmitter directly into<br />

the RF input of the demodulator D2. What have<br />

you achieved by this?<br />

Display the modulating signal s M (t) on the oscilloscope<br />

as well as the demodulated signal s D (t) at the<br />

output of the LP filter of the CF receiver. Sketch<br />

the curve of the modulating signal and the demodulated<br />

signal in Diagram 6.3-1. Adjust the phase<br />

between the original carrier of the transmitter and<br />

the auxiliary carrier of the receiver. What do you<br />

observe? Remove the connecting lead between<br />

the CF transmitter and the demodulator. Now for<br />

demodulation use the recovered auxilary carrier<br />

from the PLL circuit to recover the carrier. For<br />

this connect the bridging plug between CARRIER<br />

44


TPS <strong>7.2.1.3</strong><br />

Single Sideband AM<br />

Diagram 6.3-1: Modulating and demodulated signal in SSB<br />

(1): Modulating signal s M<br />

(t)<br />

(2): Demodulated signal s D<br />

(t)<br />

Diagram 6.3-2: Modulating and demodulated signal in<br />

SSB SC<br />

(1): Modulating signal s M<br />

(t)<br />

(2): Demodulated signal s D<br />

(t)<br />

RECOVERY and the auxiliary carrier input of D2.<br />

Discuss your findings.<br />

Set the toggle switch to CARRIER OFF. This time<br />

repeat the experiment for SSB SC .<br />

Settings on the oscilloscope<br />

Input attenuator channel 1<br />

Input attenuator channel 2<br />

Time base<br />

Trigger<br />

2 V/DIV<br />

1 V/DIV<br />

100 µs/DIV<br />

mod. signal<br />

45


TPS <strong>7.2.1.3</strong><br />

Single Sideband AM<br />

46


TPS <strong>7.2.1.3</strong><br />

Ring Modulator<br />

7 The Ring Modulator<br />

s M<br />

s T<br />

s M<br />

s M<br />

+<br />

–<br />

D1<br />

D3<br />

D4<br />

D2<br />

s C<br />

s C<br />

s C<br />

Fig. 7-1: Ring modulator in diode technology<br />

s AM<br />

s AM<br />

s AM<br />

Up until now the modulation process has been<br />

described as a multiplication of a harmonic carrier<br />

s C (t) with an equally harmonic message signal<br />

s M (t) using a multiplier IC (e.g. AD632). This is<br />

how the wanted modulation product is directly<br />

obtained without any undesired sidelines. However,<br />

in practice product modulators in the form of<br />

integrated circuits are of no importance because<br />

they can only be used at relatively low frequencies.<br />

Consequently, modulation is performed using discrete<br />

components with non-linear characteristics<br />

on account of the high frequencies used in communications<br />

engineering. A group of modulators important<br />

in practice is known under the name of<br />

balanced modulators. These types of balanced<br />

modulators include the push-pull and ring modulators.<br />

The response of the ring modulator can also<br />

be investigated using the training panel 736 201 CF<br />

transmitter 20 kHz. Ring modulators are generally<br />

designed with special diode and transistor<br />

concepts. An example for this is illustrated in Fig.<br />

7-1.<br />

The bipolar carrier signal s C (t) is fed into the center<br />

taps of the two symmetrical differential transformers.<br />

The diodes are supposed to perform a<br />

pure switching operation, which is triggered exclusively<br />

by the carrier amplitude. For this the<br />

carrier amplitude has to be high enough. During the<br />

positive half-oscillations of the carrier 2 diodes are<br />

fully triggered in the forward direction (D1 and<br />

D2). They function like closed switches while the<br />

two other diodes are blocked. During this period<br />

the modulating signal s M (t) fed into the transformer<br />

on the left flows through to the output<br />

transformer. In the time in which the carrier's polarity<br />

is reversed, the previously blocked diodes<br />

(D3 and D4) perform the job of transmitting the<br />

modulating signal to the output transformer. However,<br />

this time the current of the modulating signal<br />

flows in the reverse direction.<br />

A symmetrical differential transformer is needed<br />

for the carrier current to be able to switch the diodes<br />

without influencing the output signal. Its function<br />

is explained in Fig. 7-2.<br />

The total flux Φ C magnetically induced by the carrier<br />

current is equal to zero when the transformer<br />

is perfectly symmetrical. Depending on the switching<br />

state of the diode pairs the current of the modu-<br />

47


TPS <strong>7.2.1.3</strong><br />

Ring Modulator<br />

s M<br />

i<br />

i<br />

C<br />

2<br />

C<br />

2<br />

^↑Φ<br />

^↓Φ<br />

T / 2<br />

T / 2<br />

⎫<br />

⎪<br />

⎪<br />

⎬ΣΦ<br />

⎪<br />

⎪<br />

⎭<br />

C<br />

Φ C Φ<br />

=+ −<br />

2 2<br />

C<br />

! 0<br />

0<br />

f T<br />

3 f T<br />

5 f T f<br />

Fig. 7-2: The principle of the differential transformer<br />

Fig. 7-3: Dynamic characteristic and spectrum for the ring<br />

modulator<br />

lating signal alternates its flow through the output<br />

transformer. The transformers have to be suitable<br />

to process radio frequencies (RF). For that reason<br />

ferrite is used as the core material. Earlier ring<br />

modulators were manufactured exclusively with<br />

differential transformers. Today they are being<br />

overtaken more and more by ICs which operate<br />

without transformers. Fig. 7-3 shows the dynamic<br />

characteristic and the spectrum at the output of the<br />

ring modulator. The AF signal is cancelled out in<br />

the envelope of the modulated signal. Therefore,<br />

the line at f = f M is missing in the spectrum<br />

The following holds true for the spectrum of the<br />

ring modulator:<br />

4<br />

1<br />

1<br />

sAM t [cos 2π fCt cos 2π3fCt cos 2π5fCt<br />

π<br />

3<br />

5<br />

( ) = ( ) − ( ) + ( )<br />

−+ ...] A cos( 2π<br />

f t)<br />

M<br />

M<br />

2<br />

2<br />

= AM cos[ 2π<br />

( fC − fM ) t]+ AM cos 2π<br />

( fC + fM<br />

) t<br />

π<br />

π<br />

[ ]<br />

2<br />

2<br />

− AM cos[ 2π<br />

( 3fC − fM<br />

) t]−<br />

AM cos 2π ( 3 fC + fM<br />

) t<br />

3π<br />

3π<br />

+−<br />

[ ]<br />

(7-2)<br />

If you consider the spectrum of the ring modulator,<br />

it becomes clear that suitable filters have to be<br />

used to separate the wanted sidebands from the<br />

interfering sidebands.<br />

Questions<br />

7.1 What features does the ring modulator have?<br />

7.2 What circuit techniques and measures are<br />

additionally required, if you want to generate a<br />

narrow band AM signal with a balanced<br />

modulator?<br />

7.3 Which feature is common to all modulating<br />

components?<br />

48


TPS <strong>7.2.1.3</strong><br />

Ring Modulator<br />

+15V<br />

(+5V)<br />

kHz<br />

V<br />

pp<br />

=<br />

DC<br />

%<br />

I ><br />

FUNCTION<br />

MODE<br />

ATT<br />

dB<br />

OUT<br />

0,1s<br />

0,01s<br />

GATE<br />

1s<br />

10s<br />

U<br />

0<br />

20<br />

40<br />

U<br />

FUNCTION<br />

I ><br />

RATIO A/B<br />

PERIOD A<br />

FREQ A<br />

TIME A-B<br />

COUNT A<br />

CHECK<br />

M1<br />

TTL<br />

TTL - IN(A)<br />

TTL - IN(A)<br />

0V<br />

TTL - IN(B)<br />

ANALOG (A)<br />

Fig. 7-4:<br />

Experiment setup to examine signal characteristics at the ring modulator<br />

Experiment procedure<br />

Operating the CF transmitter as a ring<br />

modulator<br />

Set up the experiment as specified in Fig. 7-4 auf.<br />

Set the toggle switch to CARRIER OFF. Use the<br />

bridging plug to feed the square-wave carrier into<br />

the RF input of the modulator. Feed a sinusoidal<br />

signal with f M = 2.0 kHz and A M = 2 V as the<br />

modulating signal into the AF input of the modulator.<br />

7.1 Dynamic response of the ring<br />

modulator<br />

Display the modulating AF signal and the output<br />

signal of the modulator on the oscilloscope. Sketch<br />

the signal in Diagram 7.1-1.<br />

Diagram 7.1-1: Dynamic characteristic of the modulating<br />

and modulated signal (CARRIER OFF)<br />

(1): Modulating signal s M (t)<br />

(2): Modulated signal<br />

Settings on the oscilloscope<br />

Input attenuator channel 1<br />

Input attenuator channel 2<br />

Time base<br />

Trigger / AC<br />

1 V/DIV<br />

1 V/DIV–––<br />

200 µs/DIV<br />

mod. signal<br />

Note: The use of a storage oscilloscope simplifies<br />

this procedure. If only a real time oscilloscope<br />

is available, you have to trigger to the<br />

AF signal and, if necessary, carefully adjust<br />

its frequency, in order to obtain a standing<br />

image.<br />

Repeat the experiment with CARRIER ON.<br />

Diagram 7.1-2: Dynamic characteristic of the modulating<br />

signal and modulated signal (CARRIER ON)<br />

(1): Modulating signal s M<br />

(t)<br />

(2): Modulated signal<br />

49


TPS <strong>7.2.1.3</strong><br />

Ring Modulator<br />

7.2 Spectrum at the output of the ring modulator<br />

CARRIER OFF! Record the spectrum of the<br />

modulation product at the output of the modulator<br />

M2 in the range 0.5 kHz...100 kHz.<br />

Analyzer settings<br />

V 1 :2<br />

V 2 :2<br />

f r /kHz: 200 b/Hz: 500<br />

SPAN/kHz: 1 ... 25 T/s:40<br />

Table 7.2-1: Spectrum of the ring modulator<br />

Signal parameter Analyzer settings<br />

A C : V V 1 :<br />

f C : kHz b : Hz<br />

f r : kHz<br />

A M : V T : s<br />

f M : kHz<br />

Note:<br />

In the frequency range f r =200 kHz you<br />

will not come that far under f min = 10<br />

kHz. Consequently, you will have to<br />

measure the lower frequency range<br />

from approx. 0.5 kHz...10 kHz separately<br />

in the range f r = 20 kHz. For this<br />

use Table 7.2-1.<br />

V 2<br />

f<br />

KHz<br />

Measurements<br />

S( n)<br />

Name<br />

V<br />

S AM (n)<br />

V<br />

Theory<br />

S AM (n)<br />

V<br />

Plot the spectrum in a graph in Diagram 7.2-1.<br />

Sketch the position of the suppressed carrier lines<br />

with a dashed line.<br />

Diagram 7.2-1: Spectrum of the ring modulator<br />

50


TPS <strong>7.2.1.3</strong><br />

Solutions<br />

Solutions<br />

2.3 A measurement example<br />

1. Manual operation with analog voltmeter<br />

The amplitude S R (1) of the fundamental harmonic<br />

is greater than the square-wave amplitude A R by a<br />

factor 4/π = 1.27. The formation law for the spectrum<br />

of a symmetrical square-wave signal is:<br />

S<br />

R<br />

4 AR<br />

( n)<br />

=<br />

π ( 2n<br />

−1)<br />

n: 1, 2, 3...<br />

Diagram 2.3-1:<br />

Spectrum of the square-wave signal A R<br />

= 5 V, τ/T P<br />

= 0.5<br />

Table 2.3-1: Spectrum square wave signal<br />

Signal parameter<br />

A R : 5 V<br />

τ/T P : 5/10<br />

f R : 2.00 kHz<br />

n<br />

f<br />

kHz<br />

Analyzer settings<br />

V 1 : 1<br />

b : 500 Hz<br />

f r : 20 kHz<br />

T : 20 s<br />

Measurement<br />

S(n) S R (n)<br />

V 2<br />

V<br />

V<br />

Theory<br />

S (n)<br />

R<br />

V<br />

1 2.0 6.6 1 6.6 6.37<br />

2 4.0 ---- - ---- ----<br />

3 6.0 2.1 1 2.1 2.12<br />

4 8.0 ---- - ---- ----<br />

5 10.0 6.6 5 1.32 1.27<br />

6 12.0 ---- - ---- ----<br />

7 14.0 4.7 5 0.94 0.91<br />

8 16.0 ---- - ---- ----<br />

9 18.0 3.6 5 0.72 0.71<br />

10 20.0 ---- - ---- ----<br />

2. Automatic operation with the XY recorder<br />

or the storage oscilloscope<br />

The reduction in the bandwidth b narrows the<br />

spectral window. The manual frequency setting<br />

thus becomes increasingly difficult, while at the<br />

same time the spectral lines become clearer.<br />

Even when using an oscilloscope as a display unit<br />

which operates (almost) without any inertia, the<br />

spectrum is no longer reproduced with full amplitude.<br />

The reason for this lies in the time law of<br />

electrical communications engineering. The filters<br />

of the analyzer no longer reach the transient<br />

recovery state. If mechanical measuring instruments<br />

subject to inertia are used as display units,<br />

e.g. a multimeter instrument or an XY recorder,<br />

then the lowpass response of the entire system is<br />

further improved. There is practically no pointer<br />

deflection. The following general statements can<br />

be made about the spectrum of the symmetrical<br />

square-wave signal:<br />

– The spectrum has a line structure.<br />

– The spectral lines occur at odd numbered multiples<br />

of the fundamental frequency f R . (3 f R ,<br />

5 f R , 7 f R , ...)<br />

– The amplitudes S R (n) respond inversely proportional<br />

to the odd numbered multiples of the<br />

fundamental frequency.(1/3, 1/5, 1/7, ...). The<br />

envelope curve has the characteristic 1/f.<br />

51


TPS <strong>7.2.1.3</strong><br />

Solutions<br />

3 Review of amplitude modulation<br />

Answers<br />

3.1 <strong>Modulation</strong> means the frequency conversion<br />

of an information signal from the AF position<br />

of the baseband into the RF band of the<br />

carrier. Here, the modulating signal<br />

influences an appropriate parameter of the<br />

carrier oscillation, e.g. the amplitude or frequency.<br />

While f C >> f M always holds true in<br />

modulation, mixing entails frequency<br />

conversion being generated between signals<br />

with comparable frequencies.<br />

3.2 <strong>Modulation</strong> offers the following advantages:<br />

– Matching to the features of the transmission<br />

channel, i.e. improved efficiency<br />

during transmission of information signals.<br />

– Multiple utilization of transmission channels,<br />

e.g. in frequency multiplexing<br />

methods.<br />

– Improved signal-to-noise ratios (modulation<br />

gain)<br />

3.3 The DSB is something "new" produced by<br />

combining the carrier oscillation and the<br />

modulating signal. While the dynamic characteristic<br />

of the AM signal can be observed<br />

as a whole on the oscilloscope the spectrum<br />

analyzer shows the AM broken down into its<br />

components. With constant modulation<br />

signal these components have amplitudes<br />

contstant with respect to time.<br />

3.4 In the dynamic characteristic of the beat a<br />

phase shift of 180° arises in the envelope<br />

curve. The frequency of the envelope curve<br />

is approx. half the differential frequency of<br />

the oscillation components involved. The<br />

beat frequency corresponds to the arithmetic<br />

mean value.<br />

3.5 The amplitude deviation ∆A C indicates the<br />

maximum change permissible for the carrier<br />

amplitude A C . It is dependent on the<br />

modulator constant α and the amplitude A M<br />

of the modulating signal. The modulation<br />

index m is the quotient formed out of the<br />

amplitude deviation and the carrier amplitude.<br />

The modulation index m can assume<br />

values between 0 and 1. Overmodulation<br />

occurs for m > 1.<br />

3.6 In addition to envelope demodulation, synchronous<br />

or coherent demodulation are<br />

common demodulation methods particularly<br />

in commercial communications systems. In<br />

contrast to envelope demodulation, it requires<br />

an auxiliary carrier which is stable in<br />

terms of frequency, phase and amplitude.<br />

3.7 The reduction in carrier power means an<br />

improvement in the transmission efficiency.<br />

The amount of power and amplifier circuitry<br />

in the transmitter can be reduced.<br />

Bandwidth is saved by limiting modulation to<br />

one sideband. However, coherent demodulation<br />

becomes problematic when the carrier<br />

is completely suppressed. For that reason a<br />

residual carrier is transmitted with which the<br />

receiver is synchronized.<br />

3.8 The following applies for the efficiency η:<br />

useful power<br />

η =<br />

total power<br />

Expressed by the modulation index m the<br />

following holds true:<br />

η =<br />

m 2<br />

2+ m 2<br />

For the maximum modulation index<br />

m = 100% you obtain the best efficiency of<br />

the DSB when η = 33%! Regarding the<br />

power needed in DSB at least 2/3 is “squandered”<br />

in the carrier. Since the carrier contains<br />

no information it can be suppressed to<br />

increase the efficiency.<br />

3.9 Methods of carrier suppression<br />

– Suppress the carrier using a bandpass filter<br />

with very sharp cutoffs.<br />

– Addition of a carrier in phase opposition<br />

and of equal amplitude to the modulated<br />

signal.<br />

– Use of a modulation method which does<br />

not permit the carrier to reach the modulation<br />

product, e.g. balanced or ring<br />

modulator.<br />

3.10 Here only coherent demodulation still constitutes<br />

a viable alternative. For this an auxiliary<br />

oscillation is needed in the receiver,<br />

which is in agreement with the original carrier<br />

in terms of frequency and phase and<br />

whose amplitude remains constant.<br />

52


TPS <strong>7.2.1.3</strong><br />

Solutions<br />

5 The Double Sideband AM<br />

Experiment results<br />

5.1 Investigating the dynamic characteristic<br />

of the DSB<br />

5.1.1 DSB<br />

modulation signal. At the same time the amplitude<br />

of the modulated signal drops. Consequently in XY<br />

display modus a trapezoid is produced which the its<br />

broad side on the left.<br />

5.1.2 DSB SC<br />

Diagram 5.1.1-1: Dynamic characteristic of the DSB signal<br />

(1): Modulating signal s M<br />

(t)<br />

(2): <strong>Modulation</strong> product at the output M2<br />

The envelope curve of the AM signal nearly coincides<br />

completely with the modulating signal and<br />

immediately follows its changes in frequency and<br />

amplitude.<br />

Diagram 5.1.2-1: Dynamic characteristic of the DSB SC<br />

signal<br />

(1): Modulating signal s M (t)<br />

(2): <strong>Modulation</strong> product at output M2<br />

The DSB SC signal has the characteristic of a beat,<br />

i.e. it is the linear superpositioning of 2 harmonic<br />

oscillations with very close frequencies. The envelope<br />

curve of the beat shows zero crossings. There<br />

the beat signal experiences phase shifts of 180°.<br />

Also the DSB SC signal follows the frequency<br />

changes of the AF signal without any visible phase<br />

delay. There is no overmodulation caused by<br />

amplitude changes in the modulating signal, as in<br />

the case of DSB.<br />

The modulation trapezoid for DSB SC<br />

.<br />

Diagram 5.1.1-2: The modulation trapezoid<br />

m D − d 65 . − 2<br />

= ≈ ≈ 53%<br />

D+<br />

d 65 . + 2<br />

The modulation index amounts to approx.<br />

m = 53%. Observation: the trapezoid chords are<br />

distorted "cigar-shaped". This is an indication for a<br />

phase shift between the signals at the X and Y<br />

input. These kinds of distortions can scarcely be<br />

seen in Diagrams like 5.1.1-1.<br />

Generating the modulation trapezoid<br />

Oscilloscope set to XY mode. Set the coordinate<br />

origin in the middle of the screen using the X-position<br />

and Y-position controllers. If the modulating<br />

AF signal reaches its negative maximum value,<br />

then the X-deviation is at the far left. From there it<br />

increases horizontally to the right with a rising<br />

Diagram 5.1.2-2: The modulation trapezoid<br />

Observations:<br />

In the display of the modulation trapezoid in XY<br />

mode Lissajous figures appear resembling a double<br />

conic section depending on the modulation frequency<br />

f M . These figures rotate as a function of<br />

the frequency f M . The modulation trapezoid is bet-<br />

53


TPS <strong>7.2.1.3</strong><br />

Solutions<br />

ter suited for the assessment of moduation distortions<br />

than direct display of the modulated signal in<br />

YT modus. Between the modulating and the<br />

modulated signal there arise, e.g. severe phase<br />

delay distortions, if the modulation is performed<br />

using the LP filter connected in series. These visible<br />

distortions on the oscilloscope are frequencydependent.<br />

They belong to the group of linear distortions<br />

and are caused by the phase response of<br />

the electronic components (especially the LP filter).<br />

5.2 Spectrum of the DSB<br />

5.2.1 DSB<br />

Table 5.2.1-1: DSB spectrum<br />

Signal parameter Analyzer settings<br />

A C : 2.0 V V 1 : 2<br />

f C : 20.0 kHz b : 100 Hz<br />

f r : 50 kHz<br />

A M : 2.0 V T : 40 s<br />

f M : 2 kHz<br />

Table 5.2.1-2: DSB spectrum<br />

Signal parameter Analyzer settings<br />

A C : 2.0 V V 1 : 2<br />

f C : 20.0 kHz b : 100 Hz<br />

f r : 50 kHz<br />

A M : 1 V T : 40 s<br />

f M : 3 kHz<br />

Measurements<br />

Theory<br />

Measurements<br />

Theory<br />

V 2<br />

f<br />

KHz<br />

Name<br />

S( n)<br />

V<br />

S AM (n)<br />

V<br />

S AM (n)<br />

V<br />

V 2<br />

f<br />

KHz<br />

Name<br />

S( n)<br />

V<br />

S AM (n)<br />

V<br />

S AM (n)<br />

V<br />

2 18.00 LSL 4,5 1.1 1<br />

2 20.01 carrier 8.5 2.1 2<br />

2 22.01 USL 4.5 1.1 1.00<br />

2 17.00 LSL 2.1 0.52 0.5<br />

2 20.01 carrier 8.4 2.2 2.00<br />

2 23.01 USL 2.2 0.55 0.50<br />

Diagram 5.2.1-1: DSB spectrum<br />

Diagram 5.2.1-2: DSB spectrum<br />

With f M = 3 kHz the frequency of the modulating<br />

signal s M (t) already lies in the cutoff range of the<br />

LP filter. For that reason using a filter can lead to<br />

the attenuation of the amplitude at the modulator<br />

input and thus to a reduction in the modulation<br />

index.<br />

From the spectra it follows that:<br />

– With increasing signal frequency f M the<br />

USLs are shifted away from the carrier in<br />

the direction of higher frequencies. This frequency<br />

response of the USL is called the<br />

normal position, high signal frequencies also<br />

lie in the modulation spectrum at high<br />

frequencies.<br />

– With increasing signal frequency f M the LSLs<br />

shift further away from the carrier into the<br />

lower frequencies. The frequency response<br />

of the LSLs is thus called the inverted position<br />

54


TPS <strong>7.2.1.3</strong><br />

Solutions<br />

because high signal frequencies lie in the<br />

modulation spectrum at low frequencies.<br />

Basically the following applies: The upper<br />

sideband is in the normal position, the lower<br />

sideband is in the inverted position.<br />

The modulation index m amounts to approx. 60%.<br />

Calculate the transmission bandwidths in DSB<br />

based on the spectra. For f M = 2 kHz:<br />

b = (22 – 18) kHz = 4 kHz = 2 · f M<br />

.<br />

For f M = 3 kHz:<br />

b = (23 – 17) kHz = 6 kHz = 2 · f M<br />

.<br />

In general:<br />

b = 2 f Mmax<br />

(3-9)<br />

5.2.3 The AM spectrum for modulation with a<br />

square-wave signal<br />

5.2.2 DSB SC<br />

Signal parameter Analyzer settings<br />

Table 5.2.2-1: DSB SC spectrum<br />

Signal parameter Analyzer settings<br />

A C : 2.0 V V 1 : 2<br />

f C : 20.0 kHz b : 100 Hz<br />

f r : 50 kHz<br />

A M : 2.0 V T : 40 s<br />

f M : 2 kHz<br />

V 2<br />

f<br />

KHz<br />

Measurement<br />

S( n)<br />

Name<br />

V<br />

S AM (n)<br />

V<br />

Theory<br />

S AM (n)<br />

2 18.00 LSL 4.5 1.1 1.00<br />

2 ____ ____ ____ ____ _____<br />

2 22.01 USL 4.5 1.1 1.00<br />

V<br />

V 2<br />

Table 5.2.3-1: AM spectrum for<br />

square-wave modulation<br />

A C : 2 V V 1 : 2<br />

f C : 20.0 kHz b : 100 Hz<br />

f r : 50 kHz<br />

A M : 2 V T : 40 s<br />

f M : 2 kHz<br />

f<br />

KHz<br />

Measurement<br />

Name<br />

S( n)<br />

5 10 LSL 3 3.2 0.32<br />

5 14 LSL 2 5,0 0.50<br />

2 18 LSL 1 5.6 1.40<br />

2 20 carrier 8.4 2.10<br />

2 22 USL 1<br />

5.5 1.38<br />

5 26 USL 2<br />

4.6 0.46<br />

5 30 USL 3 2.7 0.27<br />

5 34 USL 4 2.0 0.20<br />

V<br />

S AM (n)<br />

V<br />

Theory<br />

S AM (n)<br />

V<br />

Diagram 5.2.2-1: DSB SC<br />

spectrum<br />

Diagram 5.2.3-1: AM spectrum for square-wave modulation<br />

55


TPS <strong>7.2.1.3</strong><br />

Solutions<br />

The USL 1 is taken as a reference for the calculation<br />

of the spectrum. Corresponding to the known<br />

characteristic curve of the square-wave spectrum<br />

the LSL and USL have to be located symmetrically<br />

to the suppressed carrier, where the amplitudes<br />

decrease inversely to the ordinal number n. The<br />

deviations between the theory and the measurements<br />

increase with rising frequency due to the finite<br />

upper frequency cutoff of the modulator IC.<br />

Transmission bandwidth based on the spectrum<br />

b = (22.01 – 18.00) kHz ≈ 4 kHz = 2 f M<br />

.<br />

The following is true in the general case of a modulating<br />

signal with the maximum frequency limit<br />

f Mmax :<br />

b = 2 f Mmax<br />

(3-9)<br />

5.3 AM demodulation<br />

(synchronous demodulation)<br />

5.3.1 DSB<br />

Table 5.3.1-1: Phase response of the DSB<br />

s M (t): Sine A M = 2 V, f M = 2 kHz<br />

φ<br />

degrees<br />

A D<br />

V<br />

A<br />

A<br />

D<br />

Dmax<br />

cos φ<br />

0 2.1 1.00 1.00<br />

18 1.9 0.91 0.95<br />

36 1.6 0.79 0.81<br />

54 1.1 0.55 0.59<br />

Diagram 5.3.1-1: Modulating and demodulated signal with<br />

DSB, fixed phase relation<br />

(1): Modulating signal s M<br />

(t)<br />

(2): Demodulated signal s D<br />

(t)<br />

72 0.6 0.28 0.31<br />

90 0.13 0.06 0.00<br />

108 0.76 0.37 –0.31<br />

Observation:<br />

With the exception of a constant amplitude factor<br />

the modulating signal s M (t) and the demodulated<br />

signal s D (t) are in agreement.<br />

Diagram 5.3.1-1:<br />

Demodulated signal A D /A Dmax as a function of the phase φ<br />

56


TPS <strong>7.2.1.3</strong><br />

Solutions<br />

5.3.2 Carrier recovery<br />

Table 5.3.2-1:<br />

Control characteristic of the VCO<br />

U F<br />

V<br />

f VCO<br />

kHz<br />

0.5 0.0<br />

corresponds precisely to the frequency difference<br />

between the carrier and the auxiliary oscillation.<br />

The frequency shift in the demodulated signal disappears<br />

completely for f C = f Aux .<br />

Synchronous demodulation with the aid of a<br />

PLL-controlled VCO.<br />

1.0 0.0<br />

1.5 0.3<br />

2.0 14.5<br />

2.5 41.3<br />

3.0 69.1<br />

3.5 96.3<br />

4.0 121.8<br />

4.5 148.7<br />

5.0 167.5<br />

Diagram 5.3.2-2:<br />

(1): Pilot tone at the CF transmitter<br />

(2): Recovered pilot at the output of the PLL (receiver)<br />

After lock-in of the PLL the original pilot signal<br />

and the recovered signal have exactly the same<br />

frequency. A fixed phase-shift occurs between<br />

the two signals. This leads to a (constant)<br />

amplitude error during synchronous demodulation.<br />

Diagram 5.3.2-1: The control characteristic of the VCO in<br />

the PLL circuit of the receiver<br />

The synchronous demodulation is performed<br />

with the aid of a free-wheeling VCO.<br />

In the demodulated signal a constant frequency<br />

shift occurs for f C ≈ f Aux . This is maintained during<br />

variation of the signal frequency f M . It is only dependent<br />

on the control voltage U F of the VCO,<br />

which determines the frequency f Aux of the auxiliary<br />

carrier. The frequency phase-shift between<br />

the modulating signal and the demodulated signal<br />

Diagram 5.3.2-3:<br />

(1): 20 kHz original carrier at the transmitter<br />

(2): The recovered auxiliary carrier at the receiver<br />

A fixed phase-shift exists between the two carriers.<br />

This phase-shift can assume 8 various values<br />

due to the undefined starting conditions of the frequency<br />

divider (f/8). These phase-shifts are associated<br />

with amplitude errors in the demodulated<br />

signal.<br />

57


TPS <strong>7.2.1.3</strong><br />

Solutions<br />

5.3.3 DSB SC<br />

demodulation<br />

Table 5.4-1: Spectrum of a beat<br />

Signal parameter<br />

Analyzer settings<br />

A 2 : 2 V V 1 : 5<br />

f 2 : 20.0 kHz b : 500 Hz<br />

f r : 50 kHz<br />

A 1 : 2 V T : 20 s<br />

f 1 : 2 kHz SPAN: 1...25 kHz<br />

Diagram 5.3.3-1: Modulating and demodulated signal for<br />

DSB SC<br />

(1): Demodulated signal s D<br />

(t)<br />

(2): Modulating signal s M<br />

(t)<br />

The DSB SC shows the same phase-dependency as<br />

the DSB<br />

Requirements for the auxiliary carrier in synchronous<br />

demodulation:<br />

1. Frequency stability and frequency equality<br />

with the original carrier frequency.<br />

2. Constant phase angle < 90°. Ideally φ€= 0°.<br />

3. <strong>Amplitude</strong> stability of the auxiliary carrier<br />

n<br />

f<br />

KHz<br />

Measurement<br />

Name<br />

S( n)<br />

V2<br />

S AM (n)<br />

Theory<br />

1 2 10.5 2.1 2<br />

1 20 10.5 2.1 2<br />

V<br />

S AM (n)<br />

V<br />

5.4 Beats<br />

Diagram 5.4-2: Spectrum of the beat<br />

Diagram 5.4-1: Additive superpositioning of 2 sinusoidal<br />

signals with the same amplitudes but very different<br />

frequencies.<br />

Linear superpositioning of 2 harmonic signals, here<br />

with extremely different frequencies f 1 = 2.0 kHz<br />

and f 2 = 20 kHz, generates a beat. The two<br />

frequency components are easily distinguishable.<br />

There is no frequency conversion for beats<br />

Diagram 5.4-3: Additive superimposing of 2 sinusoidal<br />

signals with the same amplitudes and almost the same<br />

frequencies.<br />

58


TPS <strong>7.2.1.3</strong><br />

Solutions<br />

If harmonic signals with approximately the same<br />

frequencies are additively superimposed, then the<br />

beat takes on a totally different appearance.<br />

f 1 = 20.01 kHz<br />

f 2 = 20.03 kHz<br />

Table 5.4-2: Spectrum of a beat<br />

Signal parameter<br />

Analyzer settings<br />

A 2 : 2 V V 1 : 5<br />

f 2 :20.03 kHz b : 500 Hz<br />

f r : 50 kHz<br />

A 1 : 2 V T : 20 s<br />

f 1 :20.01 kHz SPAN: 1...25 kHz<br />

Diagram 5.4-4: Spectrum of a beat<br />

Measurement<br />

Theory<br />

n<br />

f<br />

KHz<br />

Name<br />

S( n)<br />

V2<br />

S AM (n)<br />

V<br />

S AM (n)<br />

V<br />

*<br />

*<br />

* Spectral lines cannot be resolved (discriminated)<br />

because they are packed so closely to<br />

each other.<br />

Diagram 5-4-4 shows the spectrum of a beat for<br />

f 1 ≈ f 2 . The resolution of the analyzer is too low.<br />

The closely-packed spectral lines of the beat are<br />

no longer reproduced separately. The amplitude<br />

display is invalidated.<br />

Interpretation<br />

The simple addition of the carrier and information<br />

signal is not suited for the generation of frequency<br />

conversion (modulation). Both unmodulated signals<br />

remain separate. There is no frequency shift<br />

of the AF signal into the range of higher frequencies,<br />

as is the standard case for modulation. In<br />

order to maintain modulation, the carrier and the<br />

modulating signal have to be supplied to an element<br />

with non-linear characteristic.<br />

59


TPS <strong>7.2.1.3</strong><br />

Solutions<br />

6 The Single Sideband AM (SSB)<br />

Experiment results<br />

6.1 Investigating the dynamic characteristic<br />

of the SSB<br />

6.2 Spectrum of the SSB<br />

6.2.1 SSB RC<br />

6.1.1 SSB RT<br />

Table 6.2.1-1: SSB RC spectrum<br />

Signal parameter Analyzer settings<br />

A C : 0.32 V V 1 : 5<br />

f C : 20.0 kHz b : 100 Hz<br />

f r : 50 kHz<br />

A M : 2 V T : 40 s<br />

f M : 2 kHz<br />

Diagram 6.1.1-1: Dynamic characteristic of the SSB RC<br />

signal<br />

(1): Modulating signal s M<br />

(t)<br />

(2): <strong>Modulation</strong> product at the output of CH2<br />

The SSB RC signal resembles the DSB signal in<br />

terms of its dynamic characteristic.<br />

ARC<br />

045 .<br />

k = = = 021 .<br />

A 21 .<br />

C<br />

20log<br />

m<br />

t =<br />

2 k<br />

(6-4)<br />

V 2<br />

f<br />

KHz<br />

Measurement<br />

S( n)<br />

Name<br />

V<br />

S AM (n)<br />

V<br />

Theory<br />

S AM (n)<br />

10 18 LSL 3.0 0.06 0.00<br />

2 20 carrier 4.5 0.45 0.00<br />

2 22 USL 8.0 0.80 1.00<br />

V<br />

6.1.2 SSB SC<br />

Diagram 6.2.1-1: SSB RC<br />

spectrum f M<br />

= 2 kHz<br />

Diagram 6.1.2-1. SSB SC<br />

time characteristic<br />

(1): Modulating signal s M<br />

(t)<br />

(2): Modulated signal s SSBsc (t)<br />

The modulated SSB SC signal is a pure sinusoidal<br />

signal when the carrier and the unwanted sideband<br />

have been completely suppressed.<br />

60


TPS <strong>7.2.1.3</strong><br />

Solutions<br />

6.2.2 SSB sc<br />

6.3 SSB demodulation<br />

Table 6.2.2-1: SSB SC spectrum<br />

Signal parameter Analyzer settings<br />

A C : 0.32 V V 1 : 5<br />

f C : 20.0 kHz b : 100 Hz<br />

f r : 50 kHz<br />

A M : 2 V T : 40 s<br />

f M : 2 kHz<br />

V 2<br />

f<br />

KHz<br />

Measurement<br />

S( n)<br />

Name<br />

V<br />

S AM (n)<br />

V<br />

Theory<br />

S AM (n)<br />

10 18 LSL 3.0 0.06 0.00<br />

2 22 USL 8.0 0.80 1.00<br />

V<br />

Diagram 6.3-1: Modulating and demodulated signal in SSB<br />

(1): Modulating signal s M<br />

(t)<br />

(2): Demodulated signal s D<br />

(t)<br />

The synchronous demodulation of a SSB RC signal<br />

provides a perfectly suitable demodulated signal.<br />

The phase-shift set by the phase controller of the<br />

CF transmitter occurs between the modulating signal<br />

s M (t) and demodulated signal s D (t). Any<br />

influence on the amplitude of the demodulated<br />

signal cannot be detected. The following applies<br />

for the demodulated signal:<br />

s<br />

D<br />

AC<br />

m<br />

( t ) = cos 2π fM<br />

t±<br />

φ<br />

4<br />

( )<br />

Diagram 6.2.2-1: SSB SC<br />

spectrum f M<br />

= 2 kHz<br />

Diagram 6.3-2: Modulating and demodulated signal for<br />

SSB SC<br />

(1): Modulating signal s M<br />

(t)<br />

(2): Demodulated signal s D (t)<br />

Also in the case of SSB signals the carrier has no<br />

influence on synchronous demodulation. It can be<br />

switched on and off at will.<br />

61


TPS <strong>7.2.1.3</strong><br />

Solutions<br />

7 The ring modulator<br />

Answers<br />

7.1 The ring modulator provides an AM signal<br />

with carrier suppression. The line of the<br />

modulating signal is missing in the output<br />

spectrum for f = f M .<br />

7.2 In balanced modulators frequency-periodic<br />

modulation spectra are produced.<br />

Consequentily the wanted bands have to be<br />

filtered out, i.e. the interfering sidebands<br />

have to be suppressed for the sake of a narrow<br />

transmission bandwidth.<br />

7.3 All of the circuits which have been used for<br />

modulation have one feature in common: a<br />

non-linear characteristic. This is true in particular<br />

for the mixer, multiplier, ring modulators<br />

etc. A switch can be seen as a very<br />

extreme case, its characteristic has abrupt<br />

step changes.<br />

Experiment results<br />

Diagram 7.1-2: Dynamic characteristic of modulating signal<br />

and modulated signal (CARRIER ON)<br />

(1): modulating signal s M<br />

(t)<br />

(2): modulated signal<br />

7.2 Spectrum at the output of the ring modulator<br />

Table 7.2-1: Spectrum of the ring modulator<br />

Signal parameter<br />

Analyzer settings<br />

A C : V V 1 : 2<br />

f C : 20.0 kHz b : 100 Hz<br />

f r : 50 kHz<br />

A M : 2 V T : 40 s<br />

f M : 2 kHz<br />

Measurement<br />

Theory<br />

V 2<br />

f<br />

KHz<br />

Name<br />

S( n)<br />

V<br />

S AM (n)<br />

V<br />

S AM (n)<br />

V<br />

2 18 LSL2 5.20 1.30<br />

2 22 LSL1 5.30 1.32<br />

Diagram 7.1-1: Dynamic characteristic of modulating signal<br />

and modulated signal (CARRIER OFF)<br />

(1): modulating signal s M<br />

(t)<br />

(2): modulated signal<br />

2 58 USL1 1.60 0.4<br />

2 62 USL2 1.70 0.43<br />

The modulation product has a certain similarity to<br />

the PAM signal for the special case of a symmetrical<br />

duty cycle t/T P = 50%.<br />

Diagram 7.2-1: Spectrum of the ring modulator<br />

62


TPS <strong>7.2.1.3</strong><br />

Solutions<br />

Observation:<br />

Balanced modulators have an extended amplitude<br />

spectrum. A double line appears for odd number<br />

multiples of the carrier frequency. When comparing<br />

theory with the measurement results it is conspicuous<br />

that the measured spectral amplitudes<br />

turn out to be smaller as the frequency increases.<br />

The reason for this lies in the low cutoff frequency<br />

of the modulator ICs. High frequency spectral<br />

components are more severely attenuated by the<br />

modulator than lower frequency components.<br />

When the carrier is switched on (CARRIER ON)<br />

additional lines appear for odd numbered multiples<br />

of the carrier frequency.<br />

63


TPS <strong>7.2.1.3</strong><br />

Solutions<br />

64


TPS <strong>7.2.1.3</strong><br />

Keywords<br />

Keywords<br />

AM demodulation ............................................................................................................................25<br />

amplitude deviation ..........................................................................................................................23<br />

amplitude error .................................................................................................................................57<br />

amplitude spectrum ..........................................................................................................................10<br />

auxiliary oscillation ..........................................................................................................................26<br />

baseband ...........................................................................................................................................11<br />

beat ............................................................................................................................................ 37, 59<br />

carrier frequency technology............................................................................................................24<br />

carrier recovery ................................................................................................................................20<br />

carrier suppression............................................................................................................... 42, 52, 62<br />

channel filter .....................................................................................................................................19<br />

control characteristic ........................................................................................................................35<br />

phase delay .......................................................................................................................................53<br />

demodulation, coherent ....................................................................................................................26<br />

differential transformer ....................................................................................................................47<br />

double sideband AM ........................................................................................................................29<br />

efficiency ..........................................................................................................................................52<br />

envelope curve ........................................................................................................................... 23, 29<br />

envelop curve modulation ................................................................................................................25<br />

frequency conversion .......................................................................................................................29<br />

frequency conversion .......................................................................................................................52<br />

index .................................................................................................................................................21<br />

input filter .........................................................................................................................................18<br />

interfering sideband ..........................................................................................................................48<br />

inverted position ........................................................................................................................ 24, 54<br />

line structure .....................................................................................................................................51<br />

linear distortion ................................................................................................................................54<br />

Lissajous-figure ................................................................................................................................53<br />

loop filter ................................................................................................................................... 20, 35<br />

lowpass filter ....................................................................................................................................20<br />

message signal ..................................................................................................................................10<br />

mixing ...............................................................................................................................................52<br />

modulation ........................................................................................................................................10<br />

modulation index ....................................................................................................................... 23, 53<br />

modulation product ..........................................................................................................................23<br />

modulation trapezoid ................................................................................................................. 31, 53<br />

modulator..........................................................................................................................................11<br />

modulator constant ...........................................................................................................................23<br />

multiplex signal ................................................................................................................................19<br />

normal position .......................................................................................................................... 24, 54<br />

Nyquist slope ....................................................................................................................................41<br />

original frequency band....................................................................................................................11<br />

oscilloscope ......................................................................................................................................13<br />

overmodulation .................................................................................................................................52<br />

phase change.....................................................................................................................................29<br />

phase detector ...................................................................................................................................35<br />

phase error ........................................................................................................................................26<br />

phase shift .........................................................................................................................................57<br />

phase shifter......................................................................................................................................19<br />

65


TPS <strong>7.2.1.3</strong><br />

Keywords<br />

PLL circuit........................................................................................................................................20<br />

processing of the message ................................................................................................................12<br />

product modulator ..................................................................................................................... 18, 47<br />

push-pull modulator .........................................................................................................................47<br />

relaying the message ........................................................................................................................12<br />

residual carrier ..................................................................................................................................41<br />

ring modulator ..................................................................................................................................47<br />

side oscillation ..................................................................................................................................24<br />

sideband vector .................................................................................................................................25<br />

signal, analog ....................................................................................................................................10<br />

signal, deterministic ...........................................................................................................................9<br />

signal, digital ....................................................................................................................................10<br />

signal, stochastic.................................................................................................................................9<br />

single sideband AM..........................................................................................................................41<br />

spectral domain ................................................................................................................................10<br />

spectrum analyzer .............................................................................................................................13<br />

square-wave signal ...........................................................................................................................10<br />

superheterodyne ................................................................................................................................13<br />

switching operation ..........................................................................................................................47<br />

synchronous demodulation ...............................................................................................................26<br />

synchronous demodulator ................................................................................................................20<br />

telecommunication system ...............................................................................................................12<br />

time continuous ..................................................................................................................................9<br />

time domain ......................................................................................................................................10<br />

time function ......................................................................................................................................9<br />

time law ............................................................................................................................................14<br />

time law of electrical communications engineering ........................................................................51<br />

transmission bandwith ............................................................................................................... 43, 56<br />

transmission channel ........................................................................................................................12<br />

transmission of the message.............................................................................................................12<br />

uncertainty relation ...........................................................................................................................14<br />

VCO ..................................................................................................................................................35<br />

vector diagram ..................................................................................................................................24<br />

wanted sideband ...............................................................................................................................48<br />

66

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!