18.11.2014 Views

Partial Differential Equations

Partial Differential Equations

Partial Differential Equations

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

1.2 The Laplace Equation 17<br />

y<br />

2δ<br />

δ<br />

x x 0<br />

0<br />

r<br />

∫<br />

|u(x) − g(x 0 )| =<br />

∣<br />

∫<br />

≤<br />

∫<br />

=<br />

∂B(0;r)<br />

∂B(0;r)<br />

Fig. 1.8.<br />

K r (x, y) ( g(y) − g(x 0 ) ) dS ∂B(0;r) (y)<br />

∣<br />

K r (x, y) ∣ ∣ g(y) − g(x 0 ) ∣ ∣ dS∂B(0;r) (y)<br />

∂B(0;r)∩B(x 0 ;2δ)<br />

∫<br />

+<br />

∂B(0;r)\B(x 0 ;2δ)<br />

K r (x, y) ∣ ∣ g(y) − g(x 0 ) ∣ ∣ dS∂B(0;r) (y)<br />

≤ ε 2 + 2‖g‖ r 2 − |x| 2<br />

∞<br />

rδ n vol(S n−1 )r n−1<br />

K r (x, y) ∣ ∣ g(y) − g(x 0 ) ∣ ∣ dS∂B(0;r) (y)<br />

for x ∈ B(x 0 1 r<br />

; δ) ∩ B(0; r), where, apart from K r (x, y) = 2 −|x| 2<br />

nα(n)r |y−x|<br />

, we used that |x − y| ≥ δ for<br />

n<br />

y ∈ ∂B(0; r) \ B(x 0 ; 2δ) holds because of x ∈ B(x 0 ; δ). Now, if x tends to x 0 , then the second summand<br />

of the estimate tends to zero as well, and the claim follows.<br />

Corollary 1.2.17. Harmonic functions are real analytic.<br />

Proof. One represents the harmonic function by the Poisson formula (1.12) on small balls in the domain<br />

of definition. One observes that the integrand is real analytic, and one uses uniform convergence on small<br />

balls to interchange the power series expansion with the integral.<br />

Exercise 1.2.18. Let R n + := {x = (x 1 , . . . , x n ) ∈ R n | x n > 0}.<br />

(a) For x ∈ R n +, define<br />

ϕ x : R n + → R,<br />

y ↦→ Φ(y 1 − x 1 , . . . , y n−1 − x n−1 , y n + x n ),<br />

where Φ is the fundamental solution for the Laplace equation ∆u = 0 on R n . Show:<br />

(i) ϕ x is harmonic.<br />

(ii) ϕ x has a continuous extension to R n + = {x = (x 1 , . . . , x n ) ∈ R n | x n ≥ 0} such that<br />

(b) Define a function<br />

Show:<br />

2<br />

(x, y) =<br />

(i) ∂G<br />

∂ν<br />

x n<br />

nα(n) |y−x|<br />

. n<br />

ϕ x (y) = Φ(y − x) ∀y ∈ ∂R n +.<br />

G: {(x, y) ∈ R n + × R n + | x ≠ y} → R,<br />

(x, y) ↦→ Φ(y − x) − ϕ x (y).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!