19.11.2014 Views

Download Presentation - Arrow Electronics

Download Presentation - Arrow Electronics

Download Presentation - Arrow Electronics

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

How Long Will My Battery Last?<br />

Understanding system design for maximum battery life<br />

NXP Semiconductor


Overview<br />

– Energy efficient “green” products and battery-powered devices are<br />

becoming more common<br />

– Consequently, designing for optimum battery life and power efficiency is<br />

increasingly important.<br />

– How is the life of your battery dependent on far more than just the active<br />

power consumption of your components?<br />

2


Agenda<br />

– Active Power vs. Standby Power<br />

– Understanding power specifications<br />

– Understanding Duty Cycle<br />

– Application Example<br />

– The <strong>Arrow</strong> Oryx board<br />

– Detailed Power analysis by component type<br />

– MCU<br />

– RF<br />

– Interface<br />

– Logic and discrete<br />

Next Steps: recommendations for next generation Data Collection System<br />

Data Collection System Block Diagram<br />

– Summary<br />

3


Active vs. Standby Power<br />

– All devices specify maximum/typical<br />

– Active power consumption (device fully functioning)<br />

– Standby power consumption (device sleeping/standby and other modes)<br />

– Real power usage (Duty Cycle) measured by ratio of time spent in each<br />

of these modes<br />

– Examples Duty Cycle (Active/Total) for common battery power<br />

applications<br />

– Data collection system:<br />

– Transmitter Nodes: about 1%<br />

– Receiver Node (host): Similar (usually line powered)<br />

– Tablet computer: Varies depending on use<br />

– 100% for video streaming<br />

– Less than 50% for text input<br />

– Note that different components used for different operations<br />

4


Application Example<br />

THE ORYX BOARD<br />

5


Application Example<br />

– System Controller: <strong>Arrow</strong> Oryx Board<br />

6


ORYX Board Functional Block Diagram<br />

7


ORYX Board Functional Elements<br />

8


Power Supply<br />

How much power is there to work with?<br />

Power Source Options:<br />

– External (e.g. Solar with LTC3105)<br />

– From LPC11U14 USB Interface<br />

– From LPCXpresso pinning interface<br />

– From LPC-Link Debugger USB Interface<br />

Rechargeable Lithium Battery<br />

LIR2032 with 45mAh<br />

Battery<br />

Options<br />

9


Key Components Power Consumption<br />

Component Function Active Modes Low Power Modes<br />

LPC11U14<br />

ADXL345 on I²C Bus*<br />

PCF8523 on I²C Bus*<br />

Cortex-M0 Microcontroller<br />

with USB and Smart Card<br />

IF<br />

3-Axis Accelerometer with<br />

Dual IRQ for MCU wakeup<br />

Real-Time Clock with IRQ<br />

for MCU wakeup<br />

Max. 12mA (50MHz)<br />

Typ. 2mA (12MHz)<br />

Avg. 130µA / MHz<br />

Active Communication on I²C<br />

Bus: 150 µA<br />

Active Communication on I²C<br />

Bus: 200µA<br />

Deep Sleep: 360µA<br />

Power Down: 2µA<br />

Deep Power Down: 220nA<br />

Standby Typ. 100nA<br />

Time Keeping: 150nA<br />

LM75B on I²C Bus* Temperature Sensor Active Measuring: 100µA Shutdown Mode: 200nA<br />

PCF8885 on I²C Bus*<br />

AT45DB041D on SPI Bus<br />

LS013B4DN04 on SPI Bus<br />

8 Channel Capacitive<br />

Touch Sensor with MCU<br />

wakeup<br />

4 MBit serial Flash,<br />

separate Power switch<br />

96x96 memory LCD,<br />

separate Power switch<br />

Active 10µA<br />

Read 13mA (50 MHz)<br />

Page Program 22mA<br />

Erase: 24mA<br />

Sleep Mode: 100nA<br />

Auto Standby: 20µA<br />

Deep Power Down: 1.5 µA<br />

1 Hz Update: 4µA Standby: 2µA<br />

* There is an optional power control on the two I²C pull-up resistors. By disabling these, the power down current consumption of the I²C-pins of the LPC11U14 can be reduced .<br />

10


Min/Max Power Consumption Range<br />

LDO 3.0V<br />

I²C<br />

SPI<br />

All Components Active: 14mA / 42 mW<br />

MCU<br />

Power Switch<br />

Power Down Mode: 6.57µA / 21µW<br />

2µA<br />

Cap<br />

LCD<br />

Flash<br />

– MCU in Power Down<br />

RTC<br />

Accl<br />

2µA<br />

– (Brown Out Detect disabled)<br />

– LCD 0.5 Hz keep alive signal<br />

– RTC Time-keeping 120nA<br />

– Serial Flash OFF<br />

– Capacitive Sense & Accelerometer in Sleep Mode<br />

0.57µA<br />

Note:<br />

MCU Deep Power Down reduces<br />

consumption to 220nA but will Tristate IO-<br />

Pins (so nothing is done)<br />

Duty Cycle = 100%<br />

For Battery LIR2032 with 45mAh → 3.2 hours runtime (worst)<br />

→ 285 days runtime (best)<br />

11


Doing Something Useful:<br />

Analog Data Acquisition<br />

14 mA<br />

1. Read ADC Data<br />

20ms<br />

2. Read I²C Bus Temperature<br />

Sensor<br />

6.57 µA<br />

3. Update Display<br />

1s<br />

4. Go to Power Down Mode<br />

Average Current<br />

=<br />

( µA×<br />

20ms)<br />

14000 + (6.57µA×<br />

980ms)<br />

1000ms<br />

= 286.44µA<br />

Duty Cycle = 20/1000= 2%<br />

For Battery LIR2032 with 45mAh → 6.5 days runtime<br />

12


Doing Something Useful:<br />

Digital Clock<br />

14 mA<br />

1. Read Clock Data via I²C once<br />

per minute<br />

20ms<br />

6,57 µA<br />

2. Update Display<br />

3. Go to Power Down Mode<br />

60s<br />

=<br />

( µA×<br />

20ms)<br />

14000 + (6.57µA×<br />

59980ms)<br />

60000ms<br />

Average Current = 11.23 µA<br />

Duty Cycle = 20/60000= 0.03%<br />

For Battery LIR2032 with 45mAh → 166 days runtime<br />

13


Oryx Power Reduction Tips<br />

– Maximum Display Update Speed is limited by SPI Interface<br />

to 0.75Mbps<br />

– Set MCU speed to match max SPI speed<br />

– Any more performance is wasted<br />

– Only update parts of display that change<br />

– LCD draws most power when state of pixels change<br />

– Less Lines to update = less time to finish and go back to<br />

sleep<br />

– Don‘t blank it and reload each time: just update<br />

– Use external Brown Out detection<br />

– MCU internal BOR consumes +50µA<br />

14


Taking it to the Limits of Battery Life<br />

MCU ANALYSIS<br />

15


LPC11U14 Block Diagram<br />

Up to 40 GPIOs<br />

Power<br />

Profiles<br />

2 SSP<br />

USB<br />

Smart Card<br />

Interface<br />

16


LPC11U14 Feature List<br />

– ARM Cortex-M0 core @ 50 MHz<br />

– Memories:<br />

– Up to 32 kB Flash, 6 kB SRAM<br />

– Boot ROM<br />

– Power Profiles<br />

– Serial interfaces:<br />

– USB, 2 SSP, I 2 C-bus interface with<br />

Fast-mode Plus mode, USART with<br />

Smart Card Interface<br />

– Analog peripherals: 8-ch/10-bit ADC<br />

– Temperature range: −40C to +85C<br />

– Packages: 48-pin LQFP, 33-pin HVQFN,<br />

48TFBGA (4.5x4.5mm)<br />

– Other Peripherals:<br />

– Up to 40 General Purpose I/O<br />

– Four general purpose counter/timers<br />

– Programmable Windowed Watchdog<br />

Timer (WWDT)<br />

– 12 MHz internal Oscillator<br />

– Clock output function with divider<br />

– Brown-Out Detect (BOD) with<br />

4 thresholds<br />

– Boundary Scan<br />

– Unique device serial number for<br />

identification<br />

– Single 3.3V power supply (1.8V to 3.6V)<br />

– Pin-to-pin compatible with LPC134x series<br />

17


Power Profiles of LPC11U14<br />

Embedded ROM code for optimized power control<br />

CPU Performance<br />

Flexible and easy switching<br />

between power profiles<br />

during runtime<br />

~30% Increase in<br />

Default<br />

performance<br />

~20-30% reduction<br />

in active power<br />

CPU Efficiency<br />

Lowest Active Power<br />

Runtime<br />

18


What is CoreMark?<br />

Processors and associated systems are getting increasingly complex requiring<br />

increasingly complex benchmarks to analyze. The current and future EEMBC<br />

benchmarks are aimed at specific embedded market segments and are very<br />

successful at approximating real-world performance of embedded devices.<br />

However, there is also a need for a widely-available, generic benchmark<br />

specifically targeted at the processor core. Introducing CoreMark -- Developed by<br />

EEMBC, this is a simple, yet sophisticated, benchmark that is designed specifically<br />

to test the functionality of a processor core. Running CoreMark produces a<br />

single-number score allowing users to make quick comparisons between<br />

processors.<br />

19


Coremark Scores<br />

20


Current Measurements While Running<br />

CoreMark Can Be Found in NXP Data Sheets<br />

/* set_power mode options */<br />

#define PWR_DEFAULT 0<br />

#define PWR_CPU_PERFORMANCE 1<br />

#define PWR_EFFICIENCY 2<br />

#define PWR_LOW_CURRENT 3<br />

21


Comparison of Data Sheet Current vs. CoreMark<br />

Current for ATMEGA644PA<br />

22


Comparison of Data Sheet Current vs. CoreMark<br />

Current for PIC24FJ64<br />

23


Comparison of Data Sheet Current vs. CoreMark<br />

Current for MSP430FG4618<br />

24


Comparison of Data Sheet Current vs. CoreMark<br />

Current for LPC1114<br />

25


Detailed Power Analysis by Component Type<br />

26


Energy Efficiency<br />

27


The Effect of Input Voltage on Energy<br />

28


The Effect of Duty Cycle<br />

29


But how long will my battery last?<br />

The absolute battery life obviously depends on the application, but<br />

we can compare the three microcontrollers when running a<br />

repetitive CoreMark workload with a period of 10 seconds. All<br />

microcontrollers running at 6 MHz powered by a 240-mAhr CR2032<br />

coin cell battery.<br />

The results are:<br />

• LPC1114:<br />

• MSP430:<br />

• PIC24:<br />

3.6 million iterations or 100 hrs of life<br />

1.2 million iterations or 33 hrs of life<br />

0.432 million iterations or 12 hrs of life<br />

… your results may vary<br />

30


Taking it to the Limits of Battery Life<br />

LOW POWER RF<br />

31


The Wireless Evolution<br />

Power<br />

NXP focus<br />

market<br />

Bluetooth<br />

(short-range voice)<br />

Wi-Fi<br />

(internet)<br />

IEEE802.11x<br />

UWB<br />

(usb2 cable replacement)<br />

WSNs<br />

(hundreds of applications)<br />

IEEE802.15.1<br />

IEEE802.15.4<br />

250 kbps 1 Mbps 11-54 Mbps 200+ Mbps<br />

Speed


RF Comparison Usage and Scenarios<br />

Increasing priority<br />

Implementation<br />

Price<br />

Power<br />

Co-existance with<br />

other networks<br />

Large-scale<br />

Networking stack<br />

Small-scale<br />

Networking stack<br />

Wireless<br />

Microcontroller<br />

design route<br />

Interoperability<br />

Encryption<br />

Datarate<br />

Bluetooth Low High Poor No Yes No Yes Fair High<br />

BT LE Low Low Poor No Yes No Yes Fair High<br />

Proprietary Low Low No No No Yes No No Low<br />

802.15.4 Low Low Good Yes Yes Yes Yes Good Low<br />

WiFi High High Good Yes Yes No Yes Good High<br />

– IEEE802.15.4 offers optimal solution<br />

– Designed to operate in large networks of devices<br />

– Lowest cost. Flexible design solution for many different applications<br />

– No ‘application-profiles’ ensures design flexibility<br />

– Lowest power with prospect of interoperability<br />

– Co-existence with other wireless networks (e.g. Wi-Fi)


JN5148 Single Chip Wireless Microcontroller<br />

– Microcontroller:<br />

– High Performance 32-bit RISC CPU core – programmable clock, 4-32MHz<br />

– 8mm x 8mm sawn QFN 56 leads<br />

– Operating voltage 2.0V to 3.6V<br />

– Rich User Peripherals – mixed digital and analogue<br />

– UARTs, SPI, 2-Wire Serial (I²C), GPIO, Timers, 3 x PWM, 12-bit ADC, DAC, Comparators<br />

– JTAG debug port,<br />

Watchdog timer<br />

RAM<br />

128kB<br />

ROM<br />

128kB<br />

SPI<br />

– Large memory footprint - 128kBytes RAM<br />

– 128kBytes ROM for 15.4 MAC, stacks<br />

– IEEE802.15.4 2.4GHz transceiver<br />

– Time of Flight ranging engine<br />

– 98dB link budget, achieving 30-50m indoors<br />

2.4GHz<br />

Radio<br />

Power<br />

Management<br />

Ranging Engine<br />

O-QPSK<br />

Modem<br />

IEEE802.15.4<br />

MAC<br />

Accelerator<br />

128-bit AES<br />

Encryption<br />

Accelerator<br />

RISC CPU<br />

32-byte<br />

OTP eFuse<br />

2-wire serial<br />

Timers<br />

UARTs<br />

4-Wire Audio<br />

Sleep Counters<br />

12-bit ADC,<br />

comparators<br />

11-bit DACs,<br />

temp sensor<br />

– 128-bit AES encryption, highly secure networking<br />

– System implementation<br />

– Low sleep power consumption - 1.3µA with timer<br />

– Low power - 15mA TX, 18mA RX (35% less than competition)<br />

– External BOM (


Analog Peripherals<br />

• A/D Converter<br />

» 12 bit SAR for excellent precision<br />

» Four (4) open channels<br />

» Internal temperature<br />

» Internal supply voltage<br />

» Single or continuous conversion<br />

» Conversion time 40μsecs<br />

» Offset voltage Section 22.3.8 of<br />

the datasheet<br />

• Comparator (two)<br />

» Rail-to-rail inputs<br />

» Programmable hysteresis<br />

• DAC (two)<br />

» 12 bit<br />

» Min conversion time of 10μsecs<br />

(2MHz clock)


ADC Versus Comparator<br />

• A/D Converter<br />

» Need to wake up and take a<br />

reading<br />

» Consumes 655µA for every<br />

12-bit ADC reading<br />

» Also, power consumed to<br />

wake up processor<br />

• Comparator<br />

» Always on, even if asleep<br />

» Consumes only 0.8µA<br />

» Instant interrupt trigger<br />

» Use for voltage, temperature,<br />

etc.


Power Up Curve<br />

– Key design requirement for most Low Power RF applications<br />

– TX current = 15.0mA<br />

– RX current = 17.5mA<br />

– Green Energy Specification<br />

– Meets requirements for 3 pulses from


Power Management<br />

Feature<br />

In Active Processing<br />

mode: User can trade off<br />

processing power against<br />

current consumption<br />

CPU Speed Power Consumption<br />

4 MHz 2.75mA<br />

8 MHz 3.85mA<br />

16 MHz 6.1mA<br />

32 MHz 10.6mA<br />

Sleep power consumption<br />

Additive Base<br />

Chip<br />

Module<br />

Sleep with I/O wake-up 0.12µA 1.3µA<br />

Sleep with I/O and 32kHz RC timer wakeup 1.3µA 2.6µA<br />

Retain all 128KB of RAM in sleep<br />

+ 2.2µA<br />

Comparator in sleep<br />

+ 1.2µA<br />

32kHz crystal oscillator as an alternative to 32kHz RC<br />

+ 0.4µA<br />

Deep sleep mode wake on reset or I/O event<br />

90nA


Battery Life when Pinging Data Such as RFID<br />

Number of Years<br />

– Battery life depends upon how often Tags transmit data:<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Battery Life (Years)<br />

0 10000 20000 30000 40000 50000 60000 70000<br />

Ping Interval (mS)<br />

Ping Interval<br />

(ms)<br />

1000<br />

(once a second)<br />

5000<br />

(once every 5<br />

Battery Life (yrs)<br />

seconds)<br />

30000<br />

(once every 30<br />

seconds)<br />

60000<br />

(once a minute)<br />

*Assuming Tag is powered by a 560mAh coin cell (CR2477)<br />

Approximate<br />

Battery<br />

Life*<br />

193 days<br />

2.4 years<br />

7.5 years<br />

9.8 years


Communication Modes<br />

Remote<br />

Node<br />

2<br />

7<br />

8<br />

1<br />

Message<br />

MAC Ack<br />

App Ack<br />

MAC Ack<br />

Router<br />

– MAC acknowledge and application acknowledge<br />

– Assures that command was received<br />

– Remote node has to stay in receive mode for a very long time<br />

– Half of bandwidth is used for application acknowledge<br />

– Used when remote node needs absolute confirmation that message<br />

was received and processed<br />

– Large power consumption<br />

6<br />

3<br />

5<br />

4<br />

Message<br />

MAC Ack<br />

App Ack<br />

MAC Ack<br />

Destination<br />

Node


Communication Modes<br />

Remote<br />

Node<br />

1 3<br />

Message<br />

– MAC acknowledge only<br />

Router<br />

2 4<br />

MAC Ack<br />

Message<br />

MAC Ack<br />

Destination<br />

Node<br />

– Remote node powers off as soon as MAC ack is received<br />

– Much lower power consumption<br />

Remote<br />

Node<br />

1<br />

Message<br />

• No Acknowledge<br />

Router<br />

• Remote node powers off immediately after sending<br />

• Remote node has no idea if data was received<br />

• RFID type of applications<br />

2<br />

3<br />

Message<br />

MAC Ack<br />

Destination<br />

Node


Maximizing Battery Life<br />

– NXP LPRF devices have on board regulator<br />

– Apply voltage between 3.3V and 2.0V<br />

– Coin cells or alkaline can meet this requirement<br />

– No Super Cap required<br />

– Even works if external serial flash for code storage<br />

– Internal ADC measures battery voltage<br />

– Do not waste user ADC channels<br />

– Can send battery measurement to destination node<br />

Alkaline<br />

or coin<br />

cell<br />

+<br />

Regulator<br />

Super<br />

cap<br />

JN5168<br />

Serial flash


Taking it to the Limits of Battery Life<br />

INTERFACE ANALYSIS<br />

43


Capacitive Proximity Sensor Family<br />

Switching and detecting as from ghost hands<br />

Value proposition of NXPs Cap Sensors:<br />

• Lowest power Sensor in the market (typ. 3µA … 10µA)<br />

• Extended battery voltage operating range (VDD = 2.5V to 9V)<br />

• Auto (self) calibration disregards contamination<br />

• Adjustable sensitivity and response time for each channel<br />

separate<br />

Part PCF8883T/1 PCF8885T/1 /2 ; PCA8885T/Q900/1 PCA8886T/Q900/1<br />

Key<br />

Features<br />

• Single channel<br />

• 3uA (typ.)<br />

• Touch and proximity<br />

• Does not require a microcontroller<br />

• 8 channel<br />

• 10µA (typ); Sleep Mode:


F<br />

PC 8885 8-Channel Capacitive Proximity Sensor<br />

A<br />

Block Diagram<br />

CPC 8<br />

Sensor logic<br />

Function description<br />

For each sensor location a pair of “contact plates” are needed.<br />

Matrix with 28 sensors can be controlled with a single device, 80 with 2<br />

devices<br />

When a key is touched 2 things happen:<br />

the key# pressed is written to the sense register<br />

generate an interrupt<br />

The interrupt will alert the microcontroller and the switch code can be<br />

read out. With accessing the I²C-bus the interrupt is cleared and the<br />

circuit is ready for the next touch.<br />

CPC 2<br />

VSS VDD SCL SDA SA0 INT<br />

OSC<br />

Supply<br />

Interrupt<br />

Sense register 1<br />

Sense register 2<br />

I 2 C-bus interface<br />

Contact plates<br />

Key Features<br />

• Based on the EDISEN patented algorithm<br />

• I 2 C-bus interface<br />

• One sub address to enable up to 80 keys with two devices<br />

• Sleep mode, activated via I 2 C-bus or external input<br />

• Three sensing modes: one key, two keys and N-keys<br />

• Two event handling modes: direct mode and latching mode<br />

• Adjustable scan frequency<br />

• Channel masking feature<br />

• Fast start up mode<br />

• AEC-Q100 compliant automotive qualification (PCA8885)<br />

45


NXP Real-Time Clock Families<br />

Low-Power RTC Family (PCF85063, PCF2123, PCF8523):<br />

Main Features / Value Proposition:<br />

‣ Industry lowest power consumption (


NXP Ultra Low Power RTCs<br />

Key Features:<br />

• Accurate time based on 32kHz quartz<br />

oscillator, electrical tuned<br />

• Time from seconds ... Years<br />

• Timer, Counter, Watchdog,<br />

• Low power: 100nA operating current<br />

• SPI-bus (PCF2123), I 2 C-bus (PCF8523)<br />

Applications:<br />

Card readers<br />

Metering (gas, water, electric)<br />

Handheld, battery operated<br />

Medical, home blood-pressure, diabetes<br />

Smart cards with one-time-password<br />

Cut system power, by just running the<br />

RTC to wake-up the controller periodically<br />

47


NXP Small Footprint Low Power RTCs<br />

Available Versions:<br />

– PCF85063TP: I 2 C-bus, Limited feature set, 8-pin package<br />

– PCF85063ATL: I 2 C-bus, Full feature set, 8-pin package<br />

– PCF85063BTL: SPI-bus, Full feature set + CLKOUT, 10-pin package<br />

Features<br />

– Low power consumption: at<br />

V DD =2.0V,T AMB =25°C, no bus activity, and<br />

CLKOUT active, I DD =260 nA (typ.)<br />

– Very small footprint packages<br />

o HXSON8, 2.1mm x 3.1mm x 0.5mm;<br />

0.5-mm pitch<br />

o HXSON10, 2.7mm x 2.7mm x 0.5mm;<br />

0.5-mm pitch<br />

– Two interfaces supported; I 2 C and SPI<br />

– Two integrated programmable oscillator<br />

capacitors<br />

o For 7 pF load and 12 pF load<br />

Target Applications<br />

– Printers<br />

– Copy Machines<br />

– Digital Still Cameras<br />

– Digital Video Cameras<br />

Function PCF85063TP PCF85063ATL PCF85063BTL<br />

Electronic tuning Yes Yes Yes<br />

I 2 C-bus<br />

SPI interface<br />

Sampling<br />

P<br />

1 min interrupt No Yes Yes<br />

Alarm facility<br />

Timer<br />

CLK out<br />

CLK enable<br />

Interrupt output<br />

Package<br />

SOT number<br />

No<br />

No<br />

Yes<br />

No<br />

Yes<br />

HXSON-8 †<br />

SOT1052<br />

† 0.5-mm pitch<br />

P<br />

Yes<br />

Yes<br />

Yes<br />

No<br />

Yes<br />

HXSON-8 †<br />

SOT1052<br />

P<br />

Yes<br />

Yes<br />

Yes<br />

Yes<br />

Yes<br />

HXSON-10 †<br />

SOT1197<br />

48


Taking it to the Limits of Battery Life<br />

LOGIC ANALYSIS<br />

49


The Power of Logic<br />

– 12 primary logic families (ranked by standby current)<br />

Logic<br />

Family<br />

Operating<br />

Voltage<br />

Standby<br />

Current<br />

µA<br />

Max Drive<br />

mA<br />

AUP 0.8-3.6 0.9 4<br />

LV 1.0-3.6 20 8<br />

LVC 1.2-3.6 20 24<br />

AVC 1.2-3.3 20 8<br />

AHC 2.0-6.0 40 8<br />

ALVC 1.2-3.6 40 24<br />

HC 2.0-6.0 80 8<br />

ALVT 2.3-3.6 90 64<br />

FAST 4.5-5.5 90 24<br />

LVT 2.7-3.6 120-190 64<br />

ABT 4.5-5.5 250 64<br />

HEF4000 5.0-15.0 600 3<br />

50


Load Switches<br />

The ultimate power saving device<br />

Select the Active Devices based on specific application running. If the<br />

device is not needed, turn off its power!<br />

Low cost, distributed Load Switches allow highly granular control of<br />

power to every device in the system<br />

Ex: NX3P190<br />

– 1.1-3.6V supply voltage<br />

– 95mohms ON resistance<br />

– Maximum switch current: 500mA<br />

– Low ground current = 2 µA (Active)<br />

– Power off leakage current = 2 µA (Standby)<br />

– Note: if a device already has a standby mode LESS than 2 µA<br />

consider grouping several together on one load switch<br />

51


Load Switches<br />

More than just a FET<br />

Operating Voltage: up to 6.5V<br />

Drive Current: up to 3A<br />

Reverse Voltage<br />

Comparator<br />

IN<br />

Current<br />

Sense<br />

OUT<br />

Charge<br />

Pump<br />

EN<br />

Driver<br />

Logic<br />

Current<br />

Limiter<br />

UVLO<br />

R<br />

discharge<br />

Thermal<br />

Sense<br />

Fault<br />

Logic<br />

FAULT<br />

ILIMIT<br />

52


Load Switches<br />

Feature Examples<br />

Product Overview<br />

Part<br />

Input<br />

voltage<br />

(V)<br />

Ron @1.8 V<br />

(mW)<br />

Feature<br />

Max Current<br />

(A)<br />

Enable Pin<br />

Package<br />

(mm)<br />

Target<br />

Applications<br />

NX3P190UK 1.1 to 3.6 95 Slew rate 0.5 Active high<br />

WSCP4<br />

0.8X0.8,0.4p<br />

Mobile,<br />

computing<br />

NX3P191UK<br />

1.1 to 3.6 95<br />

SR, Load<br />

discharge<br />

0.5 Active high<br />

WSCP4<br />

0.8X0.8,0.4p<br />

Mobile,<br />

computing<br />

NX5P198UK 2.0 to 5.5 28<br />

SR, Reverse<br />

polarity<br />

3.0 Active high<br />

WCSP6<br />

1.0X1.5,0.5p<br />

Mobile,<br />

computing<br />

NX5P1039 1.8 to 5.5 20 Slew Rate 3.0 Active high<br />

WCSP6<br />

0.8x1.2,0.4p<br />

1.0X1.5, 0.5p<br />

Mobile,<br />

computing<br />

NX3P2553 2.5 to 6.5 85<br />

Constant<br />

current limit,<br />

UVLO, temp<br />

SD<br />

3.0<br />

Active high<br />

QFN:6 2.0x2.0<br />

PG: 3.0x3.0<br />

TV / LCD,<br />

computing<br />

53


Improving Oryx<br />

Going for ultimate power savings<br />

Load<br />

Switch<br />

* Load<br />

Switch<br />

Load<br />

Switch<br />

Load<br />

Switch<br />

Load<br />

Switch<br />

•Note: since Load Switch requires external enable control one<br />

device such as RTC interrupt or MCU (in standby mode) will not be<br />

controlled by Load Switch<br />

•Group several low power devices together on single Load Switch<br />

54


Example: “rotating globe” (with Load Switch)<br />

– Devices needed<br />

– Devices not needed<br />

Device<br />

Power<br />

Saved (uA)<br />

LPC-Link 2<br />

X<br />

O<br />

X<br />

Accelerometer 0.1<br />

Temp Sensor 0.2<br />

RTC 0.15<br />

FLASH 1.5<br />

X<br />

O X<br />

Load Switch - 2<br />

Total 1.95<br />

X<br />

O<br />

Extra life expected from Battery → x.x hours Little savings due to CPU intensive app<br />

55


Example: Real Time Clock (with Load Switch)<br />

– Devices needed<br />

– Devices not needed<br />

•Only the RTC has power:<br />

all other devices disabled<br />

via single load switch<br />

•RTC interrupt connects to<br />

load switch EN<br />

•At power up, MCU updates<br />

display then powers down<br />

X X<br />

X O<br />

Extra life expected from Battery → x.x days runtime<br />

X<br />

O<br />

X<br />

56


Taking it to the Limits of Battery Life<br />

ANALYSIS OF OTHER DEVICES<br />

57


Non-NXP Device Analysis (1)<br />

• LTC4071: Shunt Charger with<br />

Low Battery Disconnect<br />

• Standby Current (


Non-NXP Device Analysis (2)<br />

– Ultra Low Power Consumption<br />

– 1.35’’ Type LS013B4DN01: 6µW static content / 12 µW up-date at 1 Hz<br />

– < 1% compared to backlit TFT LCD of same size<br />

– app. 10% compared to HR TFT LCD of same size<br />

– suitable for energy self-sustaining applications<br />

– Excellent readability<br />

– Very thin: 0.55 - 1.53 mm depending on model<br />

Basic Working Principle<br />

Power Supply OFF<br />

LC is in scattered state<br />

Pixel color is white, same as scattered light<br />

Power Supply ON<br />

LC is in transparent state<br />

Pixel color same as reflective backplate<br />

59


For Future Thought:<br />

Application Example<br />

– Data Collection System<br />

1 2 3 4<br />

Temp sensor<br />

Solar Cell<br />

Oryx<br />

Oryx<br />

Oryx<br />

Oryx<br />

Interface<br />

Temp sensor Solar Cell board<br />

Light sensor<br />

Interface<br />

board<br />

Temp sensor Solar Cell<br />

Light sensor<br />

Zigbee RF (Transmit)<br />

Interface<br />

Motion sensor<br />

board<br />

Temp sensor Solar Cell<br />

Light sensor<br />

Zigbee RF (Transmit)<br />

Motion sensor<br />

Interface<br />

Remote board Unit (x4)<br />

Light sensor<br />

Zigbee RF (Transmit)<br />

Motion sensor<br />

Zigbee RF<br />

(Receiver)<br />

Oryx<br />

Motion sensor<br />

Zigbee RF (Transmit)<br />

4 identical nodes<br />

60


Conclusion<br />

– The device specification is only the starting point for ultra-lowpower<br />

design<br />

– Duty cycle is often more critical than max power consumption<br />

– System may run multiple applications each with unique power<br />

curves and duty cycles<br />

– Start optimization with the largest power users and work towards<br />

the point of diminishing returns<br />

– “Power off” is the ultimate low power state: look for those<br />

opportunities<br />

61

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!