23.11.2014 Views

Role of glycated LDL in diabetic atherosclerosis

Role of glycated LDL in diabetic atherosclerosis

Role of glycated LDL in diabetic atherosclerosis

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Pr<strong>of</strong>. Sanaa Gazareen, MD<br />

Head <strong>of</strong> Diabetes, Endocr<strong>in</strong>ology & Obesity Unit-<br />

Menoufia University<br />

Visit<strong>in</strong>g Pr<strong>of</strong>. USC-California & Harvard-MA USA<br />

sgazareen@yahoo


• Patients with DM are 2-8 times more likely to<br />

experience future cardiovascular events.<br />

• <strong>LDL</strong>c is an important factor <strong>in</strong> atherogenesis.<br />

Howard BV, Rodriguez BL, Bennett PH, et al. Prevention Conference VI: Diabetes and Cardiovascular disease: Writ<strong>in</strong>g Group I:<br />

epidemiology. Circulation. May 7 2002;105(18):e132-7.<br />

Malmberg K, Yusuf S, Gerste<strong>in</strong> HC, et al. Impact <strong>of</strong> diabetes on long-term prognosis <strong>in</strong> patients with unstable ang<strong>in</strong>a and non-Qwave<br />

myocardial <strong>in</strong>farction: results <strong>of</strong> the OASIS (Organization to Assess Strategies for Ischemic Syndromes) Registry. Circulation.<br />

2000;102:1014-1019


Pathogenic mechanisms <strong>in</strong>volved <strong>in</strong> the <strong>in</strong>itiation and<br />

progression <strong>of</strong> <strong>atherosclerosis</strong> <strong>in</strong> patients with DM<br />

AGE, advanced glycation end products, CRP, C-reactive prote<strong>in</strong>; HDL, high-density lipoprote<strong>in</strong>; IL-1b, <strong>in</strong>terleuk<strong>in</strong>-1b; IL-6, <strong>in</strong>terleuk<strong>in</strong>-<br />

6; <strong>LDL</strong>, low-density lipoprote<strong>in</strong>; PAI-I, plasm<strong>in</strong>ogen activator <strong>in</strong>hibitor-I; ROS, reactive oxygen species; SAA, serum amyloid A prote<strong>in</strong>;<br />

TF, tissue factor; TG, triglycerides; tPA, tissue-type plasm<strong>in</strong>ogen activator.<br />

Bion di-Zoccai et al (2003, Journal <strong>of</strong> the American College <strong>of</strong> Cardiology


Prevalence <strong>of</strong> Dyslipidemia is high <strong>in</strong> Type 2 Diabetes<br />

Control <strong>of</strong> Lipids<br />

Patients With<br />

Diabetes, %<br />

Patients Without<br />

Diabetes, %<br />

P Value<br />

<strong>LDL</strong>-C<br />

> 100 mg/dL<br />

HDL-C<br />

< 40 mg/dL (men)<br />

< 50 mg/dL (women)<br />

Triglycerides<br />

> 150 mg/dL<br />

74.7 75.7 NS<br />

63.7 40.0 < .001<br />

61.6 25.5 < .001<br />

N = 498 adults (projected to 13.4 million) aged > or = 18 years with diabetes<br />

representative <strong>of</strong> the US population and surveyed with<strong>in</strong> the cross-sectional<br />

National Health and Nutrition Exam<strong>in</strong>ation Survey 1999-2000.<br />

Jacobs MJ, et al. Diabetes Res Cl<strong>in</strong> Pract. 2005;70:263-269.


IN DM: <strong>LDL</strong>c<br />

Rout<strong>in</strong>e LAB. Measurement <strong>of</strong> <strong>LDL</strong>?<br />

Is <strong>LDL</strong>c really a s<strong>in</strong>gle entity??


<strong>LDL</strong> Subfractions<br />

• Larger <strong>LDL</strong> subfractions (1, 2, 3) are considered type A<br />

and are less frequently associated with coronary artery<br />

disease.<br />

• Small, dense <strong>LDL</strong> subfractions (4-7, non type A) are<br />

generally considered more atherogenic. There is an<br />

<strong>in</strong>creased prevalence <strong>of</strong> non-type A <strong>LDL</strong> subfractions <strong>in</strong><br />

Type 2 diabetes and <strong>in</strong>sul<strong>in</strong> resistance syndrome 1 .<br />

lipoprote<strong>in</strong>s <strong>of</strong> > 70 nm have limited transcytosis past the<br />

endothelium<br />

1. Aust<strong>in</strong> MA, Hokanson JE, Brunzell JD. Characterization <strong>of</strong> low-density lipoprote<strong>in</strong><br />

subclasses: methodologic approaches and cl<strong>in</strong>ical relevance. Curr Op<strong>in</strong> Lipidol 1994;5:395-<br />

403.<br />

2. Younis NN, Soran H, Sharma R, et al. Small-dense <strong>LDL</strong> and <strong>LDL</strong> glycation <strong>in</strong> metabolic<br />

syndrome and <strong>in</strong> stat<strong>in</strong>-treated and nonstat<strong>in</strong>-treated type 2 diabetes. Diab Vasc Dis Res<br />

2010; 7:289–295


The primary atherogenic lipoprote<strong>in</strong> is <strong>LDL</strong> (small dense <strong>LDL</strong>)<br />

lipoprote<strong>in</strong>s <strong>of</strong> > 70 nm have limited transcytosis past the endothelium<br />

Monocyte<br />

Nascent<br />

chylomicron Nasce<br />

t V<strong>LDL</strong><br />

Vessel Lumen<br />

Adhesion<br />

Molecules<br />

Χ<br />

Χ<br />

<strong>LDL</strong><br />

Artery wall<br />

MCP-1<br />

<strong>LDL</strong><br />

Endothelium<br />

Modified <strong>LDL</strong><br />

Taken up by<br />

Macrophage<br />

Intima<br />

Foam Cell<br />

Macrophage<br />

Modified <strong>LDL</strong> is more taken by macrophages then non modified <strong>LDL</strong> Ste<strong>in</strong>berg D e<br />

al. N Engl J Med 1989;320:915-924.


Oxidized <strong>LDL</strong> pathway dur<strong>in</strong>g atherogenesis<br />

Oxidative modification <strong>of</strong> <strong>LDL</strong> has been most widely studied and is currently believed to be<br />

<strong>in</strong>volved <strong>in</strong> <strong>atherosclerosis</strong><br />

1- Mackness MI, Durr<strong>in</strong>gton PN, Mackness B. How high-density lipoprote<strong>in</strong> protects aga<strong>in</strong>st the effects <strong>of</strong> lipid peroxidation. Curr<br />

Op<strong>in</strong> Lipidol 2000; 11:383–388. 2- Ste<strong>in</strong>berg D, Parthasarathy S, Carew TE, et al. Beyond cholesterol. Modifications <strong>of</strong> lowdensity<br />

lipoprote<strong>in</strong> that <strong>in</strong>crease its atherogenicity. N Engl J Med 1989; 320:915–924


<strong>LDL</strong> Oxidation<br />

• Although <strong>LDL</strong> oxidation may be part <strong>of</strong> the<br />

explanation for the participation <strong>of</strong> <strong>LDL</strong> <strong>in</strong><br />

atherogenesis, it is unsatisfactory as the sole<br />

explanation. This is not least because <strong>of</strong> the<br />

notable lack <strong>of</strong> success <strong>of</strong> antioxidant therapy<br />

to prevent <strong>atherosclerosis</strong><br />

Kris-Etherton PM, Lichtenste<strong>in</strong> AH, Howard BV, et al. Antioxidant vitam<strong>in</strong><br />

supplements and cardiovascular disease. Circulation 2004; 110:637–641


? What about<br />

other <strong>LDL</strong> Modification


Naturally occurr<strong>in</strong>g atherogenic modifications <strong>of</strong> lipoprote<strong>in</strong>s <strong>in</strong>clude oxidation, glycation<br />

& glycoxidation<br />

glycoxidation<br />

Modified <strong>LDL</strong> is considered to be a risk factor for the development and progression <strong>of</strong> <strong>atherosclerosis</strong>.<br />

<strong>glycated</strong> <strong>LDL</strong> is present <strong>in</strong> the circulation at much higher concentration than oxidized<br />

<strong>LDL</strong>, even <strong>in</strong> non-<strong>diabetic</strong> people & can stimulate foam cell formation.<br />

Witztum JL, Ste<strong>in</strong>berg D. <strong>Role</strong> <strong>of</strong> oxidized low density lipoprote<strong>in</strong> <strong>in</strong> atherogenesis. J Cl<strong>in</strong> Invest 1991;<br />

88:1785–1792.& Tanaka, Akira Atherosclerosis, Volume 52 Spr<strong>in</strong>ger Protocols – Jan 1, 2001


Glycated Vs Oxidized <strong>LDL</strong> <strong>in</strong> non <strong>diabetic</strong> subjects<br />

Oxidized <strong>LDL</strong><br />

• does not exist <strong>in</strong> the<br />

circulation because <strong>of</strong> the<br />

presence <strong>of</strong> many<br />

antioxidiz<strong>in</strong>g agents .<br />

• <strong>LDL</strong> cannot be oxidized<br />

until it has entered the<br />

arterial wall from the<br />

circulation<br />

Glycated <strong>LDL</strong><br />

• The only modified <strong>LDL</strong> that<br />

exists <strong>in</strong> the circulation . It<br />

has been shown to be more<br />

easily oxidized than native<br />

<strong>LDL</strong><br />

• Thus glycation <strong>of</strong> <strong>LDL</strong> may<br />

be the <strong>in</strong>itial step <strong>in</strong> the<br />

development <strong>of</strong><br />

<strong>atherosclerosis</strong>.<br />

Tanaka, Akira : Atherosclerosis, Volume 52 Spr<strong>in</strong>ger Protocols – Jan 1,<br />

2001


Small dense-<strong>LDL</strong> is the most <strong>glycated</strong> <strong>LDL</strong> subfraction<br />

Atherosclerosis 2008; Advance onl<strong>in</strong>e publication<br />

• Even <strong>in</strong> non-<strong>diabetic</strong> people,, small dense <strong>LDL</strong> may be<br />

rendered more atherogenic because it is more abundantly<br />

<strong>glycated</strong> than more buoyant <strong>LDL</strong>."


Glycation process <strong>in</strong> DM<br />

reactive sugars, such as glucose and its [alpha]-<br />

oxoaldehyde metabolites can <strong>in</strong>duce Glycation<br />

The non-enzymatic glycation <strong>of</strong> <strong>LDL</strong> is a naturally occurr<strong>in</strong>g chemical modification <strong>of</strong> lys<strong>in</strong>e residues <strong>of</strong> apo-B <strong>of</strong> <strong>LDL</strong> by<br />

blood glucose. <strong>in</strong>volv<strong>in</strong>g the formation <strong>of</strong> a Schiff's base , followed by Amadori rearrangement and the formation <strong>of</strong> a<br />

stable ketoam<strong>in</strong>e l<strong>in</strong>k to generate [alpha]-1-deoxy-1-am<strong>in</strong>o-D-fructopyranose. Glycation can be <strong>in</strong>duced by reactive<br />

sugars, such as glucose and its [alpha]-oxoaldehyde metabolites that can be derived both through glucose degradation or<br />

through other pathways, such as the polyol pathway Diabetes Metab 2001; 27:535–542. Ch<strong>in</strong>ese Medical Journal 2009


Is glycation <strong>of</strong> <strong>LDL</strong> <strong>in</strong> patients with Type 2 DM a preoxidative<br />

condition?<br />

Moro E, Alessandr<strong>in</strong>i P, Zambon C, Pianetti S, Pais M,<br />

Cazzolato G, Bon GB<br />

Results<br />

• In Type 2 <strong>diabetic</strong> patients, <strong>LDL</strong> were more<br />

<strong>glycated</strong> & more susceptible to oxidation.<br />

Diabet Med. 1999 Aug;16(8):663-9.


It was suggested that the earliest event is glycation <strong>of</strong><br />

<strong>LDL</strong>, whilst oxidative events (glycoxidation or direct<br />

oxidation <strong>of</strong> lipid or prote<strong>in</strong>s) only occur at later time<br />

po<strong>in</strong>ts. This may facilitate the formation <strong>of</strong> foam cells<br />

and the vascular complications <strong>of</strong> diabetes<br />

Eur J Biochem. 2003 Sep;270(17):3572-82.<br />

Glycation and glycoxidation <strong>of</strong> low-density lipoprote<strong>in</strong>s by glucose and lowmolecular<br />

mass aldehydes. Formation <strong>of</strong> modified and oxidized particles.<br />

Knott HM, Brown BE, Davies MJ, Dean RT.


Factors Influenc<strong>in</strong>g Plasma Level <strong>of</strong> Glycated apoB<br />

• Plasma glyc-apoB correlated with SD-<strong>LDL</strong>-apoB ( p <<br />

0.0001 <strong>in</strong> DM & , p < 0.001 <strong>in</strong> MS), but not with<br />

HbA1c. Thus SD-<strong>LDL</strong> concentration is a stronger<br />

determ<strong>in</strong>ant <strong>of</strong> plasma glyc-apoB than glycaemia.<br />

Younis NN, Soran H, Sharma R, et al. Small-dense <strong>LDL</strong> and <strong>LDL</strong> glycation <strong>in</strong><br />

metabolic syndrome and <strong>in</strong> stat<strong>in</strong>-treated and nonstat<strong>in</strong>-treated type 2 diabetes.<br />

Diab Vasc Dis Res 2010; 7:289–295


Schematic overview <strong>of</strong> lipoprote<strong>in</strong> metabolic pathways <strong>in</strong><br />

type 2 diabetes<br />

↑ TG<br />

↑ ApoB<br />

↓ HDLc<br />

↔ <strong>LDL</strong>c<br />

Lancet 1997 Jul ; 350 suppl 1: S 120-3


“<br />

Glycated <strong>LDL</strong> “Ultra-bad Cholesterol”<br />

Glycation <strong>of</strong> <strong>LDL</strong> Decreases the uptake and degradation <strong>of</strong> <strong>LDL</strong> by the high-aff<strong>in</strong>ity <strong>LDL</strong> receptor<br />

Increases uptake by macrophages ( foam cells)<br />

Glycated <strong>LDL</strong> is present <strong>in</strong> the circulation under physiological conditions and is present at<br />

higher concentrations <strong>in</strong> DM, polygenic hyperlipidaemia and familial hypercholesterolaemia.<br />

Curr Op<strong>in</strong> Lipidol. 2011 Aug;22(4):254-61.<br />

Susceptibility <strong>of</strong> <strong>LDL</strong> and its subfractions to glycation. Soran H, Durr<strong>in</strong>gton PN


Consequence <strong>of</strong> <strong>LDL</strong> Glycation (<strong>Role</strong> <strong>in</strong> <strong>diabetic</strong> <strong>atherosclerosis</strong>)<br />

• ability to regulate cholesterol transferase activities (HMG-coA & acyl–coenzyme A)<br />

• the uptake and degradation <strong>of</strong> <strong>LDL</strong> by the high-aff<strong>in</strong>ity <strong>LDL</strong> receptor<br />

• uptake by macrophages ( foam cells)<br />

• prone to oxidation<br />

• arterial smooth muscle cell proliferation (PKC, phospholipase C)<br />

• Inflamatory expression <strong>of</strong> IL6, CD40, fibronect<strong>in</strong><br />

• Glycated <strong>LDL</strong> is prothrombogenic ( (tPA) & PAI-1)<br />

• endothelial dysfunction (altered PGI 2 , perox<strong>in</strong>itrite)<br />

L.


• Prevention and treatment


First Jo<strong>in</strong>t ESC/EAS Guidel<strong>in</strong>es for the<br />

Management <strong>of</strong> Dyslipidaemias 2011<br />

Cl<strong>in</strong>icians should aim for <strong>LDL</strong> cholesterol levels :<br />


DM Control : DIET, EXERCISE, Drugs<br />

To improve lipid pr<strong>of</strong>ile <strong>in</strong> patients with DM, recommend lifestyle modification (A), focus<strong>in</strong>g on<br />

– Reduction <strong>of</strong> saturated fat, trans fat, cholesterol <strong>in</strong>take<br />

– Increased n-3 fatty acids, viscous fiber, plant stanols/sterols<br />

– ADA. VI. Prevention, Management <strong>of</strong> Complications. Diabetes Care 2011;34(suppl 1):S29


<strong>Role</strong> <strong>of</strong> Metform<strong>in</strong> <strong>in</strong> prevent<strong>in</strong>g<br />

<strong>atherosclerosis</strong><br />

Metform<strong>in</strong> :<br />

• <strong>in</strong>creases <strong>LDL</strong> particle size<br />

• decreases plasma concentrations <strong>of</strong> remnant lipoprote<strong>in</strong><br />

cholesterol thought to reflect atherogenicity <strong>of</strong> cholesterol<br />

ester–rich chylomicrons and V<strong>LDL</strong><br />

• decreases the plasma concentration <strong>of</strong> methylglyoxal<br />

( important for glycation) thus may help prevent<strong>in</strong>g glycation<br />

• decreases oxidative stress and related oxidation <strong>of</strong> <strong>LDL</strong>.<br />

) Naila Rabbani etal Glycation <strong>of</strong> <strong>LDL</strong> by Methylglyoxal Increases Arterial Atherogenicity A Possible<br />

Contributor to Increased Risk <strong>of</strong> Cardiovascular Disease <strong>in</strong> DiabetesDiabetes April 2010 vol. 59 no. 4<br />

1038-1045)


Treatment <strong>of</strong> Diabetic Dyslipidemia<br />

– 1. Stat<strong>in</strong>s<br />

– 2. Bile Acid Sequestrants<br />

– 3. Fibric Acid Derivatives<br />

– 4. Nicot<strong>in</strong>ic Acid:<br />

– 5. Estrogens<br />

– 6. n-3 Polyunsaturated Fatty Acids<br />

– 7. Stat<strong>in</strong>s Plus Bile Acid Sequestrants<br />

– 8. Stat<strong>in</strong>s Plus Fibric Acid Derivatives<br />

– 9. Stat<strong>in</strong>s Plus Fish Oil<br />

– 10. Stat<strong>in</strong>s Plus Estrogens<br />

– 11. Stat<strong>in</strong>s Plus Nicot<strong>in</strong>ic Acid


Recommendations:<br />

Dyslipidemia/Lipid Management<br />

• Stat<strong>in</strong> therapy should be added to lifestyle therapy,<br />

regardless <strong>of</strong> basel<strong>in</strong>e lipid levels, for <strong>diabetic</strong>s:<br />

– with overt CVD (A)<br />

– without CVD who are >40 years <strong>of</strong> age and have one or<br />

more other CVD risk factors (A)<br />

ADA. VI. Prevention, Management <strong>of</strong> Complications. Diabetes Care 2011;34(suppl 1):S29.


-Plasma glyc-apoB correlated with SD-<strong>LDL</strong>-apoB but not<br />

with HbA1c.<br />

-Stat<strong>in</strong>-<strong>in</strong>duced changes <strong>in</strong> Small Dense-<strong>LDL</strong> level may be<br />

important <strong>in</strong> decreas<strong>in</strong>g apoB glycation <strong>in</strong> DM.<br />

‣ This may expla<strong>in</strong> the small effect <strong>of</strong> improv<strong>in</strong>g glycaemia<br />

relative to stat<strong>in</strong> treatment <strong>in</strong> reduc<strong>in</strong>g <strong>atherosclerosis</strong><br />

risk <strong>in</strong> type 2 diabetes.<br />

Younis NN, Soran H, Sharma R, et al. Small-dense <strong>LDL</strong> and <strong>LDL</strong> glycation <strong>in</strong><br />

metabolic syndrome and <strong>in</strong> stat<strong>in</strong>-treated and nonstat<strong>in</strong>-treated type 2 diabetes.<br />

Diab Vasc Dis Res 2010; 7:289–295


Drugs that can protect aga<strong>in</strong>st glycation<br />

• Metform<strong>in</strong> and buform<strong>in</strong> (biguanides)<br />

• Pioglitazone<br />

• Aspir<strong>in</strong> (acetylsalicylic acid)<br />

• Ibupr<strong>of</strong>en<br />

• Dicl<strong>of</strong>enac<br />

• Am<strong>in</strong>o acids<br />

• Polyam<strong>in</strong>es<br />

• Carnos<strong>in</strong>e<br />

• Glutathione (gamma-glutamylcyste<strong>in</strong>yl-glyc<strong>in</strong>e)<br />

• Am<strong>in</strong>oguanid<strong>in</strong>e<br />

• Penicillam<strong>in</strong>e<br />

• Pyridoxam<strong>in</strong>e<br />

• Am<strong>in</strong>oguanid<strong>in</strong>e-pyridoxal<br />

adduct<br />

• Pentoxifyll<strong>in</strong>e<br />

• Thiam<strong>in</strong>e pyrophosphate<br />

• OPB-9195 ( (+/-)-2-isopropylid<strong>in</strong>ehydrazono-4-<br />

oxo-thiazolid<strong>in</strong>-<br />

• 5-ylacetanilide] )<br />

• ALT-946 (N-(2-<br />

acetamidoethyl)hydraz<strong>in</strong>ecarboximidamide<br />

hydrochloride),<br />

• Lipoic acid<br />

• Olmesartan and other angiotens<strong>in</strong> II type I<br />

receptor antagonists<br />

• Captopril and other ACE <strong>in</strong>hibitors<br />

• Pyruvate<br />

• Dilazep<br />

• Anser<strong>in</strong>e<br />

• Cyste<strong>in</strong>e,<br />

• Cysteam<strong>in</strong>e<br />

• Sulphite<br />

• 3-mercaptopropionate<br />

J.J. Hard<strong>in</strong>g, E. Ganea / Biochimica et Biophysica Acta (2006)


. Aqueous extracts <strong>of</strong> ground pepper, c<strong>in</strong>namon, rosemary,<br />

g<strong>in</strong>ger, and clove were analyzed and tested for anti-atherosclerotic<br />

activity <strong>in</strong> vitro and <strong>in</strong> vivo us<strong>in</strong>g hypercholesterolemic zebrafish.<br />

C<strong>in</strong>namon and clove extracts (at f<strong>in</strong>al concentration 10 μg/mL) had the<br />

strongest anti-glycation and antioxidant activity <strong>in</strong> this study.<br />

(J<strong>in</strong>S,ChoKH.Food chem Toxicol2011 Jul;49(7):1521-9. Epub 2011 Apr 5 )<br />

. Aqueous extracts <strong>of</strong> turmeric and laurel showed potent <strong>in</strong>hibitory activity<br />

aga<strong>in</strong>st fructose-mediated glycation with antioxidant ability aga<strong>in</strong>st lowdensity<br />

lipoprote<strong>in</strong> (<strong>LDL</strong>) oxidation and radical scaveng<strong>in</strong>g activity<br />

. )J<strong>in</strong> s,HongJH, Turmeric and laurel aqueous extracts exhibit <strong>in</strong> vitro antiatherosclerotic<br />

activity and <strong>in</strong> vivo hypolipidemic effects <strong>in</strong> a zebrafish model. 2011<br />

Mar;14(3):247-56 )


Reversal <strong>of</strong> glycation<br />

• glyc<strong>in</strong>e, taur<strong>in</strong>e,<br />

• spermid<strong>in</strong>e and N-acetylcyste<strong>in</strong>e<br />

• glutathione,<br />

• other am<strong>in</strong>othiolam<strong>in</strong>es, carnos<strong>in</strong>e and<br />

anser<strong>in</strong>e<br />

J.J. Hard<strong>in</strong>g, E. Ganea / Biochimica et Biophysica Acta (2006)


Prevent<strong>in</strong>g the consequences <strong>of</strong><br />

glycation<br />

• Alpha-crystall<strong>in</strong>, a molecular chaperone, is able<br />

to protect almost completely a variety <strong>of</strong><br />

enzymes aga<strong>in</strong>st glycation-<strong>in</strong>duced <strong>in</strong>activation <strong>in</strong><br />

vitro without <strong>in</strong>terfer<strong>in</strong>g with the orig<strong>in</strong>al<br />

glycation reaction<br />

• Some small organic molecules share some<br />

protective properties with molecular chaperones<br />

and are <strong>of</strong>ten referred to as ‘chemical<br />

chaperones’ although a better term is ‘Small<br />

Organic Stress Molecules’ or ‘SOS molecules<br />

• <strong>of</strong> these trehalose and 6-am<strong>in</strong>ohexanoic<br />

J.J. Hard<strong>in</strong>g, E. Ganea / Biochimica et Biophysica Acta (2006)


CONCLUSION<br />

• In DM Increased Plasma Glycated <strong>LDL</strong><br />

Concentration is A Marker <strong>of</strong> Atherogenic Risk<br />

• Glycation <strong>of</strong> <strong>LDL</strong> is a pre-oxidative condition<br />

• Rout<strong>in</strong>e Total <strong>LDL</strong> measurement is mislead<strong>in</strong>g<br />

• Thus Lab. Measurement <strong>of</strong> <strong>glycated</strong> <strong>LDL</strong> can<br />

help <strong>in</strong> proper management <strong>of</strong> <strong>diabetic</strong><br />

patients

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!