25.11.2014 Views

Strong coupling and strange quark mass from lattice ... - IFSC - USP

Strong coupling and strange quark mass from lattice ... - IFSC - USP

Strong coupling and strange quark mass from lattice ... - IFSC - USP

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Strong</strong> <strong>coupling</strong> <strong>and</strong> <strong>strange</strong> <strong>quark</strong> <strong>mass</strong> <strong>from</strong><br />

<strong>lattice</strong> QCD<br />

Rainer Sommer<br />

<strong>IFSC</strong> – <strong>USP</strong>, Sao Carlos, April 3, 2013<br />

Rainer Sommer<br />

<strong>Strong</strong> <strong>coupling</strong> <strong>and</strong> <strong>strange</strong> <strong>quark</strong> <strong>mass</strong> <strong>from</strong> <strong>lattice</strong> QCD


The talk is based on<br />

◮ old work [<br />

LPHA ACollaboration ]<br />

◮ N f = 2 running<br />

[Nucl.Phys. B713 (2005) 378, Michele Della Morte, Roberto Frezzotti, Jochen Heitger, Juri Rolf, RS, Ulli<br />

Wolff ]<br />

[Nucl.Phys. B729 (2005) 117, Michele Della Morte, Rol<strong>and</strong> Hoffmann, Francesco Knechtli, Juri Rolf, RS,<br />

Ines Wetzorke, Ulli Wolff ]<br />

◮ Scale setting<br />

[Strange <strong>quark</strong> <strong>mass</strong> <strong>and</strong> the Lambda parameter in two flavor QCD,<br />

Fritzsch, Leder, Knechtli, Marinkovic, Schaefer, S, Virotta, 2012 ]<br />

◮ Recent development<br />

[Fritzsch & Ramos, arXiv:1301.4388 ]<br />

Rainer Sommer<br />

<strong>Strong</strong> <strong>coupling</strong> <strong>and</strong> <strong>strange</strong> <strong>quark</strong> <strong>mass</strong> <strong>from</strong> <strong>lattice</strong> QCD


Fascinating strong interactions<br />

◮ jets at large energies<br />

◮ hadrons at small energies<br />

◮ nuclei at even smaller energies<br />

Rainer Sommer<br />

<strong>Strong</strong> <strong>coupling</strong> <strong>and</strong> <strong>strange</strong> <strong>quark</strong> <strong>mass</strong> <strong>from</strong> <strong>lattice</strong> QCD


Fascinating strong interactions<br />

THEORY<br />

◮ jets at large energies<br />

Q C D<br />

◮ hadrons at small energies<br />

Q C D<br />

◮ nuclei at even smaller energies<br />

Q C D<br />

Believed to be described by a most beautiful theory: Q C D<br />

Rainer Sommer<br />

<strong>Strong</strong> <strong>coupling</strong> <strong>and</strong> <strong>strange</strong> <strong>quark</strong> <strong>mass</strong> <strong>from</strong> <strong>lattice</strong> QCD


QCD<br />

L QCD = − 1<br />

2g 0<br />

2 tr{F µνF µν } +<br />

◮ N f + 1 = 7 (bare) parameters<br />

N f<br />

∑<br />

ψ f {D + m 0f }ψ f<br />

f =1<br />

◮ at low energy essentially 4 parameters<br />

◮ in the following: u, d <strong>quark</strong>s <strong>mass</strong>-degenerate<br />

s-<strong>quark</strong> quenched<br />

3 parameters<br />

Rainer Sommer<br />

<strong>Strong</strong> <strong>coupling</strong> <strong>and</strong> <strong>strange</strong> <strong>quark</strong> <strong>mass</strong> <strong>from</strong> <strong>lattice</strong> QCD


. .<br />

<strong>Strong</strong> force<br />

A way to define the strong force is<br />

x<br />

y<br />

F (r) = d dr V (r) , r = |x − y| Q _ Q<br />

Perturbation theory (Feynman graphs)<br />

F (r) = 4 1<br />

3 4πr 2 g 2 + O(g 4 )<br />

coulombic<br />

Rainer Sommer<br />

<strong>Strong</strong> <strong>coupling</strong> <strong>and</strong> <strong>strange</strong> <strong>quark</strong> <strong>mass</strong> <strong>from</strong> <strong>lattice</strong> QCD


. .<br />

<strong>Strong</strong> force<br />

A way to define the strong force is<br />

x<br />

y<br />

F (r) = d dr V (r) , r = |x − y| Q _ Q<br />

Perturbation theory (Feynman graphs)<br />

F (r) = 4 1<br />

3 4πr 2 g 2 + O(g 4 )<br />

↓<br />

r 2 0 F (r)<br />

coulombic<br />

r/r 0<br />

Rainer Sommer<br />

[r 0 ≈ 0.5 fm]<br />

<strong>Strong</strong> <strong>coupling</strong> <strong>and</strong> <strong>strange</strong> <strong>quark</strong> <strong>mass</strong> <strong>from</strong> <strong>lattice</strong> QCD


<strong>Strong</strong> <strong>coupling</strong><br />

Perturbation theory (Feynman graphs)<br />

F (r) = 4 1<br />

3 4πr 2 g 2 + O(g 4 )<br />

coulombic<br />

Rainer Sommer<br />

<strong>Strong</strong> <strong>coupling</strong> <strong>and</strong> <strong>strange</strong> <strong>quark</strong> <strong>mass</strong> <strong>from</strong> <strong>lattice</strong> QCD


1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

r/r0<br />

<strong>Strong</strong> <strong>coupling</strong><br />

Perturbation theory (Feynman graphs)<br />

F (r) = 4 1<br />

3 4πr 2 g 2 + O(g 4 )<br />

A way to define the strong <strong>coupling</strong> is<br />

coulombic<br />

α qq (µ) = ḡ 2 qq(r)<br />

4π<br />

It is r-dependent: “it runs”<br />

≡ 3 4 r 2 F (r) , µ ≡ 1/r<br />

αqq(r) = r 2 F (r)/CF<br />

β = 5.3, κ = 0.13638<br />

β = 5.5, κ = 0.13671<br />

3-loop Nf = 2<br />

4-loop Nf = 2<br />

Nf = 0, continuum<br />

3-loop Nf = 0<br />

4-loop Nf = 0<br />

0<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

Rainer Sommer<br />

<strong>Strong</strong> <strong>coupling</strong> <strong>and</strong> <strong>strange</strong> <strong>quark</strong> <strong>mass</strong> <strong>from</strong> <strong>lattice</strong> QCD


Running <strong>and</strong> Renormalization Group Invariants<br />

RGE:<br />

µ ∂ḡ<br />

∂µ<br />

= β(ḡ) ḡ(µ) 2 = 4πα(µ) .<br />

ḡ→0<br />

β(ḡ) ∼ −ḡ 3 { b 0 + b 1 ḡ 2 + b 2 ḡ 4 + . . . }<br />

b 0 =<br />

1<br />

(4π) 2 (<br />

11 −<br />

2<br />

3 N f<br />

)<br />

Λ-parameter (ḡ ≡ ḡ(µ)) = Renormalization Group Invariant<br />

= intrinsic scale of QCD<br />

{ ∫ ḡ<br />

}<br />

Λ = µ (b 0 ḡ 2 ) −b1/2b2 0 e<br />

−1/2b 0ḡ 2 1<br />

exp − dg[<br />

β(g) + 1<br />

b 0g<br />

− b1<br />

3 b0 2 0<br />

g ]<br />

◮ there is a similar formula relating m i (µ) <strong>and</strong> M i : RGI <strong>quark</strong> <strong>mass</strong>es<br />

◮ Λ, M i have a trivial dependence on the “scheme”<br />

scheme ↔ definition of ḡ, m<br />

◮ they are the fundamental parameters of QCD<br />

Rainer Sommer<br />

<strong>Strong</strong> <strong>coupling</strong> <strong>and</strong> <strong>strange</strong> <strong>quark</strong> <strong>mass</strong> <strong>from</strong> <strong>lattice</strong> QCD


Uses of α (or Λ)<br />

◮ Λ is a fundamental constant of Nature, just like<br />

α em = 1/137.0359997 for atomic physics<br />

◮ α(µ) at high scale is needed for the search of new particles at the<br />

LHC.<br />

E.g. the Higgs.<br />

◮ It is an important constraint for possible theories at higher energy<br />

scales.<br />

Rainer Sommer<br />

<strong>Strong</strong> <strong>coupling</strong> <strong>and</strong> <strong>strange</strong> <strong>quark</strong> <strong>mass</strong> <strong>from</strong> <strong>lattice</strong> QCD


“Experimental” determinations of α MS<br />

0.5<br />

α s (Q)<br />

0.4<br />

July 2009<br />

Deep Inelastic Scattering<br />

e + e – Annihilation<br />

Heavy Quarkonia<br />

0.3<br />

0.2<br />

0.1<br />

QCD α s(Μ Z) = 0.1184 ± 0.0007<br />

1 10 100<br />

Q [GeV]<br />

Rainer Sommer<br />

<strong>Strong</strong> <strong>coupling</strong> <strong>and</strong> <strong>strange</strong> <strong>quark</strong> <strong>mass</strong> <strong>from</strong> <strong>lattice</strong> QCD


“Experimental” determinations of α MS<br />

0.5<br />

α s (Q)<br />

0.4<br />

Deep Inelastic Scattering<br />

e + e – Annihilation<br />

Heavy Quarkonia<br />

July 2009 2010<br />

0.3<br />

0.2<br />

0.1<br />

QCD α s(Μ Z) = 0.1184 ± 0.0007<br />

1 10 100<br />

Q [GeV]<br />

α s(M Z )<br />

There is a considerable spread. Errors seem often too agressive.<br />

Theory uncertainties are usually dominating.<br />

Rainer Sommer<br />

<strong>Strong</strong> <strong>coupling</strong> <strong>and</strong> <strong>strange</strong> <strong>quark</strong> <strong>mass</strong> <strong>from</strong> <strong>lattice</strong> QCD


Determination of Λ <strong>from</strong> <strong>lattice</strong> QCD<br />

Rainer Sommer<br />

<strong>Strong</strong> <strong>coupling</strong> <strong>and</strong> <strong>strange</strong> <strong>quark</strong> <strong>mass</strong> <strong>from</strong> <strong>lattice</strong> QCD


Lattice determination of α qq<br />

αqq(r) = r 2 F (r)/CF<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

β = 5.3, κ = 0.13638<br />

β = 5.5, κ = 0.13671<br />

3-loop Nf = 2<br />

4-loop Nf = 2<br />

Nf = 0, continuum<br />

3-loop Nf = 0<br />

4-loop Nf = 0<br />

graph <strong>from</strong> [Leder & Knechtli, 2011 ]<br />

N f = 0, continuum limit<br />

[Necco & S., 2001 ]<br />

N f = 2, small <strong>lattice</strong> spacing<br />

[Leder & Knechtli, 2011 ]<br />

0.2<br />

0<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

r/r0<br />

Rainer Sommer<br />

<strong>Strong</strong> <strong>coupling</strong> <strong>and</strong> <strong>strange</strong> <strong>quark</strong> <strong>mass</strong> <strong>from</strong> <strong>lattice</strong> QCD


Lambda parameter <strong>from</strong> α qq<br />

1<br />

0.95<br />

0.9<br />

2−loop<br />

3−loop<br />

4−loop<br />

ALPHA<br />

N f<br />

= 0<br />

1<br />

0.95<br />

0.9<br />

2−loop<br />

3−loop<br />

4−loop<br />

ALPHA<br />

N f<br />

= 2, O7<br />

0.85<br />

0.85<br />

r 0<br />

Λ MSbar<br />

0.8<br />

0.75<br />

0.7<br />

r 0<br />

Λ MSbar<br />

0.8<br />

0.75<br />

0.7<br />

0.65<br />

0.65<br />

0.6<br />

0.6<br />

0.55<br />

0.55<br />

0.5<br />

0 0.05 0.1 0.15 0.2 0.25<br />

α qq<br />

0.3 0.35 0.4<br />

0.5<br />

0 0.1 0.2 0.3 0.4<br />

α qq<br />

0.5 0.6 0.7<br />

A realistic estimate of the uncertainty is impossible.<br />

(Other members of the group come to a different conclusion<br />

[Jansen, Karbstein, Nagy, Wagner, 2011 ])<br />

Rainer Sommer<br />

<strong>Strong</strong> <strong>coupling</strong> <strong>and</strong> <strong>strange</strong> <strong>quark</strong> <strong>mass</strong> <strong>from</strong> <strong>lattice</strong> QCD


The basic problem<br />

1<br />

L ≫<br />

0.2GeV ≫ 1 µ ∼ 1<br />

10GeV<br />

≫ a<br />

↑ ↑ ↑<br />

box size confinement scale, m π spacing<br />

⇓<br />

L/a ≫ 50<br />

Rainer Sommer<br />

<strong>Strong</strong> <strong>coupling</strong> <strong>and</strong> <strong>strange</strong> <strong>quark</strong> <strong>mass</strong> <strong>from</strong> <strong>lattice</strong> QCD


The basic problem <strong>and</strong> its solution<br />

1<br />

L ≫<br />

0.2GeV ≫ 1 µ ∼ 1<br />

10GeV<br />

≫ a<br />

↑ ↑ ↑<br />

box size confinement scale, m π spacing<br />

⇓<br />

L/a ≫ 50<br />

LPHA ACollaboration<br />

Solution: L = 1/µ<br />

−→ left with<br />

L/a ≫ 1<br />

[Lüscher, Weisz, Wolff ]<br />

Finite size effect as a physical observable; finite size scaling!<br />

Rainer Sommer<br />

<strong>Strong</strong> <strong>coupling</strong> <strong>and</strong> <strong>strange</strong> <strong>quark</strong> <strong>mass</strong> <strong>from</strong> <strong>lattice</strong> QCD


The step scaling function<br />

It is a discrete β function:<br />

σ(ḡ 2 (L)) = ḡ 2 (2L)<br />

determines the<br />

non-perturbative running:<br />

u 0 = ḡ 2 (L max )<br />

↓<br />

σ(u k+1 ) = u k<br />

↓<br />

u k = ḡ 2 (2 −k L max )<br />

Rainer Sommer<br />

<strong>Strong</strong> <strong>coupling</strong> <strong>and</strong> <strong>strange</strong> <strong>quark</strong> <strong>mass</strong> <strong>from</strong> <strong>lattice</strong> QCD


The step scaling function: σ(u) = ḡ 2 (2L) with u = ḡ 2 (L)<br />

On the <strong>lattice</strong>:<br />

additional dependence on the resolution<br />

a/L<br />

g 0 fixed, L/a fixed:<br />

ḡ 2 (L) = u, ḡ 2 (2L) = u ′ ,<br />

Σ(u, a/L) = u ′<br />

continuum limit:<br />

Σ(u, a/L) = σ(u) + O(a/L)<br />

everywhere: m = 0 (PCAC <strong>mass</strong> defined in (L/a) 4 <strong>lattice</strong>)<br />

Rainer Sommer<br />

<strong>Strong</strong> <strong>coupling</strong> <strong>and</strong> <strong>strange</strong> <strong>quark</strong> <strong>mass</strong> <strong>from</strong> <strong>lattice</strong> QCD


Continuum limit (N f = 4)<br />

Σ (2) (u, a/L)<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

◮ Constant fit:<br />

Σ (2) (u, a/L) = σ(u)<br />

for L/a = 6, 8<br />

◮ Global fit:<br />

Σ (2) (u, a/L) = σ(u)+ρ u 4 (a/L) 2<br />

for L/a = 6, 8<br />

→ ρ = 0.007(85)<br />

1<br />

0 0.02 0.04 0.06 0.08<br />

(a/L) 2<br />

◮ L/a = 8 data:<br />

σ(u) = Σ (2) (u, 1/8)<br />

LPHA<br />

[<br />

ACollaboration (S., Tekin & Wolff, 2010); update: M. Marinkovic, 2013 ]<br />

Rainer Sommer<br />

<strong>Strong</strong> <strong>coupling</strong> <strong>and</strong> <strong>strange</strong> <strong>quark</strong> <strong>mass</strong> <strong>from</strong> <strong>lattice</strong> QCD


Non-perturbative running of α<br />

LPHA<br />

[<br />

ACollaboration , 2005 ]<br />

Rainer Sommer<br />

<strong>Strong</strong> <strong>coupling</strong> <strong>and</strong> <strong>strange</strong> <strong>quark</strong> <strong>mass</strong> <strong>from</strong> <strong>lattice</strong> QCD


Non-perturbative running of α<br />

LPHA<br />

LPHA<br />

[<br />

ACollaboration , 2005 ] [<br />

ACollaboration , 2001 ]<br />

Rainer Sommer<br />

<strong>Strong</strong> <strong>coupling</strong> <strong>and</strong> <strong>strange</strong> <strong>quark</strong> <strong>mass</strong> <strong>from</strong> <strong>lattice</strong> QCD


Non-perturbative running of α<br />

T<br />

T<br />

time<br />

time<br />

0<br />

space<br />

0<br />

space<br />

LPHA<br />

LPHA<br />

[<br />

ACollaboration , 2005 ] [<br />

ACollaboration , 2001 ]<br />

Rainer Sommer<br />

<strong>Strong</strong> <strong>coupling</strong> <strong>and</strong> <strong>strange</strong> <strong>quark</strong> <strong>mass</strong> <strong>from</strong> <strong>lattice</strong> QCD


time<br />

T<br />

0<br />

space<br />

Non-perturbative running of α<br />

T<br />

T<br />

time<br />

time<br />

0<br />

space<br />

0<br />

space<br />

LPHA<br />

LPHA<br />

[<br />

ACollaboration , 2005 ] [<br />

ACollaboration , 2001 ]<br />

Rainer Sommer<br />

<strong>Strong</strong> <strong>coupling</strong> <strong>and</strong> <strong>strange</strong> <strong>quark</strong> <strong>mass</strong> <strong>from</strong> <strong>lattice</strong> QCD


time<br />

T<br />

0<br />

space<br />

T<br />

time<br />

0<br />

space<br />

T<br />

time<br />

0<br />

space<br />

T<br />

time<br />

0<br />

space<br />

T<br />

time<br />

0<br />

space<br />

time<br />

T<br />

0<br />

space<br />

Non-perturbative running of α<br />

T<br />

T<br />

time<br />

time<br />

0<br />

space<br />

0<br />

space<br />

LPHA<br />

LPHA<br />

[<br />

ACollaboration , 2005 ] [<br />

ACollaboration , 2001 ]<br />

Rainer Sommer<br />

<strong>Strong</strong> <strong>coupling</strong> <strong>and</strong> <strong>strange</strong> <strong>quark</strong> <strong>mass</strong> <strong>from</strong> <strong>lattice</strong> QCD


The master formula of the<br />

LPHA ACollaboration<br />

strategy<br />

Λ (2)<br />

MS<br />

F K<br />

=<br />

1<br />

F K L max<br />

× L max<br />

L k<br />

× L k Λ (2)<br />

SF × Λ(2) MS<br />

Λ (2)<br />

SF<br />

Γ(K → µν µ )<br />

❵ ♣ ❵ ♣ ❵ ♣ ❵<br />

♣ ❵ ♣ ❵ ♣ ❵ ♣<br />

aF ❵ ♣ ❵ ♣ ❵ ♣ ❵<br />

♣ ❵ K L<br />

♣ ❵ ♣ max /a<br />

❵ ♣<br />

❵ ♣ ❵ ♣ ❵ ♣ ❵<br />

♣ ❵ ♣ ❵ ♣ ❵ ♣<br />

❵ ♣ ❵ ♣ ❵ ḡ 2 ♣ (L❵<br />

max )<br />

❵<br />

❵ ♣ ❵<br />

❵ ♣ ❵<br />

❵ ♣ ❵<br />

non-perturbative ♣ ❵<br />

♣<br />

❵<br />

♣<br />

❵<br />

♣<br />

❵<br />

❵ ♣<br />

♣ ♣ ❵ ♣<br />

♣ ❵ ♣<br />

SSF’s<br />

♣<br />

❵❵❵❵<br />

♣♣♣♣<br />

✲<br />

<strong>mass</strong>less N f = 2 theory ḡ 2 (L k )<br />

3-lp ✲<br />

Λ (2)<br />

MS<br />

✻1-lp (exact)<br />

Λ (2)<br />

SF<br />

µ = 0<br />

µ<br />

m b<br />

M Z<br />

✲<br />

∞<br />

Rainer Sommer<br />

<strong>Strong</strong> <strong>coupling</strong> <strong>and</strong> <strong>strange</strong> <strong>quark</strong> <strong>mass</strong> <strong>from</strong> <strong>lattice</strong> QCD


Setting the scale<br />

Λ (2)<br />

MS<br />

F K<br />

=<br />

1<br />

F K L max<br />

× L max<br />

L k<br />

× L k Λ (2)<br />

MS<br />

◮ F K has been missing<br />

◮<br />

F K m K = 〈K(p = 0)|¯sγ 0 γ 5 u|0〉<br />

◮ needs K-meson → “large” volume: L > 2 fm , 4/m π<br />

Rainer Sommer<br />

<strong>Strong</strong> <strong>coupling</strong> <strong>and</strong> <strong>strange</strong> <strong>quark</strong> <strong>mass</strong> <strong>from</strong> <strong>lattice</strong> QCD


Setting the scale<br />

Λ (2)<br />

MS<br />

F K<br />

=<br />

1<br />

F K L max<br />

× L max<br />

L k<br />

× L k Λ (2)<br />

MS<br />

◮ F K has been missing<br />

◮<br />

F K m K = 〈K(p = 0)|¯sγ 0 γ 5 u|0〉<br />

◮ needs K-meson → “large” volume: L > 2 fm , 4/m π<br />

◮ issues<br />

◮ extracting ground state “plateau”<br />

◮ autocorrelations (sufficient statistics)<br />

<strong>and</strong> error analysis<br />

◮ extrapolation to physical <strong>quark</strong> <strong>mass</strong>es<br />

◮ renormalization . . .<br />

Rainer Sommer<br />

<strong>Strong</strong> <strong>coupling</strong> <strong>and</strong> <strong>strange</strong> <strong>quark</strong> <strong>mass</strong> <strong>from</strong> <strong>lattice</strong> QCD


Plateaux 64 3 128 <strong>lattice</strong> m π = 270 MeV<br />

◮ m π<br />

0.1<br />

0.095<br />

0.09<br />

0.085<br />

0.08<br />

aMeff<br />

0.075<br />

0.07<br />

0.065<br />

0.06<br />

0.055<br />

◮ PCAC<br />

<strong>mass</strong><br />

<strong>quark</strong><br />

0.05<br />

2.3 x 10−3<br />

10 20 x min<br />

0 30 40 50 60<br />

x0<br />

2.2<br />

aMpcac<br />

2.1<br />

2<br />

10 20 30 40 50 60 70 80 90 100 110<br />

t<br />

Rainer Sommer<br />

<strong>Strong</strong> <strong>coupling</strong> <strong>and</strong> <strong>strange</strong> <strong>quark</strong> <strong>mass</strong> <strong>from</strong> <strong>lattice</strong> QCD


Error analysis, F K , 64 3 128 <strong>lattice</strong> m π = 270 MeV<br />

◮ Done as proposed in<br />

Critical slowing down <strong>and</strong> error analysis in <strong>lattice</strong> QCD simulations<br />

[Schaefer, S, Virotta, 2011 ]<br />

◮ Autocorrelation<br />

function<br />

0.25<br />

0.2<br />

ρfK(t)<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

−0.05<br />

0 W u W l 50 100 150 200<br />

t<br />

◮ The tail contributes about 60% of the error.<br />

Rainer Sommer<br />

<strong>Strong</strong> <strong>coupling</strong> <strong>and</strong> <strong>strange</strong> <strong>quark</strong> <strong>mass</strong> <strong>from</strong> <strong>lattice</strong> QCD


Extrapolation to physical light <strong>quark</strong> <strong>mass</strong>es<br />

Strategies<br />

1) R = m2 K<br />

F 2 K<br />

= constant<br />

2) M s = constant<br />

M<strong>strange</strong><br />

M <strong>strange</strong> = const<br />

R = const<br />

M Phys<br />

M light<br />

Rainer Sommer<br />

<strong>Strong</strong> <strong>coupling</strong> <strong>and</strong> <strong>strange</strong> <strong>quark</strong> <strong>mass</strong> <strong>from</strong> <strong>lattice</strong> QCD


Extrapolation to physical light <strong>quark</strong> <strong>mass</strong>es<br />

0.08<br />

0.075<br />

0.07<br />

β = 5.2<br />

β = 5.3<br />

β = 5.5<br />

0.065<br />

afK<br />

0.06<br />

0.055<br />

0.05<br />

0.045<br />

0.04<br />

0 y π<br />

0.05 0.1 0.15<br />

y 1<br />

◮ systematic expansion including<br />

M, M log(M), a 2 , not M × a 2 [there are some checks]<br />

◮ agreement also with simple linear extrpolation (no M log(M))<br />

y 1 =<br />

m2 π<br />

8π 2 F 2 K<br />

Rainer Sommer<br />

<strong>Strong</strong> <strong>coupling</strong> <strong>and</strong> <strong>strange</strong> <strong>quark</strong> <strong>mass</strong> <strong>from</strong> <strong>lattice</strong> QCD


F K L max<br />

combine L max /a = L 1 /a with aF K<br />

0.35<br />

0.34<br />

0.33<br />

L1fK<br />

0.32<br />

0.31<br />

0.3<br />

0.29<br />

strategy 1<br />

strategy 2<br />

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5<br />

(af K ) 2<br />

x 10 −3<br />

Rainer Sommer<br />

<strong>Strong</strong> <strong>coupling</strong> <strong>and</strong> <strong>strange</strong> <strong>quark</strong> <strong>mass</strong> <strong>from</strong> <strong>lattice</strong> QCD


Similar for the RGI <strong>mass</strong> of the <strong>strange</strong> <strong>quark</strong><br />

(Ms + ˆM)/fK<br />

0.7<br />

0.65<br />

0.6<br />

Ms/fK<br />

0.7 strategy1<br />

strategy2<br />

linear<br />

0.65<br />

0.6<br />

0.55<br />

0.55<br />

0 0.05 0.1 0.15<br />

y 1<br />

0 1 2 3 4<br />

(af K ) 2 x 10 −3<br />

Rainer Sommer<br />

<strong>Strong</strong> <strong>coupling</strong> <strong>and</strong> <strong>strange</strong> <strong>quark</strong> <strong>mass</strong> <strong>from</strong> <strong>lattice</strong> QCD


Results for the <strong>strange</strong> <strong>quark</strong> <strong>mass</strong> (no complete review of results)<br />

N f m s (2GeV) Experiment Theory<br />

0 97(4) m K + scale LGT,<br />

LPHA ACollaboration<br />

2 103(4) m K + scale LGT,<br />

LPHA ACollaboration<br />

3 96(3) m K + scale LGT, BMW<br />

◮ Firm results<br />

◮ Before <strong>lattice</strong> gauge theory, (still in the 90’s ) values between<br />

100MeV <strong>and</strong> 200MeV were given<br />

Rainer Sommer<br />

<strong>Strong</strong> <strong>coupling</strong> <strong>and</strong> <strong>strange</strong> <strong>quark</strong> <strong>mass</strong> <strong>from</strong> <strong>lattice</strong> QCD


N f dependence of Λ MS <strong>and</strong> comparison to phenomenology<br />

Λ MS [MeV]<br />

N f : 0 2 3 4 5<br />

Experiment Theory<br />

M K , K → l2, l3<br />

LPHA<br />

SF [<br />

ACollaboration ] 238(19) 310(20)<br />

M K , M ρ SF [PACS-CS ] 362(23)(25) 239(10)<br />

(6)(-22)<br />

DIS, HERA PT, PDF-fits [ABM11 ] 234(14) 160(11)<br />

DIS, HERA PT, PDF-fits [MSTW09 ] 285(23) 198(16)<br />

“world av. ”[2011 ] PT 212(12)<br />

e + e − → had (LEP) 4-loop PT 275(57)<br />

◮ Non-trivial, non-perturbative N f -dependence.<br />

◮ Small errors are cited, but overall consistency is not that great.<br />

◮ More precision <strong>and</strong> rigor (PT only at high energy) will be very<br />

useful.<br />

Rainer Sommer<br />

<strong>Strong</strong> <strong>coupling</strong> <strong>and</strong> <strong>strange</strong> <strong>quark</strong> <strong>mass</strong> <strong>from</strong> <strong>lattice</strong> QCD


Towards even better precision: Gradient Flow <strong>and</strong> SF<br />

◮ Gradient flow [Lüscher, 2010; Lüscher & Weisz, 2011 ]<br />

new observables<br />

◮ UV finite (proven to all orders of PT)<br />

◮ excellent numerical precision<br />

◮ renormalized <strong>coupling</strong> in finite volume with pbc [BMW, 2012 ]<br />

◮ Flow in finite volume, SF [Fritzsch & Ramos, arXiv:1301.4388 ]<br />

◮ lowest order PT to define a new <strong>coupling</strong><br />

◮ numerical investigation shows excellent precision<br />

◮ General idea<br />

x = (x 0, x) , t = flow time<br />

∫<br />

A µ(x) = quantum gauge fields : Z = D[A µ(x)] ...<br />

B µ(x, t) = smoothed gauge fields ,<br />

dB µ(x,t)<br />

dt<br />

= D νG νµ(x, t) + gauge fixing<br />

B µ(x, 0) = A µ(x)<br />

∼ − δS YM [B]<br />

δB µ<br />

correlation functions of B-fields at arbitrary points are finite<br />

Rainer Sommer<br />

<strong>Strong</strong> <strong>coupling</strong> <strong>and</strong> <strong>strange</strong> <strong>quark</strong> <strong>mass</strong> <strong>from</strong> <strong>lattice</strong> QCD


Gradient Flow<br />

dB µ(x,t)<br />

dt<br />

≡ Ḃ µ (x, t) = D ν G νµ (x, t) + D µ ∂ ν B ν (x, t)<br />

} {{ } } {{ }<br />

↑<br />

↑<br />

in PT: A µ (x) = g 0 Ā µ (x)<br />

∼ − δS YM[B]<br />

δB µ<br />

B µ (x, t) = B µ,1 (x, t)g 0 + B µ,2 (x, t)g 2 0 + . . .<br />

→ Ḃ µ,1 (x, t) = ∂ ν ∂ ν B µ,1 (x, t)<br />

(∗)<br />

eliminate by a t-dependent gauge trafo<br />

G νµ = [∂ ν B µ,1 − ∂ µ B ν,1 ] g 0 + O(g 2 0 ) , D ν = ∂ ν + O(g 0 )<br />

Rainer Sommer<br />

<strong>Strong</strong> <strong>coupling</strong> <strong>and</strong> <strong>strange</strong> <strong>quark</strong> <strong>mass</strong> <strong>from</strong> <strong>lattice</strong> QCD


Gradient Flow<br />

◮ in PT: A µ(x) = g 0 Ā µ(x)<br />

B µ(x, t) = B µ,1 (x, t)g 0 + B µ,2 (x, t)g0 2 + . . .<br />

G νµ = [∂ νB µ,1 − ∂ µB ν,1 ] g 0 + O(g0 2 ) , Dν = ∂ν + O(g 0)<br />

→ Ḃ µ,1 (x, t) = ∂ ν∂ νB µ,1 (x, t)<br />

◮ heat equation<br />

B µ,1 (x, t) =<br />

∫<br />

d D p e ipx b µ(p, t)<br />

B µ,1 (x, t) =<br />

ḃ µ = −p 2 b µ → b µ(p, t) = b µ(p, 0)e −p2 t<br />

∫<br />

d D y K t(x − y) Āµ(y) , Kt(z) = (4πt)−D/2 e −z2 /(4t)<br />

◮ smoothing over a radius of √ 8t<br />

◮ gaussian damping of large momenta<br />

Rainer Sommer<br />

<strong>Strong</strong> <strong>coupling</strong> <strong>and</strong> <strong>strange</strong> <strong>quark</strong> <strong>mass</strong> <strong>from</strong> <strong>lattice</strong> QCD


Gradient Flow<br />

◮ in PT: A µ(x) = g 0 Ā µ(x)<br />

B µ(x, t) = B µ,1 (x, t)g 0 + B µ,2 (x, t)g0 2 + . . .<br />

G νµ = [∂ νB µ,1 − ∂ µB ν,1 ] g 0 + O(g0 2 ) , Dν = ∂ν + O(g 0)<br />

→ Ḃ µ,1 (x, t) = ∂ ν∂ νB µ,1 (x, t)<br />

◮ heat equation<br />

B µ,1 (x, t) =<br />

∫<br />

d D p e ipx b µ(p, t)<br />

B µ,1 (x, t) =<br />

ḃ µ = −p 2 b µ → b µ(p, t) = b µ(p, 0)e −p2 t<br />

∫<br />

d D y K t(x − y) Āµ(y) , Kt(z) = (4πt)−D/2 e −z2 /(4t)<br />

◮ smoothing over a radius of √ 8t<br />

◮ gaussian damping of large momenta<br />

◮ all correlation functions of B µ are finite (t > 0) [Lüscher & Weisz, 2011 ]<br />

in particular 〈E(t)〉 , E(t) = − 1 2 trGµνGµν<br />

Rainer Sommer<br />

<strong>Strong</strong> <strong>coupling</strong> <strong>and</strong> <strong>strange</strong> <strong>quark</strong> <strong>mass</strong> <strong>from</strong> <strong>lattice</strong> QCD


Gradient Flow<br />

For 〈E〉 , E = − 1 2 trG µνG µν<br />

〈E〉 = E 0 g0 2 + E 0 g0 4 + . . .<br />

E 0 = 〈tr[∂ µ B ν,1 ∂ µ B ν,1 − ∂ µ B ν,1 ∂ ν B µ,1 ]〉<br />

∫<br />

∼ e −p22t [p 2 δ µν − p µ p ν ] D µν (p) finite (also with cutoff reg’n)!<br />

p<br />

Rainer Sommer<br />

<strong>Strong</strong> <strong>coupling</strong> <strong>and</strong> <strong>strange</strong> <strong>quark</strong> <strong>mass</strong> <strong>from</strong> <strong>lattice</strong> QCD


Gradient Flow <strong>and</strong> SF-<strong>coupling</strong><br />

use the flow in finite volume (SF): T × L 3 world with Dirichlet BC in time, T = L<br />

define<br />

〈E(t)〉 ≡ − 1 2 〈trG µνG µν (x, t)〉 x0=T /2 = N t<br />

g 2 MS(µ) (1 + c 2 1 g 2 MS + . . .)<br />

g 2 GF(L) ≡ N −1 t 2 ∣<br />

〈E(t)〉<br />

∣<br />

t=c2 L 2 /8<br />

This is a family of schemes characterized by c (dimensionless)<br />

Rainer Sommer<br />

<strong>Strong</strong> <strong>coupling</strong> <strong>and</strong> <strong>strange</strong> <strong>quark</strong> <strong>mass</strong> <strong>from</strong> <strong>lattice</strong> QCD


Gradient Flow <strong>and</strong> SF-<strong>coupling</strong><br />

use the flow in finite volume (SF): T × L 3 world with Dirichlet BC in time, T = L<br />

define<br />

〈E(t)〉 ≡ − 1 2 〈trG µνG µν (x, t)〉 x0=T /2 = N t<br />

g 2 MS(µ) (1 + c 2 1 g 2 MS + . . .)<br />

g 2 GF(L) ≡ N −1 t 2 ∣<br />

〈E(t)〉<br />

∣<br />

t=c2 L 2 /8<br />

This is a family of schemes characterized by c (dimensionless)<br />

N (c) = c4 (N 2 −1)<br />

128<br />

∑<br />

n,n 0<br />

e −c2 π 2 (n 2 + 1 4 n2 0 )<br />

× 2n2 s 2 n 0<br />

(T /2)+(n 2 + 3 4 n2 0 )c2 n 0<br />

(T /2)<br />

n 2 + 1 4 n2 0<br />

◮ the <strong>lattice</strong> version is known (<strong>and</strong> needed)<br />

Rainer Sommer<br />

<strong>Strong</strong> <strong>coupling</strong> <strong>and</strong> <strong>strange</strong> <strong>quark</strong> <strong>mass</strong> <strong>from</strong> <strong>lattice</strong> QCD


Gradient Flow <strong>and</strong> SF-<strong>coupling</strong><br />

statistical precision: variance<br />

relative variance = 〈E 2 〉 − 〈E〉 2<br />

〈E〉 2<br />

should be finite as a → 0, L/a → ∞<br />

Numerically, Fritzsch & Ramos:<br />

10 −1 0.02 0.05 0.1 0.2 0.4 0.6<br />

rel. variance of E<br />

10 −2<br />

10 −3<br />

10 −4<br />

L/a = 6<br />

L/a = 8<br />

L/a = 10<br />

L/a = 12<br />

L/a = 16<br />

10 −5<br />

Rainer Sommer<br />

c<br />

<strong>Strong</strong> <strong>coupling</strong> <strong>and</strong> <strong>strange</strong> <strong>quark</strong> <strong>mass</strong> <strong>from</strong> <strong>lattice</strong> QCD


Gradient Flow <strong>and</strong> SF-<strong>coupling</strong><br />

statistical precision<br />

autocorrelations scale as expected: τ int ∝ a −2<br />

τint/τmeas<br />

L/a = 6<br />

L/a = 8<br />

L/a = 10<br />

1.5<br />

L/a = 12<br />

L/a = 16<br />

1<br />

0.5<br />

0 0.1 0.2 0.3 0.4 0.5 0.6<br />

c<br />

(a/L) 2 · τint/10 MDU<br />

0.025<br />

0.02<br />

0.015<br />

0.01<br />

0.005<br />

0<br />

c = 0.3<br />

c = 0.4<br />

c = 0.5<br />

5 10 15 20 25 30 35 40<br />

L/a<br />

Statistical precision is good <strong>and</strong> theoretically understood.<br />

There will be no surprises on the way to the continuum limit.<br />

Rainer Sommer<br />

<strong>Strong</strong> <strong>coupling</strong> <strong>and</strong> <strong>strange</strong> <strong>quark</strong> <strong>mass</strong> <strong>from</strong> <strong>lattice</strong> QCD


Gradient Flow <strong>and</strong> SF-<strong>coupling</strong><br />

systematic precision<br />

keeping old SF-<strong>coupling</strong> ḡ SF(L) fixed (defines L), compute<br />

[ 2<br />

Ω(u; c, a/L) = ˆN −1 (c, a/L) · t 2 SF =u, m=0<br />

〈E(t, T /2)〉]ḡ<br />

t=c 2 L 2 /8<br />

8<br />

˜Ω(u; c, a/L)<br />

7<br />

ω(u; c)<br />

7.5<br />

7<br />

Ω(u; c, a/L)<br />

c = 0.5<br />

6<br />

5<br />

6.5<br />

6<br />

c = 0.4<br />

0.3 0.35 0.4 0.45 0.5<br />

c<br />

5.5<br />

5<br />

c = 0.3<br />

0.2<br />

0.1<br />

R(u; 0.3, a/L)<br />

R(u; 0.4, a/L)<br />

R(u; 0.5, a/L)<br />

4.5<br />

4<br />

0 0.005 0.01 0.015 0.02 0.025<br />

(a/L) 2<br />

0<br />

0 0.005 0.01 0.015 0.02 0.025<br />

(a/L) 2<br />

◮ small cutoff effects −→ ready for applications −→ . . .<br />

→ precise Λ-parameter<br />

Rainer Sommer<br />

<strong>Strong</strong> <strong>coupling</strong> <strong>and</strong> <strong>strange</strong> <strong>quark</strong> <strong>mass</strong> <strong>from</strong> <strong>lattice</strong> QCD


Summary<br />

The fundamental parameters of QCD<br />

Λ, M i<br />

◮ refer to the asymptotic high energy behavior of QCD<br />

<strong>and</strong> therefore Nature<br />

Rainer Sommer<br />

<strong>Strong</strong> <strong>coupling</strong> <strong>and</strong> <strong>strange</strong> <strong>quark</strong> <strong>mass</strong> <strong>from</strong> <strong>lattice</strong> QCD


Summary<br />

The fundamental parameters of QCD<br />

Λ, M i<br />

◮ refer to the asymptotic high energy behavior of QCD<br />

<strong>and</strong> therefore Nature<br />

◮ nevertheless they can be connected non-perturbatively<br />

through <strong>lattice</strong> simulations to hadron <strong>mass</strong>es (<strong>and</strong> properties)<br />

Rainer Sommer<br />

<strong>Strong</strong> <strong>coupling</strong> <strong>and</strong> <strong>strange</strong> <strong>quark</strong> <strong>mass</strong> <strong>from</strong> <strong>lattice</strong> QCD


Summary<br />

The fundamental parameters of QCD<br />

Λ, M i<br />

◮ refer to the asymptotic high energy behavior of QCD<br />

<strong>and</strong> therefore Nature<br />

◮ nevertheless they can be connected non-perturbatively<br />

through <strong>lattice</strong> simulations to hadron <strong>mass</strong>es (<strong>and</strong> properties)<br />

◮ firm <strong>and</strong> precise results can be obtained<br />

Rainer Sommer<br />

<strong>Strong</strong> <strong>coupling</strong> <strong>and</strong> <strong>strange</strong> <strong>quark</strong> <strong>mass</strong> <strong>from</strong> <strong>lattice</strong> QCD


Summary<br />

The fundamental parameters of QCD<br />

Λ, M i<br />

◮ refer to the asymptotic high energy behavior of QCD<br />

<strong>and</strong> therefore Nature<br />

◮ nevertheless they can be connected non-perturbatively<br />

through <strong>lattice</strong> simulations to hadron <strong>mass</strong>es (<strong>and</strong> properties)<br />

◮ firm <strong>and</strong> precise results can be obtained<br />

◮ the precision will be improved even further in the near future<br />

Rainer Sommer<br />

<strong>Strong</strong> <strong>coupling</strong> <strong>and</strong> <strong>strange</strong> <strong>quark</strong> <strong>mass</strong> <strong>from</strong> <strong>lattice</strong> QCD

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!