24.12.2014 Views

kerogen

kerogen

kerogen

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Petroleum System Modelling applied<br />

to the evaluation of HC in Place in<br />

Unconventional Gas Shale prospects<br />

Domenico Grigo<br />

28 April, 2011<br />

www.eni.it


PSM applied to Gas Shale Prospect characterisation<br />

Why<br />

PSM<br />

In the first phase of a non american gas shale prospect<br />

evaluation the well data resolution is so large that the normal<br />

approach (quantification of well data only) is not enough to<br />

describe properly the properties distribution.<br />

American Gas Shale (Barnett)<br />

Prospect well data<br />

The estrapolation of well data to the entire prospect extension<br />

can be succesfully supported by the numerical simulation of<br />

the natural processes gouverning the properties distribution.<br />

Petroleum System Modelling is the only methodology capable<br />

to reproduce natural processes starting from well data at basin<br />

scale<br />

Non American Gas Shale<br />

Prospect well data<br />

250 km<br />

1000 km<br />

2


Methods for characterising a Gas Shale<br />

The North American analog<br />

PSM<br />

Key characteristics noted about each system (where available)<br />

Time equivalent system Total porosity (%)<br />

Basin<br />

Age<br />

TOC (%)<br />

Kerogen type<br />

Thermal maturity (%R o )<br />

Gas in place (bcf/section)<br />

Shale gas-in-place resource (tcf)<br />

Absorbed gas (%)<br />

Matrix permeability<br />

Relative thickness<br />

Reservoir pressure (psi)<br />

Bottom-hole temperature (°C)<br />

Depositional setting*<br />

Basin type/ tectonic setting*<br />

Lithology notes<br />

Other notes<br />

* Hypothesized as potential common denominator<br />

3


Methods for characterising a Gas Shale<br />

The North American analog<br />

PSM<br />

4


Gas Shales: unconventional reservoir<br />

PSM<br />

<br />

<br />

<br />

<br />

Gas accumulation is continuous and not related to buoyancy<br />

The formation is simultaneously source rock and reservoir<br />

Gas presence is not associated to geological traps: the target is a<br />

portion of basin<br />

Gas production achieved only with fracture stimulation<br />

Not all the shale gas plays can commercially produce gas<br />

Key geological factors are:<br />

TOC >1% with %Ro>1,2<br />

Quality of organic matter: type II <strong>kerogen</strong>e is the most favourable<br />

Vshale3500 m can<br />

be acceptable<br />

5


PSM<br />

Gas Shale Maturity<br />

6


Maturity Indicators<br />

20<br />

15<br />

Depth (m): 1892,5<br />

Sample Type: BC<br />

Ro=0.60% - Std Dev. =0.06<br />

PSM<br />

•Vitrinite Reflectance (Ro%)<br />

records only the maximum temperature<br />

reached during burial<br />

N° of Readings<br />

10<br />

5<br />

0<br />

0 0.5 1 1.5 2<br />

Vitrinite Reflectance (Ro%)<br />

•Apatite Fission Track (AFTA)<br />

records also other temperatures but only if<br />

younger than the maximun<br />

•Fluid Inclusions (FI)<br />

records all the temperatures<br />

7


Equivalent Vitrinite Reflectance (Ro %)<br />

Derived by Bitume reflectance<br />

PSM<br />

Vitrinite is often scarse in carbonate source rocks. Bitumen can<br />

be present in this case, in particular when the maturity level is<br />

middle/high.<br />

By the use of Jacob’s formula<br />

(Jacob & Hiltmann, 1985) it is<br />

possible to convert the bitumen<br />

reflectance in equivalent<br />

vitrinite reflectance value:<br />

Ro eq % = 0.618 R BIT + 0.40<br />

5<br />

8


Equivalent Vitrinite Reflectance (Ro %)<br />

Derived by other organisns<br />

PSM<br />

From Suchy et Al. 2004<br />

CAI = Conodont Alteration Index<br />

9


Equivalent Vitrinite Reflectance (Ro %)<br />

Tmax by pyrolysis Rock-Eval<br />

PSM<br />

This maturity parameter is derived by the Rock-Eval analysis<br />

(the analytical technique finalized to source rock evaluation).<br />

Tmax is the temperature at<br />

which the maximum of<br />

residual petroleum potential<br />

(by <strong>kerogen</strong> pyrolysis)<br />

occurs.<br />

It has not be confused with<br />

the maximum temperature<br />

(very lower) reached by<br />

sample during its burial<br />

history.<br />

S1<br />

Immature sample<br />

T max = 420 °C<br />

S2<br />

Mature sample<br />

T max = 450 °C<br />

300 300 400 500 °C<br />

Heating rate = 25°C per minute<br />

Overmature sample<br />

T max not<br />

available<br />

10


Petroleum System Modelling<br />

Well Temperature & MaturityCalibration<br />

PSM<br />

WELL<br />

DATA<br />

20<br />

70<br />

Measured<br />

Computed<br />

0<br />

1000<br />

SURFACE<br />

TEMPERATURE<br />

0<br />

1000<br />

WELL BURIAL<br />

EVALUATION<br />

H000<br />

H100<br />

H200<br />

H300<br />

H400<br />

H500<br />

H600<br />

GS<br />

H800<br />

H900<br />

TEMPERATURE HISTORY<br />

120<br />

170<br />

220<br />

Temperature (°C)<br />

TEMPERATURE<br />

MATCHING<br />

2000<br />

Depth (m)<br />

3000<br />

4000<br />

5000<br />

HEAT<br />

FLOW<br />

Depth (m)<br />

2000<br />

3000<br />

4000<br />

5000<br />

6000<br />

7000<br />

150<br />

H000<br />

H100<br />

H200<br />

H300<br />

H400<br />

H500<br />

H600<br />

GS<br />

H800<br />

H900<br />

100<br />

50<br />

Time (ma)<br />

0<br />

150<br />

H000<br />

H100<br />

H200<br />

H300<br />

H400<br />

H500<br />

H600<br />

GS<br />

H800<br />

H900<br />

100<br />

Time (ma)<br />

50<br />

270<br />

0<br />

0.20<br />

0.70<br />

1.20<br />

1.70<br />

2.20<br />

Maturity (Ro%)<br />

6000<br />

0 50 100 150 200 250<br />

Temperature (°C)<br />

Measured<br />

Computed<br />

0<br />

1000<br />

2000<br />

Depth (m)<br />

3000<br />

4000<br />

150<br />

MATURITY HISTORY<br />

100<br />

50<br />

Time (ma)<br />

2.70<br />

3.20<br />

0<br />

MATURITY<br />

MATCHING<br />

0 1 2 3 4<br />

Ro%<br />

5000<br />

6000<br />

11


Maturity Computation & Potential Gas Shale definition<br />

PSM<br />

1000 km<br />

Gas Shale Maturity<br />

12


PSM<br />

Gas Shale Properties<br />

13


Kerogen<br />

ENVIRONMENT<br />

Aquatic<br />

KEROGEN<br />

TYPE<br />

I<br />

KEROGEN FORM<br />

[ MACERAL]<br />

alginite<br />

ORIGIN<br />

algal bodies<br />

structureless debris of<br />

algal bodies<br />

HC<br />

POTENTIAL<br />

PSM<br />

The potential to generate hydrocarbons and the quality of the products are affected by<br />

the quality of the initial <strong>kerogen</strong>, which is controlled by the quality of the organic input<br />

and by the evolution of diagenesis.<br />

On the basis of optical examination and physicochemical analyses, <strong>kerogen</strong>s have been<br />

gathered into four main groups:<br />

Terrestrial<br />

II<br />

III<br />

IV<br />

amorphous<br />

organic<br />

matter<br />

exinite<br />

vitrinite<br />

inertinite<br />

(modified, after Merrill, 1991)<br />

structureless, planktonic<br />

material,<br />

primarily of marine origin<br />

skins of spores and pollen,<br />

cuticle of leaves and<br />

herbaceous plants<br />

fibrous and woody plant<br />

fragments and strcturless<br />

collidal humic matter<br />

oxydized, recycled woody<br />

debris<br />

OIL<br />

GAS AND<br />

SOME OIL<br />

NONE<br />

GENETIC<br />

POTENTIAL<br />

+<br />

-<br />

14


Steps of Organic Matter evolution<br />

Diagenesis is strongly<br />

controlled by the biological<br />

activity (bacteria), and by the<br />

chemical environment (redox<br />

conditions, mineralogy).<br />

At the end of diagenesis,<br />

the organic matter consists mainly<br />

of a policondensed structure which<br />

is the <strong>kerogen</strong>.<br />

Catagenesis and<br />

Metagenesis, are controlled<br />

by thermal stress due to burial<br />

Both the absolute<br />

temperatures and the heating<br />

rate govern the evolution of<br />

<strong>kerogen</strong> transformation.<br />

≅<br />

-<br />

10 m<br />

THERMAL<br />

EVOLUTION<br />

+<br />

MACROMOLECULES<br />

INITIAL KEROGEN<br />

KEROGEN<br />

KEROGEN<br />

DEGRADATION<br />

RESIDUAL KEROGEN<br />

(after Bordenave, 1993 modified)<br />

early<br />

diagenesis<br />

diagenesis<br />

catagenesis<br />

metagenesis<br />

PSM<br />

C,H,O,N<br />

N<br />

C,H,O<br />

O<br />

C,H<br />

H<br />

C<br />

15


Source Rock<br />

Evaluation<br />

Source rock Evaluation: Geochemical log<br />

Quantitative analysis<br />

Source potential<br />

Qualitative analysis<br />

PSM<br />

Thermal Maturity<br />

FORMATION<br />

MARNES<br />

DE<br />

MADINGO<br />

450<br />

TOC S2<br />

HI KEROGEN<br />

TMAX<br />

COMPOSITION<br />

P F G VG P F G VG 450<br />

450<br />

III II I IMM M V M<br />

DOLOMIE DE<br />

LOANGO<br />

950<br />

950<br />

950<br />

GRES<br />

DE<br />

TCHALA<br />

CARBONATES DE SENDJI<br />

1450<br />

1950<br />

1450<br />

1950<br />

TRACES<br />

TRACES<br />

1450<br />

1950<br />

SALIFERE DE LOEME<br />

2450<br />

2450<br />

Oil prone<br />

AOM<br />

MPH<br />

CHF<br />

CWF<br />

2450<br />

ARGILES DE<br />

POINT INDIENNE<br />

T.D. 2782<br />

0 1 2 3 4 5 6<br />

(%)<br />

0 1 10 100<br />

(kg HC/ton of rock)<br />

0 200 400 600 800 1000<br />

(mg HC/g TOC)<br />

0 20 40 60 80 100<br />

(%)<br />

Serie1<br />

400 420 440 460 480 500<br />

(°C)<br />

16


Kerogen optical analyses<br />

Some <strong>kerogen</strong> types are shown:<br />

Microscope pictures of <strong>kerogen</strong>s<br />

Observation in transmitted white light<br />

PSM<br />

_________________<br />

More or less 100 µ<br />

1. Humic Kerogen<br />

(woody fragments, and then vitrinite<br />

and others coal macerals)<br />

2. Sapropelic Kerogen<br />

(spores and pollens)<br />

3. Kerogen constituted by<br />

Amorphous Organic Matter<br />

(unstructured, unrecognizable OM)<br />

17


The Seismic view of a Source Rock<br />

PSM<br />

18


Source rock lithological model<br />

PSM<br />

(50-80% shale)<br />

(80-90% shale)<br />

(90-100% shale)<br />

19


Organic matter deposition & preservation modelling<br />

PSM<br />

OF-Mod 3D:<br />

is a process-based software, which reproduce the development<br />

and the variation of organic facies in a 3D volume.<br />

TOM supply<br />

1 fluvial sediment<br />

primary productivity PP (g C·m -2·a-1 )<br />

and nutrient supply<br />

CO 2 + H 2 O CH 2 O + O 2<br />

PP = 250 - 300 g C·m-2·a-1<br />

PP = 50 – 60 g C·m -2·a * -1 *<br />

* *<br />

*<br />

*<br />

PP = 100 - 250 g C·m *<br />

*<br />

-2·a * * * *<br />

* * *<br />

*-1<br />

2 * *<br />

*<br />

*<br />

*<br />

* * * * * *<br />

*<br />

* * * *<br />

2<br />

*<br />

* * *<br />

* *<br />

* *<br />

* * * *<br />

* *<br />

3 * * * * * ***<br />

*<br />

carbon flux<br />

* *<br />

Fc<br />

* * *<br />

*<br />

*<br />

*<br />

*<br />

*<br />

*<br />

*<br />

*<br />

*<br />

*<br />

*<br />

* * * * ** 4 *<br />

*<br />

*<br />

*<br />

4<br />

* * * **<br />

*<br />

Ctot: 10 wt%<br />

Ctot: 7 wt%<br />

degradation<br />

OF: B<br />

OF: C - A<br />

* 6<br />

*<br />

MOC (anoxic)= PP · PF · dilution<br />

epibenthic respiration<br />

5<br />

*<br />

Ctot: 1-3 wt%<br />

BFM erosion, bypass and<br />

OF: BC-C<br />

burial efficiency BE<br />

sedimentation processes<br />

Ctot: 0.3 wt%<br />

OF: D MOC (oxic) = Fc · BE · dilution<br />

water depth (m)<br />

TOM = Terrestrial Organic Matter<br />

SINTEF Petroleum Research<br />

20


Final Outcome:<br />

Gas Shale Thickness & Original properties definition<br />

PSM<br />

Original TOC=15%<br />

Original HI=350<br />

mgHC/gTOC<br />

1000 km<br />

21


Final outcome:<br />

Gas Shale Depth & Burial Evolution<br />

PSM<br />

1000 km<br />

22


PSM<br />

Gas Shale original Gas in place<br />

23


HC genaration simulation<br />

Experimental Kinetic Parameters<br />

The parameters defining the reaction scheme are determined experimentally<br />

degrading thermically the <strong>kerogen</strong> samples with the MSSV (Micro Scale<br />

Sealed Vessel) pyrolysys experiments<br />

OPTIMIZATION OF RESULTS<br />

PSM<br />

ACCORDING TO A KINETIC SCHEME<br />

USE IN THE<br />

SIMULATION OF<br />

HC GENERATION<br />

AND EXPULSION<br />

24


Calibration of the Kinetic Model<br />

Original properties definition<br />

PSM<br />

Av. Source Rock Maturity 1.6 Ro%<br />

TOC (%)<br />

0 1 10 100<br />

4400<br />

HI mgHC/gTOC<br />

1 10 100 1000<br />

4400<br />

4420<br />

4420<br />

4440<br />

4440<br />

Measured<br />

Measured<br />

Computed<br />

4460<br />

Depth (m)<br />

Computed<br />

4460<br />

Depth (m)<br />

4480<br />

4480<br />

MODELLED GAS SHALE<br />

15 % TOC – HI 350<br />

mgHC/gTOC<br />

38 m<br />

4500<br />

4520<br />

4500<br />

4520<br />

25


Expulsion Simulation Why <br />

PSM<br />

GENERATED GAS EXPELLED GAS<br />

Between Generation and Expulsion of HC a time gap can exists but<br />

also a volume gap due to the un-expelled HC remaining in the<br />

source and not available for Migration and Charging<br />

26


Final outcome:<br />

Gas Shale OGIIP Volumes by area<br />

PSM<br />

The same process of<br />

evaluation can be<br />

applied at any scale<br />

from the basin to the<br />

block following the<br />

maturation of the Gas<br />

Shale exploration<br />

project<br />

1000 km<br />

27

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!