31.12.2014 Views

Download the PDF copy - Bruker

Download the PDF copy - Bruker

Download the PDF copy - Bruker

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Nanomechanical AFM measurements<br />

on biological samples<br />

By Alex Berquand (<strong>Bruker</strong> Nano)


What’s behind “cell mechanics” and why is it<br />

so important in biology<br />

Complexity of signal transduction in cells<br />

B<br />

A<br />

C<br />

• A, B and C have different stiffness and contain various molecules.<br />

• Those molecules are associated to <strong>the</strong> inner components of <strong>the</strong> cell.<br />

• They can regulate normal functions or lead to imbalance/disease.<br />

• Identifying A, B and C and <strong>the</strong>ir components is of great importance.<br />

1/22/2013 BRUKER CONFIDENTIAL<br />

2


What’s behind “cell mechanics” and why is it<br />

so important in biology<br />

Stiffness in Cell differentiation<br />

• Nature of <strong>the</strong> scaffold:<br />

(same stem cells)<br />

or<br />

1 kPa 0.1 kPa 0.01 kPa<br />

or<br />

or<br />

or<br />

different cell types<br />

• Tilt:<br />

(same stem cells and same substrate)<br />

or or or or<br />

0º 5º 10º<br />

different cell types<br />

• AFM and fluorescence micros<strong>copy</strong> can be used.<br />

1/22/2013 BRUKER CONFIDENTIAL<br />

3


Concrete example<br />

Cancer: why is sensing differences in elasticity<br />

important<br />

• Cancer cells are usually softer than <strong>the</strong>ir counterparts, especially in <strong>the</strong><br />

case of bladder (Lekka et al. 1999), prostate (Faria et al. 2008), breast<br />

(Cross et al. 2007), cartilage (Darling et al. 2007), blood (Rosenbluth et al.<br />

2006) and ovarian (Sharma et al. 2011) tissues.<br />

• Some organs are not permeable to antibiotics.<br />

• Cancer surgery is often highly risky.<br />

• Identifying differences in elasticity at an early stage is required. Possible by<br />

AFM on <strong>the</strong> corresponding cells lines.<br />

- Lekka M. and Laidler P., Nat. Nanotechnol. 72 (2009) 72-73.<br />

- Faria E. C. et al., Analyst 133 (2008) 1498-500.<br />

- Cross S.E. et al. Nat. Nanotechnol. 2 (2007) 780-783.<br />

- Rosenbluth M.J. et al., Biophys. J. 90 (2006) 2994-3003.<br />

- Sharma S. et al., Nanomed. Nanotechnol. Biol. Med. (2011) under press.<br />

1/22/2013 BRUKER CONFIDENTIAL<br />

4


Usual tools to probe cell mechanics<br />

Major techniques<br />

• Micropipette aspiration (HochMuth, 2000).<br />

• Acoustic wave micros<strong>copy</strong> (Hildebrand 2001).<br />

• Bio-imprinting (Dickert et al. 2002).<br />

• Optical tweezers / optical traps (Dao et al. 2003).<br />

• AFM (Force Spectros<strong>copy</strong>) (Rotsch et al 2000).<br />

- HochMuth R.M., J.Biomech 33 (2000) 15-22.<br />

- Hildebrand J.A. et al., PNAS 78 (1981) 1656-1660.<br />

- Dickert J.L. et al., Anal. Chem. 74 (2002) 1302-1306.<br />

- Dao M. et al., Mech. Phys. Sol. 51 (2003) 2259-2280.<br />

- Rotsch C. et al, Biophys J. 78 (2000) 520-535.<br />

1/22/2013 BRUKER CONFIDENTIAL<br />

5


Principle of AFM<br />

Optical detection system<br />

Different feedbacks for different AFM modes<br />

1/22/2013 BRUKER CONFIDENTIAL<br />

6


AFM Resolution<br />

Compared to o<strong>the</strong>r micros<strong>copy</strong> techniques<br />

0.1nm 1nm 10nm 100nm 1µm 10µm 100µm<br />

AFM<br />

light micros<strong>copy</strong><br />

EM<br />

atoms<br />

molecules<br />

bacterioΦ chloroplasts<br />

bacteria<br />

cells


Combining AFM to Fluorescence<br />

2 techniques in 1 tool<br />

AFM<br />

Optics<br />

1/22/2013 BRUKER CONFIDENTIAL


Combining AFM to IOM<br />

Compatibility with various<br />

optical techniques<br />

AFM + …<br />

Sample courtesy<br />

INRA Nantes<br />

Sample<br />

courtesy Zeiss<br />

Sample<br />

courtesy<br />

NIH<br />

Sample courtesy<br />

SWMC Stanford<br />

Sample courtesy Nat.<br />

Sample courtesy Univ. of<br />

Univ. Singapore<br />

New South Wales<br />

1/22/2013 BRUKER CONFIDENTIAL<br />

9


Combining AFM to fluorescence<br />

Automatic Overlay (MIRO)<br />

1) Capture 3 sample images at 3 different locations.<br />

2) Capture 1 tip image.<br />

3) Capture a background image and overlay it with an AFM image.<br />

1) Import optical image<br />

into Nanoscope<br />

2) Target a location for<br />

<strong>the</strong> AFM scan<br />

3) Overlay optical and<br />

AFM images<br />

1/22/2013 BRUKER CONFIDENTIAL<br />

10


Combining AFM to fluorescence<br />

Automatic Overlay (MIRO)<br />

Live Hela cells<br />

1/22/2013 BRUKER CONFIDENTIAL<br />

11


Force Spectros<strong>copy</strong><br />

Get access to stiffness and adhesion<br />

2<br />

force (nN)<br />

1<br />

0<br />

-1<br />

0<br />

distance (nm)<br />

500<br />

1/22/2013 BRUKER CONFIDENTIAL<br />

12


Contact <strong>the</strong>ories in AFM<br />

Different models / samples<br />

Hertz DMT JKR<br />

Sneddon<br />

MD<br />

(Most adapted for<br />

biological samples)<br />

Standard for Peak Force QNM


FV/Fluo Applications in Biology<br />

CSK disrupting agents<br />

• Nocodazole can disrupt Tubulin CSK.<br />

• Latrunculin can disrupt Actin CSK.<br />

• Tested on 2 cell types in fluorescence, AFM imaging, AFM FV.<br />

Hela cells<br />

OS cells


FV/Fluo Applications in Biology<br />

CSK disrupting agents<br />

tubulin<br />

Effect of <strong>the</strong> 2 drugs:<br />

1) decay of fluorescence<br />

2) loss of tracking<br />

actin<br />

3) change in elasticity<br />

Nocodazole<br />

Latrunculin<br />

z<br />

z<br />

0<br />

x<br />

x<br />

Actin plays a much more important role in cell rigidity<br />

than tubulin.<br />

Too slow (low res.) + not enough information.


Popular AFM techniques<br />

Are <strong>the</strong>y quantitative<br />

• Force measurements: Force Volume<br />

• Is it quantitative<br />

• What does it provide<br />

• Imaging: Tapping mode<br />

• Is it quantitative<br />

• What does it provide<br />

ϕ<br />

ϕ<br />

Not Quantitative!<br />

1/22/2013 BRUKER CONFIDENTIAL<br />

16


FV to slow to probe biological processes<br />

True for most of <strong>the</strong>m<br />

• Examples:<br />

• Diffusion of proteins: 10 -5 -10 -9 cm 2 .s -1 .<br />

• Polymerization of microtubules: sec-min.<br />

• Protein translocation to nucleus (can be probed by fluorescence): 30<br />

min to 1 h.<br />

• Cell migration: µm/sec-µm/h.<br />

• Cell division: 20 min to 3 days.<br />

• Ideally: less than 10 min per AFM image. Impossible with FV or loss of<br />

resolution.<br />

• Need for acceptable resolution to compare AFM and Fluorescence data (for<br />

instance: increasing number of STED publications).<br />

1/22/2013 BRUKER CONFIDENTIAL<br />

17


Resolution is important for biologists<br />

Example: STED<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

2007-2008 2009-2010 2011-2012<br />

• Number of STED publications in Biology/Medicine research.<br />

• AFM offers similar spatial resolution but is much slower.<br />

• Need for higher resolution, higher force control and faster imaging to<br />

be complementary to fluorescence techniques.<br />

1/22/2013 BRUKER CONFIDENTIAL<br />

18


Need for a new characterization<br />

technique<br />

Peak Force Tapping and Peak Force QNM<br />

PFT is based on ScanAsyst (fully Automated AFM)<br />

Works with most standard AFM probes in <strong>the</strong> standard AFM cantilever<br />

holders.<br />

Z piezo is driven with sinusoidal waveform<br />

(not a triangle as in force-distance curves).<br />

Z drive frequency is 1-2 kHz. Z drive amplitude is fixed at typical<br />

value of 150 nm (300 nm peak-to-peak)<br />

Vertical motion of probe produces force-distance plots as it taps on<br />

<strong>the</strong> sample.<br />

Imaging feedback is based on <strong>the</strong> Peak Force of <strong>the</strong> force-distance<br />

curve.<br />

The probe can be calibrated before <strong>the</strong> experiment so that all <strong>the</strong><br />

channels are directly quantitative: PFQNM<br />

1/22/2013 BRUKER CONFIDENTIAL<br />

19


Needed range of Young’s moduli<br />

Example: Human Body<br />

1/22/2013 BRUKER CONFIDENTIAL<br />

20


Overview: PeakForce QNM®<br />

Basic Principle<br />

• PeakForce Tapping is an oscillating<br />

technique that can be used to image a<br />

wide range of samples at a high<br />

resolution.<br />

5nm<br />

• The probe can easily be calibrated<br />

prior to <strong>the</strong> experiment. The technique<br />

is referred to as PeakForce QNM. In<br />

that case, all <strong>the</strong> recorded data are<br />

directly quantitative.<br />

• Peak Force QNM can now be operated<br />

on live cells and can be used to test<br />

changes in morphology and any o<strong>the</strong>r<br />

property in response to various<br />

factors.<br />

1/22/2013<br />

21


Preliminary test on a stiff sample<br />

FV/HMX/QNM comparison on a daphnia<br />

A<br />

A<br />

FV<br />

QNM<br />

A<br />

B<br />

C<br />

100<br />

µm<br />

Bright field image of Daphnia<br />

(20x)<br />

B<br />

• Daphnia scanned in FV, HMX and QNM modes (20 min per image).<br />

• Young’s modulus calculated by using <strong>the</strong> 3 modes.<br />

• QNM offers much higher resolution and information than FV. HMX<br />

returns intermediate results.<br />

1/22/2013 22


Preliminary test on a stiff sample<br />

FV/HMX/QNM comparison on a daphnia<br />

• QNM offers <strong>the</strong> best compromise in terms of resolution, ease-of-use<br />

and delivered information.<br />

1/22/2013 23


Preliminary test on a soft sample.<br />

FV/QNM comparison on a cell<br />

FV (32x32)<br />

QNM (128x128)<br />

• 90x90 µm<br />

• 5 min / image<br />

1/22/2013 24


Preliminary test on a soft sample.<br />

FV/QNM comparison on a cell<br />

Processed area<br />

QNM image + pfc image<br />

Bearing Analysis<br />

FV<br />

QNM<br />

36 curves Export + post-processing<br />

Export + post-processing<br />

144 curves<br />

1/22/2013 25


Preliminary test on a soft sample.<br />

FV/QNM comparison on a cell<br />

Line plot<br />

Indentation<br />

Modify force parameters<br />

Baseline correction<br />

Multiple line plots<br />

Boxcar filter<br />

Run History<br />

FV [Sneddon fit] = 10.9 MPa<br />

QNM (bearing Analysis) [Sneddon fit] = 21.72 MPa<br />

QNM (PFC+export) [Sneddon fit] = 18.42 MPa<br />

• The 2 QNM results are very close.<br />

• The FV result is different from <strong>the</strong> QNM results but <strong>the</strong> number<br />

of data point is also quite different + it’s hard to perform <strong>the</strong><br />

analysis on exactly <strong>the</strong> same area.<br />

• How about an analysis on higher scale (Bio experiment)<br />

1/22/2013 26


FV/QNM accuracy in Biology<br />

Study on glioblastoma<br />

• Isogenic cell line U251 transfected with tumor suppressive factors.<br />

PF error (z: 0-250 pN) Elasticity (z: 0-1.2 MPa) Deformation (z: 0-250 nm)<br />

• 5-6 min per image.<br />

• 128x128 resolution.<br />

• Enough to observe contrast on all mechanical channels.<br />

1/22/2013 BRUKER CONFIDENTIAL<br />

27


FV/QNM accuracy in Biology<br />

Study on glioblastoma<br />

Submitted to JJAP<br />

• Same tendency (cancer cells softer than normal ones) but STD very<br />

different (number of data points: 589 824 for QNM / 9214 for FV; less<br />

than 10 min per image).<br />

• Same remark for cell diffentiation, cell migration, cell remodeling,…<br />

1/22/2013 BRUKER CONFIDENTIAL<br />

28


QNM study on live Hacats<br />

Effect of Glyphosate on Human Skin<br />

• The Human skin is <strong>the</strong> first physiological<br />

barrier against physical and chemical<br />

aggressions.<br />

• Glyphosate (N-(phosphonomethyl)Glycine)<br />

is a broad spectrum systemic herbicide<br />

used to kill weeds. It’s been extensively<br />

used in <strong>the</strong> late 2000’s.<br />

• Its toxicity on lab animals has been clearly<br />

demonstrated but its effects on humans<br />

remain unclear.<br />

1/22/2013<br />

29


Background: Glyphosate<br />

Existing Data in Cytology and Main Challenges<br />

[H 2 O 2 ] marker<br />

• Glyphosate-treated samples show a<br />

higher number of necrotic and apoptotic<br />

cells, and a higher [H 2 O 2 ] than controls.<br />

• Keratinocytes and HaCat cells are<br />

difficult to image by classical AFM<br />

modes. A more reliable technique is<br />

required.<br />

• Need for a faster way to probe <strong>the</strong><br />

oxidative stress. Changes in morphology<br />

and mechanical properties might be<br />

detectable by using PeakForce QNM.<br />

1/22/2013


PeakForce QNM: Much more information<br />

Probe changes in mechanical properties<br />

• Drug treatment induces a significant increase in Young’s modulus (x3)<br />

and a decrease in deformation (x2).<br />

• Changes in mechanical properties can directly be correlated to changes<br />

in morphology.<br />

1/22/2013<br />

31


Journal of Structural Biology<br />

Publication<br />

January 2012<br />

• Data was published in a paper<br />

entitled ‘Glyphosate-induced<br />

stiffening of HaCat keratinocytes,<br />

a Peak Force Tapping study on<br />

living cells’ in Journal of<br />

Structural Biology.<br />

• The System: Bioscope Catalyst<br />

with PeakForce QNM and<br />

operated in fluid<br />

• Authors are Celine Heu, Celine<br />

Elie and Laurence Nicod (FEMTO)<br />

and Alexandre Berquand<br />

(<strong>Bruker</strong> Nano GmbH)


Different Euk. cells: Diatoms<br />

Interest in Industry<br />

• Diatoms are of interest in micro and nanoscale science for<br />

applications ranging from solar cells to optical systems.<br />

• As a living vesicle, <strong>the</strong>y also have potential for drug delivery.<br />

33


PeakForce QNM:<br />

Easier imaging of Live Diatoms in Seawater<br />

5 µm<br />

• Large scale Catalyst images remarkably stable.<br />

• The Perfusing Stage Incubator accessory enables <strong>the</strong> active exchange of medium.<br />

34


PeakForce QNM: Easier Imaging<br />

Mechanical Properties at High Resolution<br />

150 mV<br />

50 MPa<br />

0 0<br />

Peak force Error<br />

Young’s modulus<br />

20 nm<br />

0<br />

Deformation<br />

3d Height + YM skin<br />

• All PeakForce QNM channels are directly quantitative.<br />

• Unprecedented resolution from imaging to modulus.<br />

Pletikapic et al., J.<br />

Phycol 48 (2012) 174.<br />

35


PeakForce QNM: Easier Imaging<br />

First AFM Investigation of <strong>the</strong> Frustule<br />

• The frustule is a filtration wall allowing communication between <strong>the</strong> sea water and <strong>the</strong> inner<br />

part of <strong>the</strong> diatom.<br />

• These are <strong>the</strong> first images of <strong>the</strong> frustle by AFM.<br />

• Additionally, QNM channels provide quantitative mechanical properties, and show nice<br />

contrast between <strong>the</strong> pores, <strong>the</strong> rings & <strong>the</strong> rest of <strong>the</strong> frustule.<br />

36


QNM on Live Bacteria<br />

E. Coli K12<br />

Bacteria with pili 3d-height (pili retracted) YM = 183 kPa<br />

1/22/2013 37


Correlating topography to Force curves<br />

HSDC files<br />

Export + post-processing<br />

1/22/2013 BRUKER CONFIDENTIAL<br />

38


Correlating topography to Force curves<br />

HSDC files<br />

AFM tip<br />

fibril<br />

cell<br />

1 2<br />

Young’s modulus calculated<br />

over very specific areas<br />

Young’s modulus calculated<br />

over <strong>the</strong> entire cell<br />

1/22/2013 BRUKER CONFIDENTIAL<br />

39


Functionalized probes<br />

HSDC files - Detecting specific unbinding events<br />

1/22/2013 BRUKER CONFIDENTIAL<br />

40


Combining QNM with functionalized<br />

probes - Pathogenesis of Malaria<br />

Erythrocyte (Red Blood Cell) Infection<br />

P. falciparum<br />

Anopheles mosquito<br />

Healthy RBC<br />

• Parasites enter bloodstream and<br />

infect RBCs.<br />

• As parasites multiply, <strong>the</strong> RBCs<br />

breaks open and infects more RBCs.<br />

• Infected RBCs are misshapen with<br />

knob-like structures on surface.<br />

Knobs<br />

Infected RBC<br />

1/22/2013<br />

41


Background: Cytoadherence<br />

Erythrocyte (Red Blood Cell) Infection<br />

• P. falciparum infected erythrocytes (IE’s) exhibit cytoadherence<br />

(stick to blood vessel walls /endo<strong>the</strong>lium).<br />

• Prevents IE elimination by <strong>the</strong> spleen and causes vascular blockages.<br />

• Interaction with endo<strong>the</strong>lium surface receptors (eg. CD36).<br />

Adapted from http://cmr.asm.org/cgi/content-nw/full/13/3/439/F1.<br />

Adapted from <strong>the</strong> Plasmodium Genome Resource.<br />

1/22/2013<br />

42


The Biological Question:<br />

Can we map <strong>the</strong> distribution of cytoadherent<br />

molecules to specific cell surface structures<br />

• AFM probes were functionalized with endo<strong>the</strong>lial surface receptor CD36.<br />

• Used PeakForce QNM with functionalized probe to obtain 2D map of <strong>the</strong><br />

distribution of CD36 molecular binding sites on IE.<br />

(CD36)<br />

Adapted from Li et al. (2011) PLoS ONE 6: 1-10.<br />

1/22/2013<br />

43


Molecular Recognition Imaging of IEs<br />

Colocalization of CD36 binding sites with knobs<br />

Topography Adhesion Overlay<br />

• CD36 binding sites (high adhesion) correlate to knob structures (circles).<br />

• Adhesion is a result of specific interactions between CD36 and knobs and<br />

not due to crosstalk between data channels (arrow).<br />

1/22/2013<br />

44


Challenge: Glycocalyx in force measurements<br />

Obstacle for access to <strong>the</strong> membrane<br />

• Exists in bacteria and euk. Cells.<br />

• Idea: use probes with various chemistries<br />

1/22/2013 BRUKER CONFIDENTIAL<br />

45


Application Note #135<br />

Quantitative imaging of living biological samples<br />

by Peak Force QNM Atomic Force Micros<strong>copy</strong><br />

• A comprehensive review of Peak<br />

Force QNM applications on soft<br />

biological samples<br />

• Authors are Dr. Alex Berquand and<br />

Dr. Ben Ohler (<strong>Bruker</strong> Nano Inc.).<br />

• + New App Note with latest<br />

developments and examples to be<br />

released soon.<br />

1/22/2013<br />

46


Contact information<br />

Alexandre Berquand<br />

Life Science Applications Scientist<br />

Alexandre.Berquand@bruker-nano.com<br />

Tel: +49 174 333 94 62<br />

www.bruker.com/en/products/surface-analysis/atomic-force-micros<strong>copy</strong>.html<br />

www.brukerafmprobes.com/<br />

http://nanoscaleworld.bruker-axs.com/<br />

1/22/2013 BRUKER CONFIDENTIAL<br />

47

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!