31.12.2014 Views

Download the PDF copy - Bruker

Download the PDF copy - Bruker

Download the PDF copy - Bruker

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Nanomechanical AFM measurements<br />

on biological samples<br />

By Alex Berquand (<strong>Bruker</strong> Nano)


What’s behind “cell mechanics” and why is it<br />

so important in biology<br />

Complexity of signal transduction in cells<br />

B<br />

A<br />

C<br />

• A, B and C have different stiffness and contain various molecules.<br />

• Those molecules are associated to <strong>the</strong> inner components of <strong>the</strong> cell.<br />

• They can regulate normal functions or lead to imbalance/disease.<br />

• Identifying A, B and C and <strong>the</strong>ir components is of great importance.<br />

1/22/2013 BRUKER CONFIDENTIAL<br />

2


What’s behind “cell mechanics” and why is it<br />

so important in biology<br />

Stiffness in Cell differentiation<br />

• Nature of <strong>the</strong> scaffold:<br />

(same stem cells)<br />

or<br />

1 kPa 0.1 kPa 0.01 kPa<br />

or<br />

or<br />

or<br />

different cell types<br />

• Tilt:<br />

(same stem cells and same substrate)<br />

or or or or<br />

0º 5º 10º<br />

different cell types<br />

• AFM and fluorescence micros<strong>copy</strong> can be used.<br />

1/22/2013 BRUKER CONFIDENTIAL<br />

3


Concrete example<br />

Cancer: why is sensing differences in elasticity<br />

important<br />

• Cancer cells are usually softer than <strong>the</strong>ir counterparts, especially in <strong>the</strong><br />

case of bladder (Lekka et al. 1999), prostate (Faria et al. 2008), breast<br />

(Cross et al. 2007), cartilage (Darling et al. 2007), blood (Rosenbluth et al.<br />

2006) and ovarian (Sharma et al. 2011) tissues.<br />

• Some organs are not permeable to antibiotics.<br />

• Cancer surgery is often highly risky.<br />

• Identifying differences in elasticity at an early stage is required. Possible by<br />

AFM on <strong>the</strong> corresponding cells lines.<br />

- Lekka M. and Laidler P., Nat. Nanotechnol. 72 (2009) 72-73.<br />

- Faria E. C. et al., Analyst 133 (2008) 1498-500.<br />

- Cross S.E. et al. Nat. Nanotechnol. 2 (2007) 780-783.<br />

- Rosenbluth M.J. et al., Biophys. J. 90 (2006) 2994-3003.<br />

- Sharma S. et al., Nanomed. Nanotechnol. Biol. Med. (2011) under press.<br />

1/22/2013 BRUKER CONFIDENTIAL<br />

4


Usual tools to probe cell mechanics<br />

Major techniques<br />

• Micropipette aspiration (HochMuth, 2000).<br />

• Acoustic wave micros<strong>copy</strong> (Hildebrand 2001).<br />

• Bio-imprinting (Dickert et al. 2002).<br />

• Optical tweezers / optical traps (Dao et al. 2003).<br />

• AFM (Force Spectros<strong>copy</strong>) (Rotsch et al 2000).<br />

- HochMuth R.M., J.Biomech 33 (2000) 15-22.<br />

- Hildebrand J.A. et al., PNAS 78 (1981) 1656-1660.<br />

- Dickert J.L. et al., Anal. Chem. 74 (2002) 1302-1306.<br />

- Dao M. et al., Mech. Phys. Sol. 51 (2003) 2259-2280.<br />

- Rotsch C. et al, Biophys J. 78 (2000) 520-535.<br />

1/22/2013 BRUKER CONFIDENTIAL<br />

5


Principle of AFM<br />

Optical detection system<br />

Different feedbacks for different AFM modes<br />

1/22/2013 BRUKER CONFIDENTIAL<br />

6


AFM Resolution<br />

Compared to o<strong>the</strong>r micros<strong>copy</strong> techniques<br />

0.1nm 1nm 10nm 100nm 1µm 10µm 100µm<br />

AFM<br />

light micros<strong>copy</strong><br />

EM<br />

atoms<br />

molecules<br />

bacterioΦ chloroplasts<br />

bacteria<br />

cells


Combining AFM to Fluorescence<br />

2 techniques in 1 tool<br />

AFM<br />

Optics<br />

1/22/2013 BRUKER CONFIDENTIAL


Combining AFM to IOM<br />

Compatibility with various<br />

optical techniques<br />

AFM + …<br />

Sample courtesy<br />

INRA Nantes<br />

Sample<br />

courtesy Zeiss<br />

Sample<br />

courtesy<br />

NIH<br />

Sample courtesy<br />

SWMC Stanford<br />

Sample courtesy Nat.<br />

Sample courtesy Univ. of<br />

Univ. Singapore<br />

New South Wales<br />

1/22/2013 BRUKER CONFIDENTIAL<br />

9


Combining AFM to fluorescence<br />

Automatic Overlay (MIRO)<br />

1) Capture 3 sample images at 3 different locations.<br />

2) Capture 1 tip image.<br />

3) Capture a background image and overlay it with an AFM image.<br />

1) Import optical image<br />

into Nanoscope<br />

2) Target a location for<br />

<strong>the</strong> AFM scan<br />

3) Overlay optical and<br />

AFM images<br />

1/22/2013 BRUKER CONFIDENTIAL<br />

10


Combining AFM to fluorescence<br />

Automatic Overlay (MIRO)<br />

Live Hela cells<br />

1/22/2013 BRUKER CONFIDENTIAL<br />

11


Force Spectros<strong>copy</strong><br />

Get access to stiffness and adhesion<br />

2<br />

force (nN)<br />

1<br />

0<br />

-1<br />

0<br />

distance (nm)<br />

500<br />

1/22/2013 BRUKER CONFIDENTIAL<br />

12


Contact <strong>the</strong>ories in AFM<br />

Different models / samples<br />

Hertz DMT JKR<br />

Sneddon<br />

MD<br />

(Most adapted for<br />

biological samples)<br />

Standard for Peak Force QNM


FV/Fluo Applications in Biology<br />

CSK disrupting agents<br />

• Nocodazole can disrupt Tubulin CSK.<br />

• Latrunculin can disrupt Actin CSK.<br />

• Tested on 2 cell types in fluorescence, AFM imaging, AFM FV.<br />

Hela cells<br />

OS cells


FV/Fluo Applications in Biology<br />

CSK disrupting agents<br />

tubulin<br />

Effect of <strong>the</strong> 2 drugs:<br />

1) decay of fluorescence<br />

2) loss of tracking<br />

actin<br />

3) change in elasticity<br />

Nocodazole<br />

Latrunculin<br />

z<br />

z<br />

0<br />

x<br />

x<br />

Actin plays a much more important role in cell rigidity<br />

than tubulin.<br />

Too slow (low res.) + not enough information.


Popular AFM techniques<br />

Are <strong>the</strong>y quantitative<br />

• Force measurements: Force Volume<br />

• Is it quantitative<br />

• What does it provide<br />

• Imaging: Tapping mode<br />

• Is it quantitative<br />

• What does it provide<br />

ϕ<br />

ϕ<br />

Not Quantitative!<br />

1/22/2013 BRUKER CONFIDENTIAL<br />

16


FV to slow to probe biological processes<br />

True for most of <strong>the</strong>m<br />

• Examples:<br />

• Diffusion of proteins: 10 -5 -10 -9 cm 2 .s -1 .<br />

• Polymerization of microtubules: sec-min.<br />

• Protein translocation to nucleus (can be probed by fluorescence): 30<br />

min to 1 h.<br />

• Cell migration: µm/sec-µm/h.<br />

• Cell division: 20 min to 3 days.<br />

• Ideally: less than 10 min per AFM image. Impossible with FV or loss of<br />

resolution.<br />

• Need for acceptable resolution to compare AFM and Fluorescence data (for<br />

instance: increasing number of STED publications).<br />

1/22/2013 BRUKER CONFIDENTIAL<br />

17


Resolution is important for biologists<br />

Example: STED<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

2007-2008 2009-2010 2011-2012<br />

• Number of STED publications in Biology/Medicine research.<br />

• AFM offers similar spatial resolution but is much slower.<br />

• Need for higher resolution, higher force control and faster imaging to<br />

be complementary to fluorescence techniques.<br />

1/22/2013 BRUKER CONFIDENTIAL<br />

18


Need for a new characterization<br />

technique<br />

Peak Force Tapping and Peak Force QNM<br />

PFT is based on ScanAsyst (fully Automated AFM)<br />

Works with most standard AFM probes in <strong>the</strong> standard AFM cantilever<br />

holders.<br />

Z piezo is driven with sinusoidal waveform<br />

(not a triangle as in force-distance curves).<br />

Z drive frequency is 1-2 kHz. Z drive amplitude is fixed at typical<br />

value of 150 nm (300 nm peak-to-peak)<br />

Vertical motion of probe produces force-distance plots as it taps on<br />

<strong>the</strong> sample.<br />

Imaging feedback is based on <strong>the</strong> Peak Force of <strong>the</strong> force-distance<br />

curve.<br />

The probe can be calibrated before <strong>the</strong> experiment so that all <strong>the</strong><br />

channels are directly quantitative: PFQNM<br />

1/22/2013 BRUKER CONFIDENTIAL<br />

19


Needed range of Young’s moduli<br />

Example: Human Body<br />

1/22/2013 BRUKER CONFIDENTIAL<br />

20


Overview: PeakForce QNM®<br />

Basic Principle<br />

• PeakForce Tapping is an oscillating<br />

technique that can be used to image a<br />

wide range of samples at a high<br />

resolution.<br />

5nm<br />

• The probe can easily be calibrated<br />

prior to <strong>the</strong> experiment. The technique<br />

is referred to as PeakForce QNM. In<br />

that case, all <strong>the</strong> recorded data are<br />

directly quantitative.<br />

• Peak Force QNM can now be operated<br />

on live cells and can be used to test<br />

changes in morphology and any o<strong>the</strong>r<br />

property in response to various<br />

factors.<br />

1/22/2013<br />

21


Preliminary test on a stiff sample<br />

FV/HMX/QNM comparison on a daphnia<br />

A<br />

A<br />

FV<br />

QNM<br />

A<br />

B<br />

C<br />

100<br />

µm<br />

Bright field image of Daphnia<br />

(20x)<br />

B<br />

• Daphnia scanned in FV, HMX and QNM modes (20 min per image).<br />

• Young’s modulus calculated by using <strong>the</strong> 3 modes.<br />

• QNM offers much higher resolution and information than FV. HMX<br />

returns intermediate results.<br />

1/22/2013 22


Preliminary test on a stiff sample<br />

FV/HMX/QNM comparison on a daphnia<br />

• QNM offers <strong>the</strong> best compromise in terms of resolution, ease-of-use<br />

and delivered information.<br />

1/22/2013 23


Preliminary test on a soft sample.<br />

FV/QNM comparison on a cell<br />

FV (32x32)<br />

QNM (128x128)<br />

• 90x90 µm<br />

• 5 min / image<br />

1/22/2013 24


Preliminary test on a soft sample.<br />

FV/QNM comparison on a cell<br />

Processed area<br />

QNM image + pfc image<br />

Bearing Analysis<br />

FV<br />

QNM<br />

36 curves Export + post-processing<br />

Export + post-processing<br />

144 curves<br />

1/22/2013 25


Preliminary test on a soft sample.<br />

FV/QNM comparison on a cell<br />

Line plot<br />

Indentation<br />

Modify force parameters<br />

Baseline correction<br />

Multiple line plots<br />

Boxcar filter<br />

Run History<br />

FV [Sneddon fit] = 10.9 MPa<br />

QNM (bearing Analysis) [Sneddon fit] = 21.72 MPa<br />

QNM (PFC+export) [Sneddon fit] = 18.42 MPa<br />

• The 2 QNM results are very close.<br />

• The FV result is different from <strong>the</strong> QNM results but <strong>the</strong> number<br />

of data point is also quite different + it’s hard to perform <strong>the</strong><br />

analysis on exactly <strong>the</strong> same area.<br />

• How about an analysis on higher scale (Bio experiment)<br />

1/22/2013 26


FV/QNM accuracy in Biology<br />

Study on glioblastoma<br />

• Isogenic cell line U251 transfected with tumor suppressive factors.<br />

PF error (z: 0-250 pN) Elasticity (z: 0-1.2 MPa) Deformation (z: 0-250 nm)<br />

• 5-6 min per image.<br />

• 128x128 resolution.<br />

• Enough to observe contrast on all mechanical channels.<br />

1/22/2013 BRUKER CONFIDENTIAL<br />

27


FV/QNM accuracy in Biology<br />

Study on glioblastoma<br />

Submitted to JJAP<br />

• Same tendency (cancer cells softer than normal ones) but STD very<br />

different (number of data points: 589 824 for QNM / 9214 for FV; less<br />

than 10 min per image).<br />

• Same remark for cell diffentiation, cell migration, cell remodeling,…<br />

1/22/2013 BRUKER CONFIDENTIAL<br />

28


QNM study on live Hacats<br />

Effect of Glyphosate on Human Skin<br />

• The Human skin is <strong>the</strong> first physiological<br />

barrier against physical and chemical<br />

aggressions.<br />

• Glyphosate (N-(phosphonomethyl)Glycine)<br />

is a broad spectrum systemic herbicide<br />

used to kill weeds. It’s been extensively<br />

used in <strong>the</strong> late 2000’s.<br />

• Its toxicity on lab animals has been clearly<br />

demonstrated but its effects on humans<br />

remain unclear.<br />

1/22/2013<br />

29


Background: Glyphosate<br />

Existing Data in Cytology and Main Challenges<br />

[H 2 O 2 ] marker<br />

• Glyphosate-treated samples show a<br />

higher number of necrotic and apoptotic<br />

cells, and a higher [H 2 O 2 ] than controls.<br />

• Keratinocytes and HaCat cells are<br />

difficult to image by classical AFM<br />

modes. A more reliable technique is<br />

required.<br />

• Need for a faster way to probe <strong>the</strong><br />

oxidative stress. Changes in morphology<br />

and mechanical properties might be<br />

detectable by using PeakForce QNM.<br />

1/22/2013


PeakForce QNM: Much more information<br />

Probe changes in mechanical properties<br />

• Drug treatment induces a significant increase in Young’s modulus (x3)<br />

and a decrease in deformation (x2).<br />

• Changes in mechanical properties can directly be correlated to changes<br />

in morphology.<br />

1/22/2013<br />

31


Journal of Structural Biology<br />

Publication<br />

January 2012<br />

• Data was published in a paper<br />

entitled ‘Glyphosate-induced<br />

stiffening of HaCat keratinocytes,<br />

a Peak Force Tapping study on<br />

living cells’ in Journal of<br />

Structural Biology.<br />

• The System: Bioscope Catalyst<br />

with PeakForce QNM and<br />

operated in fluid<br />

• Authors are Celine Heu, Celine<br />

Elie and Laurence Nicod (FEMTO)<br />

and Alexandre Berquand<br />

(<strong>Bruker</strong> Nano GmbH)


Different Euk. cells: Diatoms<br />

Interest in Industry<br />

• Diatoms are of interest in micro and nanoscale science for<br />

applications ranging from solar cells to optical systems.<br />

• As a living vesicle, <strong>the</strong>y also have potential for drug delivery.<br />

33


PeakForce QNM:<br />

Easier imaging of Live Diatoms in Seawater<br />

5 µm<br />

• Large scale Catalyst images remarkably stable.<br />

• The Perfusing Stage Incubator accessory enables <strong>the</strong> active exchange of medium.<br />

34


PeakForce QNM: Easier Imaging<br />

Mechanical Properties at High Resolution<br />

150 mV<br />

50 MPa<br />

0 0<br />

Peak force Error<br />

Young’s modulus<br />

20 nm<br />

0<br />

Deformation<br />

3d Height + YM skin<br />

• All PeakForce QNM channels are directly quantitative.<br />

• Unprecedented resolution from imaging to modulus.<br />

Pletikapic et al., J.<br />

Phycol 48 (2012) 174.<br />

35


PeakForce QNM: Easier Imaging<br />

First AFM Investigation of <strong>the</strong> Frustule<br />

• The frustule is a filtration wall allowing communication between <strong>the</strong> sea water and <strong>the</strong> inner<br />

part of <strong>the</strong> diatom.<br />

• These are <strong>the</strong> first images of <strong>the</strong> frustle by AFM.<br />

• Additionally, QNM channels provide quantitative mechanical properties, and show nice<br />

contrast between <strong>the</strong> pores, <strong>the</strong> rings & <strong>the</strong> rest of <strong>the</strong> frustule.<br />

36


QNM on Live Bacteria<br />

E. Coli K12<br />

Bacteria with pili 3d-height (pili retracted) YM = 183 kPa<br />

1/22/2013 37


Correlating topography to Force curves<br />

HSDC files<br />

Export + post-processing<br />

1/22/2013 BRUKER CONFIDENTIAL<br />

38


Correlating topography to Force curves<br />

HSDC files<br />

AFM tip<br />

fibril<br />

cell<br />

1 2<br />

Young’s modulus calculated<br />

over very specific areas<br />

Young’s modulus calculated<br />

over <strong>the</strong> entire cell<br />

1/22/2013 BRUKER CONFIDENTIAL<br />

39


Functionalized probes<br />

HSDC files - Detecting specific unbinding events<br />

1/22/2013 BRUKER CONFIDENTIAL<br />

40


Combining QNM with functionalized<br />

probes - Pathogenesis of Malaria<br />

Erythrocyte (Red Blood Cell) Infection<br />

P. falciparum<br />

Anopheles mosquito<br />

Healthy RBC<br />

• Parasites enter bloodstream and<br />

infect RBCs.<br />

• As parasites multiply, <strong>the</strong> RBCs<br />

breaks open and infects more RBCs.<br />

• Infected RBCs are misshapen with<br />

knob-like structures on surface.<br />

Knobs<br />

Infected RBC<br />

1/22/2013<br />

41


Background: Cytoadherence<br />

Erythrocyte (Red Blood Cell) Infection<br />

• P. falciparum infected erythrocytes (IE’s) exhibit cytoadherence<br />

(stick to blood vessel walls /endo<strong>the</strong>lium).<br />

• Prevents IE elimination by <strong>the</strong> spleen and causes vascular blockages.<br />

• Interaction with endo<strong>the</strong>lium surface receptors (eg. CD36).<br />

Adapted from http://cmr.asm.org/cgi/content-nw/full/13/3/439/F1.<br />

Adapted from <strong>the</strong> Plasmodium Genome Resource.<br />

1/22/2013<br />

42


The Biological Question:<br />

Can we map <strong>the</strong> distribution of cytoadherent<br />

molecules to specific cell surface structures<br />

• AFM probes were functionalized with endo<strong>the</strong>lial surface receptor CD36.<br />

• Used PeakForce QNM with functionalized probe to obtain 2D map of <strong>the</strong><br />

distribution of CD36 molecular binding sites on IE.<br />

(CD36)<br />

Adapted from Li et al. (2011) PLoS ONE 6: 1-10.<br />

1/22/2013<br />

43


Molecular Recognition Imaging of IEs<br />

Colocalization of CD36 binding sites with knobs<br />

Topography Adhesion Overlay<br />

• CD36 binding sites (high adhesion) correlate to knob structures (circles).<br />

• Adhesion is a result of specific interactions between CD36 and knobs and<br />

not due to crosstalk between data channels (arrow).<br />

1/22/2013<br />

44


Challenge: Glycocalyx in force measurements<br />

Obstacle for access to <strong>the</strong> membrane<br />

• Exists in bacteria and euk. Cells.<br />

• Idea: use probes with various chemistries<br />

1/22/2013 BRUKER CONFIDENTIAL<br />

45


Application Note #135<br />

Quantitative imaging of living biological samples<br />

by Peak Force QNM Atomic Force Micros<strong>copy</strong><br />

• A comprehensive review of Peak<br />

Force QNM applications on soft<br />

biological samples<br />

• Authors are Dr. Alex Berquand and<br />

Dr. Ben Ohler (<strong>Bruker</strong> Nano Inc.).<br />

• + New App Note with latest<br />

developments and examples to be<br />

released soon.<br />

1/22/2013<br />

46


Contact information<br />

Alexandre Berquand<br />

Life Science Applications Scientist<br />

Alexandre.Berquand@bruker-nano.com<br />

Tel: +49 174 333 94 62<br />

www.bruker.com/en/products/surface-analysis/atomic-force-micros<strong>copy</strong>.html<br />

www.brukerafmprobes.com/<br />

http://nanoscaleworld.bruker-axs.com/<br />

1/22/2013 BRUKER CONFIDENTIAL<br />

47

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!