01.01.2015 Views

the reef biota at point addis marine national park - Parks Victoria

the reef biota at point addis marine national park - Parks Victoria

the reef biota at point addis marine national park - Parks Victoria

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>park</strong>s victoria technical series<br />

Number 83<br />

<strong>Victoria</strong>n Subtidal Reef Monitoring Program:<br />

The Reef Biota <strong>at</strong> Point Addis<br />

Marine N<strong>at</strong>ional Park<br />

M. Edmunds, H. Brown and A. Flynn<br />

May 2012


© <strong>Parks</strong> <strong>Victoria</strong><br />

All rights reserved. This document is subject to <strong>the</strong> Copyright Act 1968, no part of this public<strong>at</strong>ion<br />

may be reproduced, stored in a retrieval system, or transmitted in any form, or by any means,<br />

electronic, mechanical, photocopying or o<strong>the</strong>rwise without <strong>the</strong> prior permission of <strong>the</strong> publisher.<br />

First published 2013<br />

Published by <strong>Parks</strong> <strong>Victoria</strong><br />

Level 10, 535 Bourke Street, Melbourne <strong>Victoria</strong> 3000<br />

Opinions expressed by <strong>the</strong> Authors of this public<strong>at</strong>ion are not necessarily those of <strong>Parks</strong> <strong>Victoria</strong>,<br />

unless expressly st<strong>at</strong>ed. <strong>Parks</strong> <strong>Victoria</strong> and all persons involved in <strong>the</strong> prepar<strong>at</strong>ion and distribution<br />

of this public<strong>at</strong>ion do not accept any responsibility for <strong>the</strong> accuracy of any of <strong>the</strong> opinions or<br />

inform<strong>at</strong>ion contained in <strong>the</strong> public<strong>at</strong>ion.<br />

Authors:<br />

M<strong>at</strong>t Edmunds – Senior Marine Ecologist, Australian Marine Ecology Pty. Ltd.<br />

Hugh Brown – Marine Ecologist, Australian Marine Ecology Pty. Ltd.<br />

Adrian Flynn – Senior Marine Ecologist, Australian Marine Ecology Pty. Ltd.<br />

N<strong>at</strong>ional Library of Australia<br />

C<strong>at</strong>aloguing-in-public<strong>at</strong>ion d<strong>at</strong>a<br />

Includes bibliography<br />

ISSN 1448-4935<br />

Cit<strong>at</strong>ion<br />

M. Edmunds, M. Brown and A. Flynn (2013) <strong>Victoria</strong>n Subtidal Reef Monitoring Program:<br />

The Reef Biota <strong>at</strong> Point Addis Marine N<strong>at</strong>ional Park, May 2012. <strong>Parks</strong> <strong>Victoria</strong> Technical Series<br />

No. 82. <strong>Parks</strong> <strong>Victoria</strong>, Melbourne.<br />

Printed on environmentally friendly paper


<strong>Parks</strong> <strong>Victoria</strong> Technical Paper Series No. 83<br />

<strong>Victoria</strong>n Subtidal Reef Monitoring<br />

Program:<br />

The Reef Biota <strong>at</strong> Point Addis Marine<br />

N<strong>at</strong>ional Park, May 2012<br />

M<strong>at</strong>t Edmunds<br />

Hugh Brown<br />

Adrian Flynn<br />

Australian Marine Ecology Pty. Ltd.<br />

January 2013


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

Executive summary<br />

Shallow <strong>reef</strong> habit<strong>at</strong>s cover extensive areas along <strong>the</strong> <strong>Victoria</strong>n coast and are domin<strong>at</strong>ed by<br />

seaweeds, mobile invertebr<strong>at</strong>es and fishes. These <strong>reef</strong>s are known for <strong>the</strong>ir high biological<br />

complexity, species diversity and productivity. They also have significant economic value<br />

through commercial and recre<strong>at</strong>ional fishing, diving and o<strong>the</strong>r tourism activities. In order to<br />

effectively manage and conserve <strong>the</strong>se important and biologically rich habit<strong>at</strong>s, <strong>the</strong> <strong>Victoria</strong>n<br />

Government has established a long-term Subtidal Reef Monitoring Program (SRMP). Over<br />

time <strong>the</strong> SRMP will provide inform<strong>at</strong>ion on <strong>the</strong> st<strong>at</strong>us of <strong>Victoria</strong>n <strong>reef</strong> flora and fauna and<br />

determine <strong>the</strong> n<strong>at</strong>ure and magnitude of trends in species popul<strong>at</strong>ions and species diversity<br />

through time.<br />

The monitoring program <strong>at</strong> <strong>the</strong> Point Addis Marine N<strong>at</strong>ional Park began in December 2003<br />

with four monitoring sites. Since th<strong>at</strong> time, <strong>the</strong>re have been five surveys and a fur<strong>the</strong>r four<br />

sites were established during <strong>the</strong> fifth survey in 2012.<br />

The monitoring involves standardised underw<strong>at</strong>er visual census methods to a depth of 7 m.<br />

This report aims to provide:<br />

• a general description of <strong>the</strong> biological communities and species popul<strong>at</strong>ions <strong>at</strong> each<br />

monitoring site and any changes over <strong>the</strong> monitoring period; and<br />

• an identific<strong>at</strong>ion of any unusual biological phenomena, interesting communities,<br />

strong temporal trends and/or <strong>the</strong> presence of any introduced species.<br />

The surveys were done along a 200 m transect line. Each transect was surveyed for:<br />

• abundance and size structure of large fishes;<br />

• abundance of cryptic fishes and benthic invertebr<strong>at</strong>es;<br />

• percentage cover of macroalgae; and<br />

• density of a dominant kelp species (Macrocystis pyrifera).<br />

Major findings following <strong>the</strong> 2012 survey include:<br />

• There were no marked differences in <strong>the</strong> seaweed assemblages and functional<br />

groups between inside or outside <strong>the</strong> MPA or between survey times.<br />

• Densities of invertebr<strong>at</strong>e grazers, seastars, fish grazers and fish foragers were<br />

generally higher within <strong>the</strong> MPA over <strong>the</strong> monitoring period.<br />

• The abundance of <strong>the</strong> black-lip abalone Haliotis rubra was initially much higher inside<br />

<strong>the</strong> MPA in 2003. There was a subsequent decline in both sized and undersized<br />

abalone within <strong>the</strong> MPA to low, reference area abundances in 2012.<br />

II


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

• The abundances of warrener Turbo undul<strong>at</strong>us had a similar p<strong>at</strong>tern of change to H.<br />

rubra, with similar r<strong>at</strong>es of decline inside <strong>the</strong> MPA to reference area levels in 2012.<br />

• There was an apparent increase in greenlip abalone Haliotis laevig<strong>at</strong>a both inside<br />

and outside <strong>the</strong> MPA to 2012.<br />

• There were no observed urchin barren habit<strong>at</strong>s for any sea urchin species.<br />

• There were no observed introduced species.<br />

• There were no observed indic<strong>at</strong>ors of species composition changes expected from<br />

clim<strong>at</strong>e change.<br />

The results in this report present a rel<strong>at</strong>ively small number of times to describe trends in<br />

community structures and species popul<strong>at</strong>ions. As monitoring continues with a higher<br />

number of survey times, <strong>the</strong> program will be able to more adequ<strong>at</strong>ely reflect <strong>the</strong> average<br />

trends and ecological p<strong>at</strong>terns occurring in <strong>the</strong> system.<br />

III


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

Contents<br />

1 Introduction ........................................................................................................1<br />

1.1 Subtidal Reef Ecosystems of <strong>Victoria</strong>........................................................... 1<br />

1.2 Subtidal Reef Monitoring Program ............................................................... 6<br />

1.2.1 Objectives ............................................................................................. 6<br />

1.2.2 Monitoring Protocols and Loc<strong>at</strong>ions ...................................................... 8<br />

1.3 Subtidal Reef Monitoring <strong>at</strong> Point Addis ....................................................... 8<br />

2 Methods...............................................................................................................9<br />

2.1 Site Selection and Survey Times ................................................................. 9<br />

2.2 Census Method .......................................................................................... 11<br />

2.2.1 Underw<strong>at</strong>er Visual Census Approach ................................................. 11<br />

2.2.2 Survey Design..................................................................................... 12<br />

2.2.3 Method 1 – Mobile Fishes and Cephalopods...................................... 13<br />

2.2.4 Method 2 – Invertebr<strong>at</strong>es and Cryptic Fishes...................................... 13<br />

2.2.5 Method 3 – Macroalgae ...................................................................... 14<br />

2.2.6 Method 4 – Macrocystis ...................................................................... 14<br />

2.2.7 Method 5 – Fish Stereo Video............................................................. 15<br />

2.3 D<strong>at</strong>a Analysis – Condition indic<strong>at</strong>ors.......................................................... 19<br />

2.3.1 Approach............................................................................................. 19<br />

2.3.2 Biodiversity.......................................................................................... 20<br />

2.3.3 Ecosystem Functional Components.................................................... 22<br />

2.3.4 Introduced Species ............................................................................. 23<br />

2.3.5 Clim<strong>at</strong>e Change .................................................................................. 23<br />

2.3.6 Fishing ................................................................................................ 25<br />

3 Results ..............................................................................................................27<br />

3.1 Macroalgae ................................................................................................ 27<br />

3.1.1 Macroalgal Community Structure ........................................................ 27<br />

3.1.2 Macroalgal Species Richness and Diversity ....................................... 27<br />

3.1.3 Common Algal Species....................................................................... 30<br />

3.2 Invertebr<strong>at</strong>es .............................................................................................. 34<br />

3.2.1 Invertebr<strong>at</strong>e Community Structure ...................................................... 34<br />

3.2.2 Invertebr<strong>at</strong>e Species Richness and Diversity...................................... 34<br />

3.2.3 Common Invertebr<strong>at</strong>e Species............................................................ 37<br />

3.3 Fishes......................................................................................................... 42<br />

3.3.1 Fish Community Structure................................................................... 42<br />

3.3.2 Fish Species Richness and Diversity .................................................. 42<br />

3.3.3 Common Fish Species ........................................................................ 45<br />

3.4 Ecosystem Components ............................................................................ 48<br />

3.4.1 Habit<strong>at</strong> and Production........................................................................ 48<br />

3.4.2 Invertebr<strong>at</strong>e Groups ............................................................................ 48<br />

3.4.3 Fish Groups......................................................................................... 48<br />

3.4.4 Sediment Cover .................................................................................. 48<br />

3.5 Introduced Species..................................................................................... 48<br />

3.6 Clim<strong>at</strong>e Change.......................................................................................... 54<br />

3.6.1 Algal Bioregional Affinities................................................................... 54<br />

3.6.2 Invertebr<strong>at</strong>e Bioregional Affinities........................................................ 54<br />

3.6.3 Fish Bioregional Affinities.................................................................... 54<br />

3.6.4 Macrocystis pyrifera ............................................................................ 54<br />

3.6.5 Centrostephanus rodgersii .................................................................. 54<br />

1


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

3.6.6 Durvillaea pot<strong>at</strong>orum ........................................................................... 54<br />

3.7 Fishing........................................................................................................ 56<br />

3.7.1 Abalone ............................................................................................... 56<br />

3.7.2 Rock Lobster ....................................................................................... 56<br />

3.7.3 Fishes ................................................................................................. 56<br />

4 Acknowledgements..........................................................................................64<br />

5 References ........................................................................................................64<br />

2


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

Index of Figures<br />

Figure 1.1. Examples of species of macroalgae found on <strong>Victoria</strong>n subtidal <strong>reef</strong>s................................ 3<br />

Figure 1.2. Examples of species of invertebr<strong>at</strong>es and cryptic fish found on <strong>Victoria</strong>n subtidal <strong>reef</strong>s..... 4<br />

Figure 1.3. Examples of fish species found on <strong>Victoria</strong>n subtidal <strong>reef</strong>s. ................................................ 5<br />

Figure 2.1. Loc<strong>at</strong>ion of monitoring sites <strong>at</strong> Point Addis. The Marine N<strong>at</strong>ional Park boundary is shown<br />

with monitoring sites marked in red. Substr<strong>at</strong>um texture is indic<strong>at</strong>ed using shaded relief of lidar d<strong>at</strong>a<br />

(courtesy of <strong>Parks</strong> <strong>Victoria</strong>). .................................................................................................................. 10<br />

Figure 2.2. Biologist-diver with transect line......................................................................................... 13<br />

Figure 2.3. The cover of macrophytes is measured by <strong>the</strong> number of <strong>point</strong>s intersecting each species<br />

on <strong>the</strong> quadr<strong>at</strong> grid. ............................................................................................................................... 14<br />

Figure 3.1. Three-dimensional MDS plot of algal assemblage structure for sites <strong>at</strong> Point Addis. Black<br />

symbols indic<strong>at</strong>e <strong>the</strong> first survey. Kruskal stress = 0.12........................................................................ 28<br />

Figure 3.2. Algal species diversity indic<strong>at</strong>ors (mean ± standard error) inside and outside Point Addis<br />

Marine N<strong>at</strong>ional Park. ............................................................................................................................ 29<br />

Figure 3.3. Percent cover (mean ± standard error) of dominant algal species inside and outside <strong>the</strong><br />

Point Addis Marine N<strong>at</strong>ional Park.......................................................................................................... 30<br />

Figure 3.4. Example of diverse thallose algal community <strong>at</strong> Site 3906 , Ingoldsby Reef Inner, 18 May<br />

2012, Point Addis Marine N<strong>at</strong>ional Park................................................................................................ 33<br />

Figure 3.5. Three-dimensional MDS plot of mobile invertebr<strong>at</strong>e assemblage structure for sites <strong>at</strong> Point<br />

Addis. Black symbols indic<strong>at</strong>e <strong>the</strong> first survey. Kruskal stress = 0.14................................................... 35<br />

Figure 3.6. Mobile invertebr<strong>at</strong>e species diversity indic<strong>at</strong>ors (mean ± standard error) inside and outside<br />

Point Addis Marine N<strong>at</strong>ional Park.......................................................................................................... 36<br />

Figure 3.7. Abundance (mean ± standard error) of dominant mobile invertebr<strong>at</strong>e species inside and<br />

outside <strong>the</strong> Point Addis Marine N<strong>at</strong>ional Park. ...................................................................................... 38<br />

Figure 3.8. Sou<strong>the</strong>rn rock lobster Jasus edwardsii <strong>at</strong> Site 3906, Ingoldsby Reef Inner....................... 41<br />

Figure 3.9. Three-dimensional MDS plot of mobile invertebr<strong>at</strong>e assemblage structure for sites <strong>at</strong> Point<br />

Addis. Black symbols indic<strong>at</strong>e <strong>the</strong> first survey. Kruskal stress = 0.01................................................... 43<br />

Figure 3.10. Fish species diversity indic<strong>at</strong>ors (mean ± standard error) inside and outside Point Addis<br />

Marine N<strong>at</strong>ional Park. ............................................................................................................................ 44<br />

Figure 3.11. Long snouted boarfish Pentaceropsis revicurvirostris <strong>at</strong> Site 3906, Ingoldsby Reef Inner.<br />

............................................................................................................................................................... 45<br />

Figure 3.12. Abundance (mean ± standard error) of dominant fish species inside and outside <strong>the</strong> Point<br />

Addis Marine N<strong>at</strong>ional Park................................................................................................................... 46<br />

Figure 3.13. Seaweed functional groups (mean ± standard error) inside and outside <strong>the</strong> Point Addis<br />

Marine N<strong>at</strong>ional Park. ............................................................................................................................ 49<br />

Figure 3.14. Invertebr<strong>at</strong>e functional groups (mean ± standard error) inside and outside <strong>the</strong> Point Addis<br />

Marine N<strong>at</strong>ional Park. ............................................................................................................................ 51<br />

Figure 3.15. Fish functional groups (mean ± standard error) inside and outside <strong>the</strong> Point Addis Marine<br />

N<strong>at</strong>ional Park. ........................................................................................................................................ 52<br />

Figure 3.16. Sediment cover (mean ± standard error) inside and outside <strong>the</strong> Point Addis Marine<br />

N<strong>at</strong>ional Park. ........................................................................................................................................ 53<br />

Figure 3.17. Richness and abundance (mean ± standard error) of Maugean algae species inside and<br />

outside <strong>the</strong> Point Addis Marine N<strong>at</strong>ional Park....................................................................................... 55<br />

Figure 3.18. Proportion of legal-sized blacklip abalone Haliotis rubra <strong>at</strong> Point Addis Marine N<strong>at</strong>ional<br />

Park and reference areas.. .................................................................................................................... 55<br />

Figure 3.19. Fish size (mean ± standard error) spectra inside and outside <strong>the</strong> Point Addis Marine<br />

N<strong>at</strong>ional Park. ........................................................................................................................................ 57<br />

Figure 3.20. Density (mean ± standard error) of fished fish species inside and outside <strong>the</strong> Point Addis<br />

Marine N<strong>at</strong>ional Park. ............................................................................................................................ 58<br />

Figure 3.21. Biomass (mean ± standard error) of fished species inside and outside <strong>the</strong> Point Addis<br />

Marine N<strong>at</strong>ional Park. ............................................................................................................................ 59<br />

Figure 3.22. Abundance (mean ± standard error) of different size classes of fishes <strong>at</strong> Point Addis<br />

Marine N<strong>at</strong>ional Park and reference sites............................................................................................. 60<br />

Figure 3.23. Size structure of blue thro<strong>at</strong> wrasse, Notolabrus tetricus <strong>at</strong> Point Addis Marine N<strong>at</strong>ional<br />

Park and reference sites........................................................................................................................ 61<br />

Figure 3.24. Size structure of all fishes <strong>at</strong> Point Addis Marine N<strong>at</strong>ional Park and reference sites. ..... 62<br />

3


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

Figure 3.25. Sizes (mean ± standard error) of common fishes, <strong>at</strong> Point Addis Marine N<strong>at</strong>ional Park<br />

and reference sites. ............................................................................................................................... 63<br />

Index of Tables<br />

Table 2.1. Subtidal <strong>reef</strong> monitoring sites <strong>at</strong> Point Addis. ...................................................................... 11<br />

Table 2.2. Survey times for monitoring <strong>at</strong> Beware Point Addis............................................................. 11<br />

Table 2.3. Mobile fish (Method 1) taxa censused in central <strong>Victoria</strong>. ................................................... 16<br />

Table 2.4. Invertebr<strong>at</strong>e and cryptic fish (Method 2) taxa censused in central <strong>Victoria</strong>. ........................ 17<br />

Table 2.5. Macroalgae and seagrass (Method 3) taxa censused in central <strong>Victoria</strong>............................ 18<br />

4


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

1 Introduction<br />

1.1 Subtidal Reef Ecosystems of <strong>Victoria</strong><br />

Shallow <strong>reef</strong> habit<strong>at</strong>s cover extensive areas along <strong>the</strong> <strong>Victoria</strong>n coast. The majority of <strong>reef</strong>s<br />

in this area are exposed to strong winds, currents and large swell. A prominent biological<br />

component of <strong>Victoria</strong>n shallow <strong>reef</strong>s is kelp and o<strong>the</strong>r seaweeds (Figure ). Large species,<br />

such as <strong>the</strong> common kelp Ecklonia radi<strong>at</strong>a and crayweed Phyllospora comosa, are usually<br />

present along <strong>the</strong> open coast in dense stands. The production r<strong>at</strong>es of dense seaweed beds<br />

are equivalent to <strong>the</strong> most productive habit<strong>at</strong>s in <strong>the</strong> world, including grasslands and<br />

seagrass beds, with approxim<strong>at</strong>ely 2 kg of plant m<strong>at</strong>erial produced per square metre of<br />

seafloor per year. These stands typically have 10-30 kg of plant m<strong>at</strong>erial per square metre.<br />

The biomass of seaweeds is substantially gre<strong>at</strong>er where giant species such as string kelp<br />

Macrocystis pyrifera and bull kelp Durvillaea pot<strong>at</strong>orum occur.<br />

Seaweeds provide important habit<strong>at</strong> structure for o<strong>the</strong>r organisms on <strong>the</strong> <strong>reef</strong>. This habit<strong>at</strong><br />

structure varies considerably, depending on <strong>the</strong> type of seaweed species present. Tall<br />

vertical structures in <strong>the</strong> w<strong>at</strong>er column are formed by M. pyrifera, which sometimes forms a<br />

dense layer of fronds flo<strong>at</strong>ing on <strong>the</strong> w<strong>at</strong>er surface. O<strong>the</strong>r species with large, stalk-like stipes,<br />

such as E. radi<strong>at</strong>a, P. comosa and D. pot<strong>at</strong>orum, form a canopy 0.5-2 m above <strong>the</strong> rocky<br />

substr<strong>at</strong>um. Lower layers of structure are formed by: foliose macroalgae typically 10-30 cm<br />

high, such as <strong>the</strong> green Caulerpa and <strong>the</strong> red Plocamium species; turfs (to 10 cm high) of<br />

red algae species, such as Pterocladia capillacea; and hard encrusting layers of pink<br />

coralline algae. The n<strong>at</strong>ure and composition of <strong>the</strong>se structural layers varies considerably<br />

within and between <strong>reef</strong>s, depending on <strong>the</strong> biogeographic region, depth, exposure to swell<br />

and waves, currents, temper<strong>at</strong>ure range, w<strong>at</strong>er clarity and <strong>the</strong> presence or absence of<br />

deposited sand.<br />

Grazing and pred<strong>at</strong>ory mobile invertebr<strong>at</strong>es are prominent animal inhabitants of <strong>the</strong> <strong>reef</strong><br />

(Figure 1.1). Common grazers include blacklip and greenlip abalone Haliotis rubra and<br />

Haliotis laevig<strong>at</strong>a, warrener Turbo undul<strong>at</strong>us and sea urchins Heliocidaris erythrogramma,<br />

Holopneustes spp. and Amblypneustes spp. These species can influence <strong>the</strong> growth and<br />

survival of habit<strong>at</strong> forming organisms. For example, sponges and foliose seaweeds are often<br />

prevented from growing on encrusting coralline algae surfaces through <strong>the</strong> grazing actions of<br />

abalone and sea urchins. Pred<strong>at</strong>ory invertebr<strong>at</strong>es include dogwhelks Dic<strong>at</strong>hais orbita,<br />

sou<strong>the</strong>rn rock lobster Jasus edwardsii, octopus Octopus maorum and a wide variety of sea<br />

star species. O<strong>the</strong>r large <strong>reef</strong> invertebr<strong>at</strong>es include mobile filter feeding animals such as<br />

1


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

fea<strong>the</strong>r stars Comanthus trichoptera and sessile (<strong>at</strong>tached) species such as sponges, corals,<br />

bryozoans, hydroids and ascidians.<br />

Fishes are also a prominent component of <strong>reef</strong> ecosystems, in terms of both biomass and<br />

ecological function (Figure 1.2). Reef fish assemblages include roaming pred<strong>at</strong>ors such as<br />

blue thro<strong>at</strong> wrasse Notolabrus tetricus, herbivores such as herring cale Odax cyanomelas,<br />

planktivores such as sea sweep Scorpis aequipinnis and picker-feeders such as six-spined<br />

lea<strong>the</strong>rjacket Meuschenia freycineti. The type and abundance of each fish species varies<br />

considerably depending on exposure to swell and waves, depth, currents, <strong>reef</strong> structure,<br />

seaweed habit<strong>at</strong> structure and many o<strong>the</strong>r ecological variables. Many fish species play a<br />

substantial ecological role in <strong>the</strong> functioning and shaping of <strong>the</strong> ecosystem. For example, <strong>the</strong><br />

feeding activities of fishes such as scalyfin Parma victoriae and magpie morwong<br />

Cheilodactylus nigripes promote <strong>the</strong> form<strong>at</strong>ion of open algal turf areas, free of larger canopyforming<br />

seaweeds.<br />

Although <strong>the</strong> biomass and <strong>the</strong> primary and secondary productivity of shallow <strong>reef</strong><br />

ecosystems in <strong>Victoria</strong> are domin<strong>at</strong>ed by seaweeds, mobile invertebr<strong>at</strong>es and fishes, <strong>the</strong>re<br />

are many o<strong>the</strong>r important biological components to <strong>the</strong> <strong>reef</strong> ecosystem. These include small<br />

species of crustaceans and molluscs from 0.1 to 10 mm in size (mesoinvertebr<strong>at</strong>es),<br />

occupying various niches as grazers, pred<strong>at</strong>ors or foragers. At <strong>the</strong> microscopic level, films of<br />

microalgae and bacteria on <strong>the</strong> <strong>reef</strong> surface are also important.<br />

<strong>Victoria</strong>’s shallow <strong>reef</strong>s are a very important component of <strong>the</strong> <strong>marine</strong> environment because<br />

of <strong>the</strong>ir high biological complexity, species diversity and productivity. Subtidal <strong>reef</strong> habit<strong>at</strong>s<br />

also have important social and cultural values, which incorpor<strong>at</strong>e aes<strong>the</strong>tic, recre<strong>at</strong>ional,<br />

commercial and historical aspects. Shallow subtidal <strong>reef</strong>s also have significant economic<br />

value, through commercial fishing of <strong>reef</strong> species such as wrasses, morwong, rock lobster,<br />

abalone and sea urchins, as well as recre<strong>at</strong>ional fishing, diving and o<strong>the</strong>r tourism activities.<br />

2


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

Green algae Caulerpa flexilis<br />

Encrusting coralline algae <strong>at</strong> <strong>the</strong> base of<br />

crayweed Phyllospora comosa holdfast<br />

Red coralline algae Haliptilon roseum<br />

Thallose red algae Ballia callitricha<br />

Crayweed Phyllospora comosa canopy<br />

Common kelp Ecklonia radi<strong>at</strong>a canopy<br />

Figure 1.1. Examples of species of macroalgae found on <strong>Victoria</strong>n subtidal <strong>reef</strong>s.<br />

3


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

Sou<strong>the</strong>rn rock-lobster Jasus edwardsii<br />

Red bait crab Plagusia chabrus<br />

Blacklip abalone Haliotis rubra<br />

Fea<strong>the</strong>r star Comanthus trichoptera<br />

Nectria ocell<strong>at</strong>a<br />

Common sea urchin<br />

Heliocidaris erythrogramma<br />

Fromia polypora<br />

Red velvet fish Gn<strong>at</strong>hanocanthus goetzeei<br />

Figure 1.1. Examples of species of invertebr<strong>at</strong>es and cryptic fish found on <strong>Victoria</strong>n subtidal <strong>reef</strong>s.<br />

4


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

Sea sweep Scorpis aequipinnis, and<br />

butterfly perch Caesioperca lepidoptera<br />

Scalyfin Parma victoriae<br />

Blue-thro<strong>at</strong>ed wrasse Notolabrus tetricus<br />

(male)<br />

Six-spined lea<strong>the</strong>rjacket Meuschenia freycineti<br />

(male)<br />

Magpie morwong Cheilodactylus nigripes<br />

Old-wife Enoplosus arm<strong>at</strong>us<br />

Figure 1.2. Examples of fish species found on <strong>Victoria</strong>n subtidal <strong>reef</strong>s.<br />

5


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

1.2 Subtidal Reef Monitoring Program<br />

1.2.1 Objectives<br />

An important aspect of <strong>the</strong> management and conserv<strong>at</strong>ion of <strong>Victoria</strong>n <strong>marine</strong> n<strong>at</strong>ural<br />

resources and assets is assessing <strong>the</strong> condition of <strong>the</strong> ecosystem and how this changes over<br />

time. Combined with an understanding of ecosystem processes, this inform<strong>at</strong>ion can be used<br />

to manage any thre<strong>at</strong>s or pressures on <strong>the</strong> environment to ensure ecosystem sustainability.<br />

Consequently, <strong>the</strong> <strong>Victoria</strong>n Government has established a long-term Subtidal Reef<br />

Monitoring Program (SRMP). The primary objective of <strong>the</strong> SRMP is to provide inform<strong>at</strong>ion on<br />

<strong>the</strong> st<strong>at</strong>us of <strong>Victoria</strong>n <strong>reef</strong> flora and fauna (focussing on macroalgae, macroinvertebr<strong>at</strong>es<br />

and fish). This includes monitoring <strong>the</strong> n<strong>at</strong>ure and magnitude of trends in species<br />

abundances, species diversity and community structure. This is achieved through regular<br />

surveys <strong>at</strong> loc<strong>at</strong>ions throughout <strong>Victoria</strong>, encompassing both represent<strong>at</strong>ive and unique<br />

habit<strong>at</strong>s and communities.<br />

Inform<strong>at</strong>ion from <strong>the</strong> SRMP allows managers to better understand and interpret long-term<br />

changes in <strong>the</strong> popul<strong>at</strong>ion and community dynamics of <strong>Victoria</strong>’s <strong>reef</strong> flora and fauna. As a<br />

longer time series of d<strong>at</strong>a are collected, <strong>the</strong> SRMP will allow managers to:<br />

compare changes in <strong>the</strong> st<strong>at</strong>us of species popul<strong>at</strong>ions and biological communities<br />

between highly protected <strong>marine</strong> n<strong>at</strong>ional <strong>park</strong>s and <strong>marine</strong> sanctuaries and o<strong>the</strong>r<br />

<strong>Victoria</strong>n <strong>reef</strong> areas (e.g. Edgar and Barrett 1997, 1999);<br />

determine associ<strong>at</strong>ions between species and between species and environmental<br />

parameters (e.g. depth, exposure, <strong>reef</strong> topography) and assess how <strong>the</strong>se<br />

associ<strong>at</strong>ions vary through space and time (e.g. Edgar et al. 1997; Dayton et al. 1998;<br />

Edmunds, Roob and Ferns 2000);<br />

provide benchmarks for assessing <strong>the</strong> effectiveness of management actions, in<br />

accordance with intern<strong>at</strong>ional best practice for quality environmental management<br />

systems (Holling 1978; Meredith 1997); and<br />

determine <strong>the</strong> responses of species and communities to unforeseen and<br />

unpredictable events such as <strong>marine</strong> pest invasions, mass mortality events, oil spills,<br />

severe storm events and clim<strong>at</strong>e change (e.g. Ebeling et al. 1985; Edgar 1998; Roob<br />

et al. 2000; Swe<strong>at</strong>man et al. 2003).<br />

A monitoring survey gives an estim<strong>at</strong>e of popul<strong>at</strong>ion abundance and community structure <strong>at</strong><br />

a small window in time. P<strong>at</strong>terns seen in d<strong>at</strong>a from periodic surveys are unlikely to exactly<br />

m<strong>at</strong>ch changes in <strong>the</strong> real popul<strong>at</strong>ions over time or definitively predict <strong>the</strong> size and n<strong>at</strong>ure of<br />

future vari<strong>at</strong>ion. Plots of changes over time are unlikely to m<strong>at</strong>ch <strong>the</strong> changes in real<br />

6


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

popul<strong>at</strong>ions because changes over shorter time periods and actual minima and maxima may<br />

not be adequ<strong>at</strong>ely sampled (e.g. Figure 1.3). Fur<strong>the</strong>rmore, because <strong>the</strong> n<strong>at</strong>ure and<br />

magnitude of environmental vari<strong>at</strong>ion is different over different time scales, vari<strong>at</strong>ion over<br />

long periods may not be adequ<strong>at</strong>ely predicted from shorter-term d<strong>at</strong>a. Sources of<br />

environmental vari<strong>at</strong>ion can oper<strong>at</strong>e <strong>at</strong> <strong>the</strong> scale of months (e.g. seasonal vari<strong>at</strong>ion,<br />

harvesting), years (e.g. el Niño), decades (e.g. pollution, extreme storm events) or even<br />

centuries (e.g. tsunamis, global warming). O<strong>the</strong>r studies indic<strong>at</strong>e this monitoring program will<br />

begin to adequ<strong>at</strong>ely reflect average trends and p<strong>at</strong>terns as <strong>the</strong> surveys continue over longer<br />

periods (multiple years to decades). Results of this monitoring need to be interpreted within<br />

<strong>the</strong> context of <strong>the</strong> monitoring frequency and dur<strong>at</strong>ion.<br />

Parameter<br />

Time<br />

Figure 1.3. An example plot depicting change in an environmental, popul<strong>at</strong>ion or community variable<br />

over time (days, months or years) and potential p<strong>at</strong>terns from isol<strong>at</strong>ed observ<strong>at</strong>ions.<br />

7


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

1.2.2 Monitoring Protocols and Loc<strong>at</strong>ions<br />

The SRMP uses standardised underw<strong>at</strong>er visual census methods based on an approach<br />

developed and applied in Tasmania by Edgar and Barrett (1997). Details of standard<br />

oper<strong>at</strong>ional procedures and quality control protocols for <strong>Victoria</strong>’s SRMP are described in<br />

Edmunds and Hart (2003).<br />

The SRMP was initi<strong>at</strong>ed in May 1998 in <strong>the</strong> vicinity of Port Phillip Heads Marine N<strong>at</strong>ional<br />

Park. In 1999 <strong>the</strong> SRMP was expanded to <strong>reef</strong>s in <strong>the</strong> vicinity of <strong>the</strong> Bunurong Marine<br />

N<strong>at</strong>ional Park, Phillip Island and Point Addis Marine N<strong>at</strong>ional Park.<br />

In 2003 and 2004, <strong>the</strong> Subtidal Reef Monitoring Program was expanded to include Marine<br />

N<strong>at</strong>ional <strong>Parks</strong> and Marine Sanctuaries throughout <strong>Victoria</strong>.<br />

1.3 Subtidal Reef Monitoring <strong>at</strong> Point Addis<br />

This report describes <strong>the</strong> subtidal <strong>reef</strong> monitoring program <strong>at</strong> Point Addis and results from<br />

<strong>the</strong> first five surveys. The objectives of this report were to:<br />

1. provide an overview of <strong>the</strong> methods used for SRMP;<br />

2. provide general descriptions of <strong>the</strong> biological communities and species popul<strong>at</strong>ions <strong>at</strong><br />

each monitoring site up to June 2012;<br />

3. describe changes and trends th<strong>at</strong> have occurred over <strong>the</strong> monitoring period;<br />

4. identify any unusual biological phenomena such as interesting or unique communities<br />

or species;<br />

5. identify any introduced species <strong>at</strong> <strong>the</strong> monitoring loc<strong>at</strong>ions; and<br />

6. report on trends in selected ecosystem st<strong>at</strong>us indic<strong>at</strong>ors.<br />

8


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

2 Methods<br />

2.1 Site Selection and Survey Times<br />

Point Addis Marine N<strong>at</strong>ional Park is in <strong>the</strong> Central <strong>Victoria</strong>n bioregion (Figure 2.1). It is<br />

loc<strong>at</strong>ed between Bells Beach and Anglesea, east of Cape Otway. Point Addis is a prominent<br />

headland in <strong>the</strong> middle of <strong>the</strong> <strong>park</strong>. Subtidal <strong>reef</strong>s in this loc<strong>at</strong>ion are predominantly<br />

sandstone and limestone, separ<strong>at</strong>ed by sand beds between <strong>the</strong> headlands.<br />

Monitoring sites inside Point Addis Marine N<strong>at</strong>ional Park were established in 2003 <strong>at</strong> two<br />

offshore <strong>reef</strong>s known as Ingoldsby Reef and The Olives. Ingoldsby Reef is near <strong>the</strong> western<br />

boundary of <strong>the</strong> <strong>park</strong>. A monitoring site was loc<strong>at</strong>ed on <strong>the</strong> inshore side of this <strong>reef</strong> along <strong>the</strong><br />

4 m depth contour (Ingoldsby Inside, Site 3906). The Olives <strong>reef</strong> is loc<strong>at</strong>ed towards <strong>the</strong><br />

centre of <strong>the</strong> <strong>park</strong>, with <strong>the</strong> site on <strong>the</strong> 7 m depth contour on <strong>the</strong> mainland side of <strong>the</strong> <strong>reef</strong><br />

(The Olives, Site 3905). Two reference sites were established outside <strong>the</strong> N<strong>at</strong>ional Park in<br />

2003. One site is approxim<strong>at</strong>ely 2 km southwest of <strong>the</strong> <strong>park</strong>, offshore from Anglesea<br />

(Anglesea Reef, Site 3907). A second reference site was established nor<strong>the</strong>ast of <strong>the</strong> <strong>park</strong>,<br />

<strong>at</strong> 8 m depth near Torquay. This site is known as Phyco’s (phycologist’s) Reef (Site 3908)<br />

because of <strong>the</strong> abundant red algal assemblage encountered.<br />

In 2012, an additional four sites were added to <strong>the</strong> program. The selection of additional sites<br />

was limited by <strong>the</strong> availability of suitable <strong>reef</strong> th<strong>at</strong> was: in <strong>the</strong> optimal 5-7 m depth range;<br />

accessible and safe to survey in moder<strong>at</strong>e swell conditions; and predominantly continuous<br />

with represent<strong>at</strong>ive habit<strong>at</strong>s and communities present. The site selection was aided by aerial<br />

photography, lidar b<strong>at</strong>hymetry d<strong>at</strong>a and local knowledge to select candid<strong>at</strong>e areas with<br />

confirm<strong>at</strong>ion by on-site dive inspections. Two sites inside <strong>the</strong> N<strong>at</strong>ional Park were added on<br />

<strong>the</strong> offshore <strong>reef</strong>s associ<strong>at</strong>ed with Ingoldsby and The Olives <strong>reef</strong>s, with <strong>the</strong> inshore <strong>reef</strong>s<br />

deemed too difficult to access. Two reference sites were added in <strong>the</strong> Torquay region, to <strong>the</strong><br />

nor<strong>the</strong>ast (Figure 2.1; Table 2.1). No suitable and represent<strong>at</strong>ive <strong>reef</strong> was identified to place<br />

an additional reference site to <strong>the</strong> southwest of <strong>the</strong> <strong>park</strong>.<br />

There have been five surveys since 2003 <strong>at</strong> Point Addis (Table 2.2). During <strong>the</strong> fifth, 2012<br />

survey, <strong>the</strong>re was substantial rainfall and river flows as well as a landslide south of Point<br />

Addis. The visibility was particularly limiting <strong>at</strong> <strong>the</strong> southwestern survey sites for a lengthy<br />

period of time and <strong>the</strong> visibility <strong>at</strong> Site 7 Angelsea Reef was too poor to census <strong>the</strong> fishes <strong>at</strong><br />

this site.<br />

9


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

Figure 2.1. Loc<strong>at</strong>ion of monitoring sites <strong>at</strong> Point Addis. The Marine N<strong>at</strong>ional Park boundary is shown<br />

with monitoring sites marked in red.<br />

10


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

Table 2.1. Subtidal <strong>reef</strong> monitoring sites <strong>at</strong> Point Addis.<br />

Site No. Site Name MPA/Reference Depth (m)<br />

5 The Olives MPA 7<br />

6 Ingoldsby Inner MPA 4<br />

7 Anglesea <strong>reef</strong> Reference 3<br />

8 Phyco Reef Reference 8<br />

13 East of Olives MPA 8<br />

14 Ingoldsby Inner MPA 7<br />

15 Rocky Point Reference 8<br />

16 Torquay Offshore Reference 7<br />

Table 2.2. Survey times for monitoring <strong>at</strong> Beware Point Addis.<br />

Survey Season Survey Period<br />

1 Summer December 2003<br />

2 Autumn February-April 2005<br />

3 Summer December 2005<br />

4 Summer December 2008<br />

5 Autumn April-June 2012<br />

2.2 Census Method<br />

2.2.1 Underw<strong>at</strong>er Visual Census Approach<br />

The visual census methods of Edgar and Barrett (1997, 1999; Edgar et al. 1997) are used for<br />

this monitoring program. These are non-destructive and provide quantit<strong>at</strong>ive d<strong>at</strong>a on a large<br />

number of species and <strong>the</strong> structure of <strong>the</strong> <strong>reef</strong> communities. The Edgar-Barrett method is<br />

also used in Tasmania, New South Wales, South Australia and Western Australia. The<br />

adoption of this method in <strong>Victoria</strong> provides a system<strong>at</strong>ic and comparable approach to<br />

monitoring <strong>reef</strong>s in sou<strong>the</strong>rn Australia. The survey methods include practical and safety<br />

consider<strong>at</strong>ions for scientific divers and are designed to maximise <strong>the</strong> d<strong>at</strong>a returns per diver<br />

time underw<strong>at</strong>er. The surveys in <strong>Victoria</strong> are in accordance with a standard oper<strong>at</strong>ional<br />

procedure to ensure long-term integrity and quality of <strong>the</strong> d<strong>at</strong>a (Edmunds and Hart 2003).<br />

11


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

At most monitoring loc<strong>at</strong>ions in <strong>Victoria</strong>, surveying along <strong>the</strong> 5 m depth contour is considered<br />

optimal because diving times are not limited by decompression schedules and <strong>the</strong>se <strong>reef</strong>s<br />

are of interest to n<strong>at</strong>ural resource managers. However <strong>the</strong> actual area th<strong>at</strong> can be surveyed<br />

varies with <strong>reef</strong> extent, geomorphology and exposure. All Monitoring sites in <strong>the</strong> Point Addis<br />

region are positioned on <strong>the</strong> 10 metre contour.<br />

2.2.2 Survey Design<br />

Each site was loc<strong>at</strong>ed using differential GPS and marked with a buoy or <strong>the</strong> bo<strong>at</strong> anchor. A<br />

100 m numbered and weighted transect line was run along <strong>the</strong> appropri<strong>at</strong>e depth contour<br />

ei<strong>the</strong>r side of <strong>the</strong> central marker (Error! Reference source not found.2). The resulting 200<br />

m of line was divided into four contiguous 50 m sections (T1 to T4). The orient<strong>at</strong>ion of<br />

transect was <strong>the</strong> same for each survey, with T1 generally toward <strong>the</strong> north or east (i.e.<br />

anticlockwise along <strong>the</strong> open coast).<br />

For each transect line, four different census methods were used to obtain adequ<strong>at</strong>e<br />

descriptive inform<strong>at</strong>ion on <strong>reef</strong> communities <strong>at</strong> different sp<strong>at</strong>ial scales. These involved <strong>the</strong><br />

census of: (1) <strong>the</strong> abundance and size structure of large fishes; (2) <strong>the</strong> abundance of cryptic<br />

fishes and benthic invertebr<strong>at</strong>es; (3) <strong>the</strong> percent cover of macroalgae and sessile<br />

invertebr<strong>at</strong>es; and (4) <strong>the</strong> density of string-kelp Macrocystis pyrifera plants (where present).<br />

In 2010, a new diver-oper<strong>at</strong>ed stereo video method (Method 5) was implemented as a trial to<br />

assess its efficacy for monitoring fish diversity, abundances and sizes. The stereo video<br />

system enables precise measurements of fish lengths and sample volume or area for density<br />

estim<strong>at</strong>es (Harvey et al. 2001a, 2001b, 2002a, 2002b; Harmen et al. 2003; Westera et al.<br />

2003; W<strong>at</strong>son et al. 2010).<br />

The depth, horizontal visibility, sea st<strong>at</strong>e and cloud cover were recorded for each site.<br />

Horizontal visibility was gauged by <strong>the</strong> distance along <strong>the</strong> transect line to detect a 100 mm<br />

long female blue-thro<strong>at</strong>ed wrasse Notolabrus tetricus. All field observ<strong>at</strong>ions were recorded on<br />

underw<strong>at</strong>er paper.<br />

12


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

Figure 2.2. Biologist-diver with transect line.<br />

2.2.3 Method 1 – Mobile Fishes and Cephalopods<br />

The densities of mobile large fishes and cephalopods were estim<strong>at</strong>ed by a diver swimming<br />

up one side of each of a 50 m section of <strong>the</strong> transect, and <strong>the</strong>n back along <strong>the</strong> o<strong>the</strong>r side.<br />

The dominant fish species observed are listed in Error! Reference source not found.3. The<br />

diver recorded <strong>the</strong> number and estim<strong>at</strong>ed size-class of fish, within 5 m of each side of <strong>the</strong><br />

line (50 x 10 m area). The following size-classes of fish were used: 25, 50, 75, 100, 125, 150,<br />

200, 250, 300, 350, 375, 400, 500, 625, 750, 875 and 1000+ mm. Each diver had size-marks<br />

on an underw<strong>at</strong>er sl<strong>at</strong>e to enable calibr<strong>at</strong>ion of <strong>the</strong>ir size estim<strong>at</strong>es. Four 10 x 50 m sections<br />

of <strong>the</strong> 200 m transect were censused for mobile fish <strong>at</strong> each site. The d<strong>at</strong>a for easily sexed<br />

species were recorded separ<strong>at</strong>ely for males and female/juveniles. Such species include <strong>the</strong><br />

blue-thro<strong>at</strong>ed wrasse Notolabrus tetricus, herring cale Odax cyanomelas, barber perch<br />

Caesioperca rasor, rosy wrasse Pseudolabrus rubicundus and some lea<strong>the</strong>rjackets.<br />

2.2.4 Method 2 – Invertebr<strong>at</strong>es and Cryptic Fishes<br />

Cryptic fishes and mobile megafaunal invertebr<strong>at</strong>es (e.g. large molluscs, echinoderms,<br />

crustaceans) were counted along <strong>the</strong> transect lines used for <strong>the</strong> fish survey. A diver counted<br />

animals within 1 m of one side of <strong>the</strong> line (a total of four 1 x 50 m sections of <strong>the</strong> 200 m<br />

transect). A known arm span of <strong>the</strong> diver was used to standardise <strong>the</strong> 1 m distance. The<br />

dominant observed species are listed in Table 2.4. Where possible, <strong>the</strong> maximum length of<br />

abalone and <strong>the</strong> carapace length of rock lobsters were measured in situ using Vernier<br />

callipers and <strong>the</strong> sex of rock lobsters was recorded. Selected specimens were photographed<br />

or collected for identific<strong>at</strong>ion and preserv<strong>at</strong>ion in a reference collection.<br />

13


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

2.2.5 Method 3 – Macroalgae<br />

The area covered by macrophyte species was quantified by placing a 0.25 m 2 quadr<strong>at</strong> <strong>at</strong><br />

10 m intervals along <strong>the</strong> transect line and determining <strong>the</strong> percent cover of all macrophyte<br />

species (Figure 2.3). The quadr<strong>at</strong> was divided into a grid of 7 x 7 perpendicular wires, with 49<br />

wire intersections and one quadr<strong>at</strong> corner making up 50 <strong>point</strong>s. Cover is estim<strong>at</strong>ed by<br />

counting <strong>the</strong> number of <strong>point</strong>s covering a species (1.25 m 2 every 10 m along a 200 m<br />

transect line). The dominant observed seaweed species are listed in Table 2.5. Selected<br />

specimens were photographed or collected for identific<strong>at</strong>ion and preserv<strong>at</strong>ion in a reference<br />

collection.<br />

2.2.6 Method 4 – Macrocystis<br />

Where present, <strong>the</strong> density of string kelp Macrocystis pyrifera was estim<strong>at</strong>ed. While<br />

swimming along <strong>the</strong> transect line between quadr<strong>at</strong> positions for Method 3, a diver counted all<br />

observable M. pyrifera 5 m ei<strong>the</strong>r side of <strong>the</strong> transect. Counts are recorded for each 10 m<br />

section of <strong>the</strong> transect, giving counts for 100 m 2 sections of <strong>the</strong> transect.<br />

Figure 2.3. The cover of macrophytes is measured by <strong>the</strong> number of <strong>point</strong>s intersecting each species<br />

on <strong>the</strong> quadr<strong>at</strong> grid.<br />

14


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

2.2.7 Method 5 – Fish Stereo Video<br />

A diver oper<strong>at</strong>ed stereo video system (DOVS; SeaGIS design) was used to supplement <strong>the</strong><br />

diver UVC fish surveys. The videos were Canon HG21 handycams recording to SD card in<br />

1080p form<strong>at</strong>. The cameras were calibr<strong>at</strong>ed in a pool before and after <strong>the</strong> excursion using a<br />

SeaGIS calibr<strong>at</strong>ion cube and SeaGIS CAL software for calibr<strong>at</strong>ion of internal and external<br />

camera parameters. The cameras were mounted permanently to a diver frame. A flashing<br />

LED mounted on a pole in front of both frames was used for synchronis<strong>at</strong>ion of paired<br />

images from each camera.<br />

The stereo camera system was oper<strong>at</strong>ed by <strong>the</strong> diver who did <strong>the</strong> UVC fish survey <strong>at</strong> <strong>the</strong><br />

same time (Method 1). The stereo camera frame had <strong>the</strong> underw<strong>at</strong>er UVC sl<strong>at</strong>e mounted on<br />

it for <strong>the</strong> simultaneous observ<strong>at</strong>ions. The camera system was <strong>point</strong>ed parallel with <strong>the</strong><br />

transect line with <strong>the</strong> diver swimming 2.5 m to one side of <strong>the</strong> transect and <strong>the</strong>n returning on<br />

<strong>the</strong> o<strong>the</strong>r side of <strong>the</strong> transect, 2.5 m from <strong>the</strong> transect line. The camera unit was tilted<br />

vertically (up or down) according to <strong>the</strong> fish seen to ensure adequ<strong>at</strong>e footage for size<br />

measurements. L<strong>at</strong>eral movement of <strong>the</strong> unit was minimised. The survey speed was 10 m<br />

per minute (0.16 m s -1 ).<br />

In <strong>the</strong> labor<strong>at</strong>ory, <strong>the</strong> stereo video footage was converted from MTS to AVI form<strong>at</strong>. The<br />

SeaGIS EventMeasure and PhotoMeasure software were <strong>the</strong>n used for extracting and<br />

recording fish density and fish length estim<strong>at</strong>es from <strong>the</strong> stereo video footage. Measured fish<br />

were those without body flexure and orient<strong>at</strong>ed transverse to <strong>the</strong> camera, as well as with <strong>the</strong><br />

measurement <strong>point</strong>s visible. Standard lengths (SL) were measured (tip of snout to end of<br />

caudal fin ray). The original video footage and frames used for fish length measurements<br />

were archived. The results of this method were archived for future analysis and were not<br />

reported here.<br />

15


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

Table 2.3. Mobile fish (Method 1) taxa censused in central <strong>Victoria</strong>.<br />

Method 1 Method 1 Method 1 Method 1<br />

Cephalopoda Mobile Fishes (cont.) Mobile Fishes (cont.) Mobile Fishes (cont.)<br />

Sepia apama<br />

Trachinops<br />

caudimacul<strong>at</strong>us<br />

Aplodactylus arctidens<br />

Siphonogn<strong>at</strong>hus<br />

beddomei<br />

Sepioteuthis australis Vincentia conspersa Cheilodactylus nigripes Neoodax balte<strong>at</strong>us<br />

Mobile Sharks and Rays<br />

Dinolestes lewini<br />

Cheilodactylus<br />

spectabilis<br />

Haletta semifasci<strong>at</strong>a<br />

Heterodontus<br />

portusjacksoni<br />

Cephaloscyllium l<strong>at</strong>iceps<br />

Trachurus declivis<br />

Pseudocaranx<br />

georgianus<br />

Nemadactylus<br />

macropterus<br />

Nemadactylus douglasi<br />

Cristiceps aurantiacus<br />

Thyristes <strong>at</strong>un<br />

Myliob<strong>at</strong>is australis Pseudocaranx wrightii Dactylophora nigricans Acanthaluteres vittiger<br />

Urolophus paucimacul<strong>at</strong>us Arripis georgiana L<strong>at</strong>ridopsis forsteri<br />

Brachaluteres<br />

jacksonianus<br />

Mobile Bony Fishes Upeneichthys vlaminghii Ophthalmolepis lineol<strong>at</strong>a Scobinichthys granul<strong>at</strong>us<br />

Engraulis australis Pempheris multiradi<strong>at</strong>a Dotalabrus aurantiacus Meuschenia australis<br />

Aulopus purpuriss<strong>at</strong>us Girella tricuspid<strong>at</strong>a Eupetrichthys angustipes Meuschenia flavoline<strong>at</strong>a<br />

Synodus varieg<strong>at</strong>us Girella elev<strong>at</strong>a Notolabrus tetricus Meuschenia freycineti<br />

Lotella rhacina Girella zebra Notolabrus fucicola Meuschenia galii<br />

Pseudophycis bachus Kyphosus sydneyanus Pseudolabrus rubicundus Meuschenia hippocrepis<br />

Pseudophycis barb<strong>at</strong>a Scorpis aequipinnis Pictilabrus l<strong>at</strong>iclavius Meuschenia scaber<br />

Genypterus tigerinus Scorpis lineol<strong>at</strong>a Odax acroptilus Eubalichthys gunnii<br />

Phyllopteryx taeniol<strong>at</strong>us Atypichthys strig<strong>at</strong>us Odax cyanomelas Aracana aurita<br />

Helicolenus percoides Tilodon sexfasci<strong>at</strong>us Siphonogn<strong>at</strong>hus caninus Aracana orn<strong>at</strong>a<br />

Aetapcus macul<strong>at</strong>us<br />

Pl<strong>at</strong>ycephalus bassensis<br />

Caesioperca lepidoptera<br />

Caesioperca rasor<br />

Sphyraena<br />

novaehollandiae<br />

Enoplosus arm<strong>at</strong>us<br />

Pentaceropsis<br />

recurvirostris<br />

Parma victoriae<br />

Parma microlepis<br />

Chromis hypsilepis<br />

Siphonogn<strong>at</strong>hus<br />

<strong>at</strong>tenu<strong>at</strong>us<br />

Siphonogn<strong>at</strong>hus radi<strong>at</strong>us<br />

Siphonogn<strong>at</strong>hus<br />

tanyourus<br />

Tetractenos glaber<br />

Diodon nich<strong>the</strong>merus<br />

Arctocephalus pusillus<br />

16


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

Table 2.4. Invertebr<strong>at</strong>e and cryptic fish (Method 2) taxa censused in central <strong>Victoria</strong>.<br />

Method 2 Method 2 Method 2 Method 2<br />

Crustacea Mollusca (cont.) Cephalopoda Echinoderm<strong>at</strong>a (cont.)<br />

Jasus edwardsii Cabestana spengleri Octopus sp. Holopneustes infl<strong>at</strong>us<br />

Paguristes frontalis Cym<strong>at</strong>ium par<strong>the</strong>nopeum Echinoderm<strong>at</strong>a<br />

Strigopagurus strigimanus Dic<strong>at</strong>hais orbita Comanthus trichoptera<br />

Holopneustes<br />

purpurascens<br />

Heliocidaris<br />

erythrogramma<br />

Pagurid unidentified Pleuroploca australasia Comanthus tasmaniae Neothyonidium spp<br />

Nectocarcinus<br />

tuberculosus<br />

Penion mandarinus Tosia australis Australostichopus mollis<br />

Plagusia chabrus Penion maxima Tosia magnifica<br />

Petrocheles australiensis Conus anemone Pentagonaster dubeni Cryptic Fishes<br />

Mollusca Amoria undul<strong>at</strong>a Nectria ocell<strong>at</strong>a Parascyllium variol<strong>at</strong>um<br />

Haliotis rubra Cymbiola magnifica Nectria macrobrachia Conger verreauxi<br />

Haliotis laevig<strong>at</strong>a Sagaminopteron orn<strong>at</strong>um Nectria multispina Pseudophycis barb<strong>at</strong>a<br />

Haliotis scalaris Nudibranch un ID Nectria wilsoni Par<strong>at</strong>rachichthys trailli<br />

Scutus antipodes Tambja verconis Petricia vernicina Helicolenus percoides<br />

Clanculus und<strong>at</strong>us Neodoris chrysoderma Fromia polypora Scorpaena papillosa<br />

Calliostoma armill<strong>at</strong>a<br />

Cer<strong>at</strong>osoma<br />

brevicaud<strong>at</strong>um<br />

Plectaster decanus<br />

Calliostoma ciliaris Chromodoris tinctoria Echinaster arcyst<strong>at</strong>us<br />

Phasianotrochus eximius<br />

Chromodoris<br />

tasmaniensis<br />

Pseudonepanthia<br />

troughtoni<br />

Phasianella australis Chromodoris splendida Meridiastra gunnii<br />

Aetapcus macul<strong>at</strong>us<br />

Gn<strong>at</strong>hanacanthus<br />

goetzeei<br />

Bovichtus angustifrons<br />

Parablennius<br />

tasmanianus<br />

Phasianella ventricosa Digidentis perplexa Coscinasterias muric<strong>at</strong>a Trinorfolkia clarkei<br />

Turbo undul<strong>at</strong>us Hypselodoris bennetti Uniophora granifera Forsterygion varium<br />

Astralium tentoriformis Mesopeplum tasmanicum Goniocidaris tubaria<br />

Notocypraea angust<strong>at</strong>a<br />

Charonia lampas<br />

rubicunda<br />

Cabestana tabul<strong>at</strong>a<br />

Mimachlamys asperrimus<br />

Centrostephanus<br />

rodgersii<br />

Heteroclinus<br />

perspicill<strong>at</strong>us<br />

Heteroclinus tristis<br />

Ostrea angasi Amblypneustes spp Heteroclinus johnstoni<br />

Holopneustes<br />

porosissimus<br />

17


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

Table 2.5. Macroalgae and seagrass (Method 3) taxa censused in central <strong>Victoria</strong>.<br />

Method 3 Method 3 Method 3 Method 3<br />

Chlorophyta (green algae) Phaeophyta (cont.) Rhodophyta (red algae) Rhodophyta (cont.)<br />

Chaetomorpha sp. Zonaria turneriana Gelidium asperum Melanthalia obtus<strong>at</strong>a<br />

Abjohnia laetevirens Lobophora varieg<strong>at</strong>a Gelidium australe Melanthalia abscissa<br />

Cladophora spp Glossophora nigricans Gelidium spp Melanthalia concinna<br />

Caulerpa scalpelliformis Carpomitra cost<strong>at</strong>a Pterocladia lucida Polyopes constrictus<br />

Caulerpa trifaria Perithalia cord<strong>at</strong>a Pterocladia capillacea Halymenia plana<br />

Caulerpa brownii Bellotia eriophorum Pterocladiella capillacea<br />

18<br />

Thamnoclonium<br />

dichotomum<br />

Caulerpa obscura Ecklonia radi<strong>at</strong>a Asparagopsis arm<strong>at</strong>a Plocamium angustum<br />

Caulerpa flexilis Macrocystis angustifolia Delisea pulchra Plocamium cost<strong>at</strong>um<br />

C. flexilis var. muelleri Durvillaea pot<strong>at</strong>orum Ptilonia australasica Plocamium p<strong>at</strong>agi<strong>at</strong>um<br />

Caulerpa gemin<strong>at</strong>a<br />

Caulerpa annul<strong>at</strong>a<br />

Xiphophora<br />

chondrophylla<br />

Phyllospora comosa<br />

Asparagopsis spp<br />

Metamastophora<br />

flabell<strong>at</strong>a<br />

Plocamium mertensii<br />

Plocamium dil<strong>at</strong><strong>at</strong>um<br />

Caulerpa cactoides Seirococcus axillaris Amphiroa anceps Plocamium preissianum<br />

Caulerpa vesiculifera Scaberia agardhii Corallina officinalis Plocamium cartilagineum<br />

Caulerpa simpliciuscula<br />

Caulocystis<br />

cephalornithos<br />

Arthrocardia wardii<br />

Plocamium leptophyllum<br />

Codium lucasi Acrocarpia panicul<strong>at</strong>a Haliptilon roseum Rhodymenia australis<br />

Codium pomoides Cystophora pl<strong>at</strong>ylobium Cheilosporum sagitt<strong>at</strong>um Rhodymenia obtusa<br />

Codium spp Cystophora moniliformis Metagoniolithon radi<strong>at</strong>um Rhodymenia prolificans<br />

Phaeophyta (brown algae) Cystophora monilifera Encrusting corallines Rhodymenia spp<br />

Halopteris spp Cystophora expansa Callophyllis lambertii Cordylecladia furcell<strong>at</strong>a<br />

Dictyota spp Cystophora siliquosa Callophyllis rangiferina Ballia callitricha<br />

Dictyota diemensis Cystophora retroflexa Nizymenia australis Euptilota articul<strong>at</strong>a<br />

Dictyota dichotoma Cystophora subfarcin<strong>at</strong>a Sonderopelta coriacea Hemineura frondosa<br />

Dilophus margin<strong>at</strong>us<br />

Pachydictyon panicul<strong>at</strong>um<br />

Carpoglossum confluens<br />

Sargassum decipiens<br />

Peyssonelia<br />

novaehollandiae<br />

Sonderopelta/<br />

Peyssonelia<br />

Dictymenia harveyana<br />

Laurencia filiformis<br />

Lobospira bicuspid<strong>at</strong>a Sargassum sonderi Phacelocarpus al<strong>at</strong>us Laurencia spp<br />

Dictyopteris acrostichoides<br />

Sargassum varians<br />

Phacelocarpus<br />

peperocarpus<br />

Echinothamnion sp.<br />

Chlanidophora microphylla Sargassum verruculosum Callophycus laxus Echinothamnion hystrix<br />

Distromium flabell<strong>at</strong>um Sargassum fallax Areschougia congesta Filamentous red algae<br />

Distromium spp Sargassum vestitum Areschougia spp O<strong>the</strong>r thallose red alga<br />

Homeostrichus sinclairii Sargassum lacerifolium Acrotylus australis Magnoliophyta<br />

Homeostrichus olsenii Sargassum spinuligerum Curdiea angust<strong>at</strong>a Halophila australis<br />

Zonaria angust<strong>at</strong>a Sargassum spp Amphibolis antarctica<br />

Zonaria spiralis Brown algae unidentified Zostera nigricaulis


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

2.3 D<strong>at</strong>a Analysis – Condition indic<strong>at</strong>ors<br />

2.3.1 Approach<br />

Reef quality indic<strong>at</strong>ors were developed to encompass key fe<strong>at</strong>ures of MNP performance<br />

assessment and management interest. The selection of indic<strong>at</strong>ors for <strong>reef</strong> ecosystem<br />

management were reviewed by Turner et al. (2006) and fur<strong>the</strong>r <strong>the</strong>oretical and field<br />

consider<strong>at</strong>ions are provided by Thrush et al. (2009). Both reviews suggest a variety of<br />

indic<strong>at</strong>ors, of both ecosystem structure and function, should be used. Rapport (1992) noted<br />

th<strong>at</strong> stressors causing adverse changes in an ecosystem stand out beyond <strong>the</strong> n<strong>at</strong>ural range<br />

of variability observed in a system in ‘good health’. Adverse changes to an ecosystem<br />

include:<br />

• a shift to smaller organisms;<br />

• reduced diversity with loss of sensitive species;<br />

• increased dominance by weedy and exotic species;<br />

• shortened food chain lengths;<br />

• altered energy flows and nutrient cycling;<br />

• increased disease prevalence; and<br />

• reduced stability/increased variability (Rapport et al. 1995).<br />

A suite of indic<strong>at</strong>ors was developed for <strong>the</strong> Tasmanian <strong>reef</strong> monitoring program, which uses<br />

<strong>the</strong> same Edgar-Barrett underw<strong>at</strong>er visual census methods (Stuart-Smith et al. 2008). The<br />

indic<strong>at</strong>ors are grouped into <strong>the</strong> general c<strong>at</strong>egories: biodiversity; ecosystem functions;<br />

introduced pests, clim<strong>at</strong>e change and fishing. The Stuart-Smith indic<strong>at</strong>ors were followed and<br />

adapted for <strong>the</strong> <strong>Victoria</strong>n SRMP. These indices are consistent with <strong>the</strong> reviews mentioned<br />

above. Key adapt<strong>at</strong>ions were <strong>the</strong> use of absolute values ra<strong>the</strong>r than proportions, as <strong>the</strong><br />

<strong>Victoria</strong>n d<strong>at</strong>a had considerable concurrent vari<strong>at</strong>ion in <strong>the</strong> numer<strong>at</strong>or and denomin<strong>at</strong>or of<br />

many indices, making proportional indices difficult to interpret. The Stuart-Smith approach for<br />

examining community changes was extended by using <strong>the</strong> multivari<strong>at</strong>e control charting<br />

method of Anderson and Thompson (2004).<br />

The indic<strong>at</strong>ors were calcul<strong>at</strong>ed separ<strong>at</strong>ely for <strong>the</strong> three survey components, fishes,<br />

invertebr<strong>at</strong>es and algae.<br />

The indic<strong>at</strong>ors presented in this report provide a basis for assessment and fur<strong>the</strong>r refinement<br />

of indic<strong>at</strong>ors for <strong>marine</strong> protected area performance assessment and management.<br />

19


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

2.3.2 Biodiversity<br />

Community Structure<br />

Community structure is a multivari<strong>at</strong>e function of both <strong>the</strong> type of species present and <strong>the</strong><br />

abundance of each species. The community structure between pairs of samples was<br />

compared using <strong>the</strong> Bray-Curtis dissimilarity coefficient. This index compares <strong>the</strong> abundance<br />

of each species between two samples to give a single value of <strong>the</strong> difference between <strong>the</strong><br />

samples, expressed as a percentage (Faith et al. 1987; Clarke 1993).<br />

Following Swe<strong>at</strong>man (2000), <strong>the</strong> count d<strong>at</strong>a were log transformed and percent cover values<br />

were transformed using <strong>the</strong> empirical logit transform<strong>at</strong>ion (McCullagh and Nelder 1989).<br />

The hyper-dimensional inform<strong>at</strong>ion in <strong>the</strong> dissimilarity m<strong>at</strong>rix was simplified and depicted<br />

using non-metric multidimensional scaling (MDS; Clarke 1993). This ordin<strong>at</strong>ion method finds<br />

<strong>the</strong> represent<strong>at</strong>ion in fewer dimensions th<strong>at</strong> best depicts <strong>the</strong> actual p<strong>at</strong>terns in <strong>the</strong> hyperdimensional<br />

d<strong>at</strong>a (i.e. reduces <strong>the</strong> number of dimensions while depicting <strong>the</strong> salient<br />

rel<strong>at</strong>ionships between <strong>the</strong> samples). The MDS results were <strong>the</strong>n depicted graphically to show<br />

differences between <strong>the</strong> replic<strong>at</strong>es <strong>at</strong> each loc<strong>at</strong>ion. The distance between <strong>point</strong>s on <strong>the</strong><br />

MDS plot is represent<strong>at</strong>ive of <strong>the</strong> rel<strong>at</strong>ive difference in community structure.<br />

Kruskal stress is an indic<strong>at</strong>or st<strong>at</strong>istic calcul<strong>at</strong>ed during <strong>the</strong> ordin<strong>at</strong>ion process and indic<strong>at</strong>es<br />

<strong>the</strong> degree of disparity between <strong>the</strong> reduced dimensional d<strong>at</strong>a set and <strong>the</strong> original hyperdimensional<br />

d<strong>at</strong>a set. A guide to interpreting <strong>the</strong> Kruskal stress indic<strong>at</strong>or is given by Clarke<br />

(1993): (< 0.1) a good ordin<strong>at</strong>ion with no real risk of drawing false inferences; (< 0.2) can<br />

lead to a usable picture, although for values <strong>at</strong> <strong>the</strong> upper end of this range <strong>the</strong>re is potential<br />

to mislead; and (> 0.2) likely to yield plots which can be dangerous to interpret. These<br />

guidelines are simplistic and increasing stress is correl<strong>at</strong>ed with increasing numbers of<br />

samples. Where high stress was encountered with a two-dimensional d<strong>at</strong>a set, threedimensional<br />

solutions were sought to ensure adequ<strong>at</strong>e represent<strong>at</strong>ion of <strong>the</strong> higherdimensional<br />

p<strong>at</strong>terns.<br />

Trends in Community Structure<br />

Multivari<strong>at</strong>e control charting was used to examine <strong>the</strong> degree of changes in community<br />

structure over time. Two criteria were assessed, <strong>the</strong> first being <strong>the</strong> devi<strong>at</strong>ion in community<br />

structure <strong>at</strong> a time t from <strong>the</strong> centroid of baseline community structures. This criterion is more<br />

sensitive to <strong>the</strong> detection of gradual changes over time away from <strong>the</strong> baseline conditions. In<br />

this case, <strong>the</strong> first seven baseline surveys were used for <strong>the</strong> baseline centroid. The second<br />

criterion was <strong>the</strong> devi<strong>at</strong>ion in community structure <strong>at</strong> time t to <strong>the</strong> centroid of all previous<br />

times. This criterion is more sensitive <strong>at</strong> detecting abrupt or pulse changes.<br />

20


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

Control charts were prepared for each site as well as on a regional basis for combined sites<br />

inside <strong>the</strong> <strong>marine</strong> protected area and for reference sites. The regional analysis used average<br />

species abundances across sites within each region. The analysis used <strong>the</strong> methods of<br />

Anderson and Thompson (2004) and calcul<strong>at</strong>ions were done using <strong>the</strong> software<br />

ControlChart.exe (Anderson 2008). The analysis used <strong>the</strong> Bray-Curtis dissimilarity coefficient<br />

and <strong>the</strong> same d<strong>at</strong>a transform<strong>at</strong>ions described above. Bootstrapping was used to provide<br />

control-chart limits for identifying changes th<strong>at</strong> are ‘out of <strong>the</strong> ordinary’. In this case, a 90th<br />

percentile st<strong>at</strong>istic was calcul<strong>at</strong>ed from 10 000 bootstrap samples as a provisional limit or<br />

trigger line. The 50th percentile was also presented to assist in interpreting <strong>the</strong> control charts.<br />

Species Diversity<br />

The total number of individuals, N, was calcul<strong>at</strong>ed as <strong>the</strong> sum of <strong>the</strong> abundance of all<br />

individuals across species.<br />

Species richness, S, was given as <strong>the</strong> number of species observed <strong>at</strong> each site. Cryptic,<br />

pelagic and non-resident <strong>reef</strong> fishes were not included.<br />

Species diversity, as a measure of <strong>the</strong> distribution of individuals among <strong>the</strong> species, was<br />

indic<strong>at</strong>ed using Hill’s N 2 st<strong>at</strong>istic (which is equivalent to <strong>the</strong> reciprocal of Simpson’s index). In<br />

general, Hills N 2 gives an indic<strong>at</strong>ion of <strong>the</strong> number of dominant species within a community.<br />

Hills N 2 provides more weighting for common species, in contrast to indices such as <strong>the</strong><br />

Shannon-Weiner Index (Krebs 1999), which weights <strong>the</strong> rarer species.<br />

The diversity st<strong>at</strong>istics were averaged across sites for <strong>the</strong> <strong>marine</strong> protected area and<br />

reference regions.<br />

Abundances of Selected Species<br />

Mean abundance of selected species were plotted over time for <strong>the</strong> <strong>marine</strong> protected area<br />

and reference regions. The species presented included abundant or common species as well<br />

as any with unusual changes over time.<br />

21


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

2.3.3 Ecosystem Functional Components<br />

Plant Habit<strong>at</strong> and Production<br />

Biogenic habit<strong>at</strong> and standing stocks of primary producers was indic<strong>at</strong>ed by <strong>the</strong> pooled<br />

abundances of macrophyte groups:<br />

• crustose coralline algae;<br />

• canopy browns – defined here as Ecklonia radi<strong>at</strong>a, Undaria pinn<strong>at</strong>ifida, Lessonia<br />

corrug<strong>at</strong>a, Macrocystis pyrifera, Durvillaea pot<strong>at</strong>orum, Phyllospora comosa,<br />

Seirococcus axillaris, Acrocarpia panicul<strong>at</strong>a, Cystophora pl<strong>at</strong>ylobium, C. moniliformis,<br />

C. pectin<strong>at</strong>a, C. monilifera, C. retorta and C. retroflexa;<br />

• smaller browns (all o<strong>the</strong>r brown species except Ectocarpales);<br />

• erect coralline algae;<br />

• thallose red algae (except filamentous species);<br />

• green algae; and<br />

• seagrass Amphibolis antarctica.<br />

Invertebr<strong>at</strong>e Groups<br />

The abundances of invertebr<strong>at</strong>es were pooled into <strong>the</strong> functional groups:<br />

• grazers and habit<strong>at</strong> modifiers, including gastropods and sea urchins;<br />

• filter feeders, including fanworms and fea<strong>the</strong>r stars;<br />

• pred<strong>at</strong>ors, including gastropods, crabs and lobsters but excluding seastars; and<br />

• seastars, which are mostly pred<strong>at</strong>ors, although Meridiastra gunnii may also be a<br />

detritus feeder.<br />

22


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

Fish Groups<br />

The abundances of fishes were also pooled into trophic groups:<br />

• herbivores and omnivorous grazers;<br />

• foraging pred<strong>at</strong>ors, including pickers and foragers of st<strong>at</strong>ionary, benthic prey such as<br />

amphipods, crabs and gastropods;<br />

• hunter pred<strong>at</strong>ors, including fishes th<strong>at</strong> hunt mobile prey, particularly o<strong>the</strong>r fishes, as<br />

chasers and ambushers; and<br />

• planktivores, including feeders of zooplankton and small fish in <strong>the</strong> w<strong>at</strong>er column.<br />

Sediment Cover<br />

The percentage cover of sand and sediment on <strong>the</strong> survey transect (using Method 3) is <strong>the</strong><br />

only relevant abiotic parameter measured for <strong>the</strong> SRMP. This index may indic<strong>at</strong>e changes in<br />

hydrodynamic or coastal processes.<br />

2.3.4 Introduced Species<br />

The st<strong>at</strong>us of introduced species is initially reported as presence-absence of species. Where<br />

a species is established and <strong>the</strong> SRMP measures <strong>the</strong> abundance of th<strong>at</strong> species, indic<strong>at</strong>ors<br />

of st<strong>at</strong>us are:<br />

• number of introduced species;<br />

• total abundance of introduced species; and<br />

• where <strong>the</strong> d<strong>at</strong>a are suitable, time series of abundance of selected introduced species<br />

– noting <strong>the</strong> timing of surveys may influence <strong>the</strong> time series.<br />

2.3.5 Clim<strong>at</strong>e Change<br />

Species Composition<br />

Clim<strong>at</strong>e change is likely to cause changes to current strengths and circul<strong>at</strong>ion p<strong>at</strong>terns which<br />

affect both <strong>the</strong> ambient temper<strong>at</strong>ure regime and <strong>the</strong> dispersion and recruitment of propagules<br />

or larvae. In <strong>Victoria</strong>, <strong>the</strong>re may be increased incursions of <strong>the</strong> East Australia Current into<br />

eastern <strong>Victoria</strong> and <strong>the</strong> South Australia Current into western <strong>Victoria</strong> and Bass Strait.<br />

Biological responses to such changes are potentially indic<strong>at</strong>ed by biogeographical changes<br />

in <strong>the</strong> species composition, toward th<strong>at</strong> of adjacent, warmer bioregions. For this analysis,<br />

each species was assigned a nominal geographical range:<br />

• coldw<strong>at</strong>er species, reflecting <strong>the</strong> ‘Maugean’ province, from approxim<strong>at</strong>ely Kangaroo<br />

Island in South Australia, around Tasmania and into sou<strong>the</strong>rn New South Wales;<br />

23


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

• western species, reflecting <strong>the</strong> ‘Flindersian’ province, from sou<strong>the</strong>rn Western<br />

Australia, along <strong>the</strong> Gre<strong>at</strong> Australian Bight and South Australia to western <strong>Victoria</strong>;<br />

• eastern species, reflecting <strong>the</strong> ‘Peronian’ province, encompassing New South Wales<br />

and into eastern <strong>Victoria</strong>;<br />

• sou<strong>the</strong>rn species, including species ranging widely along <strong>the</strong> sou<strong>the</strong>rn Australian<br />

coast; and<br />

• nor<strong>the</strong>rn species, including warm temper<strong>at</strong>e and tropical species in Western Australia<br />

and New South Wales and northward.<br />

The number of species and total number of individuals was calcul<strong>at</strong>ed for <strong>the</strong> coldw<strong>at</strong>er,<br />

western and eastern groups.<br />

Macrocystis pyrifera<br />

The string kelp Macrocystis pyrifera, which includes <strong>the</strong> former species M. angustifolia<br />

(Macaya and Zuccarello 2010), is considered potentially vulnerable to clim<strong>at</strong>e change<br />

through reduced nutrient supply from drought and nutrient poorer warmer w<strong>at</strong>ers (Edyvane<br />

2003). The mean abundance of M. pyrifera was plotted using densities from Method 4, or<br />

cover estim<strong>at</strong>es from Method 4 where density d<strong>at</strong>a were unavailable. M. pyrifera provides<br />

considerable vertical structure to <strong>reef</strong> habit<strong>at</strong>s and can also <strong>at</strong>tenu<strong>at</strong>e w<strong>at</strong>er currents and<br />

wave motion. The loss of M. pyrifera habit<strong>at</strong>s may reflect ecosystem functional changes.<br />

Centrostephanus rodgersii<br />

The range of <strong>the</strong> long-spined sea urchin, Centrostephanus rodgersii, has increased<br />

conspicuously over <strong>the</strong> past decades (Johnson et al. 2005). This grazing species can cause<br />

considerable habit<strong>at</strong> modific<strong>at</strong>ion, decreasing seaweed canopy cover and increasing <strong>the</strong><br />

area of ‘urchin barrens’. Abundances are determined using Method 2 and average<br />

abundances are plotted through time. The abundance of C. rodgersii are also influenced by<br />

interactions with abalone as competitors for crevice space, Abalone divers may periodically<br />

‘cull’ urchins within a <strong>reef</strong> p<strong>at</strong>ch and <strong>the</strong> species is also of interest to urchin harvesters.<br />

Durvillaea pot<strong>at</strong>orum<br />

The bull kelp Durvillaea pot<strong>at</strong>orum is a coldw<strong>at</strong>er species th<strong>at</strong> is likely to be vulnerable to<br />

increased ambient temper<strong>at</strong>ures. There is anecdotal evidence of a retraction of <strong>the</strong> nor<strong>the</strong>rn<br />

distribution down <strong>the</strong> New South Wales coast by approxim<strong>at</strong>ely 80 km. Most of <strong>the</strong> SRMP<br />

sites specifically avoid D. pot<strong>at</strong>orum habit<strong>at</strong>s as <strong>the</strong>se occur on highly wave-affected and<br />

turbulent <strong>reef</strong>s. Some sites contain D. pot<strong>at</strong>orum stands, providing limited d<strong>at</strong>a on popul<strong>at</strong>ion<br />

st<strong>at</strong>us. Durvillaea pot<strong>at</strong>orum is potentially two species, having genetically and<br />

morphologically distinct eastern and western forms (Fraser et al. 2009).<br />

24


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

2.3.6 Fishing<br />

Abalone<br />

Indic<strong>at</strong>ors of altered popul<strong>at</strong>ion structure from harvesting pressure on abalone were mean<br />

density and <strong>the</strong> proportion of legal sized individuals. The size-frequency histograms were<br />

also examined. The indic<strong>at</strong>ors were calcul<strong>at</strong>ed for <strong>the</strong> blacklip abalone, Haliotis rubra, in<br />

most regions and for <strong>the</strong> greenlip abalone, H. laevig<strong>at</strong>a, where present in suitable densities<br />

(in central and western <strong>Victoria</strong>).<br />

Rock Lobster<br />

The sou<strong>the</strong>rn rock lobster, Jasus edwardsii, is present throughout <strong>Victoria</strong> and <strong>the</strong> eastern<br />

rock lobster, Jasus verreauxi, is present in <strong>the</strong> Twofold Shelf region. The SRMP transects<br />

generally did not traverse rock lobster microhabit<strong>at</strong>s, however abundances and sizes are<br />

reported for suitable d<strong>at</strong>a.<br />

Fishes<br />

Potential fishing impacts or recovery of fishing impacts within <strong>marine</strong> protected areas were<br />

indic<strong>at</strong>ed by:<br />

• abundances of selected fished species;<br />

• mean size and size-frequency histograms of selected fished species;<br />

• total abundance of fishes > 200 mm length, this being <strong>the</strong> approxim<strong>at</strong>e legal minimum<br />

size for most fished species;<br />

• biomass of fishes > 200 mm length, calcul<strong>at</strong>ed using length-weight rel<strong>at</strong>ionships; and<br />

• parameters of <strong>the</strong> size-spectra of all fishes.<br />

The size spectrum of all fishes <strong>at</strong> a site was first centred and linearised. Size frequencies for<br />

each field size class were aggreg<strong>at</strong>ed into classes centred on 87.5 mm (classes 1-6), 200<br />

mm (class 7); 275 mm (classes 8-9); 356.25 mm (classes 10-11); 400 mm (class 12); 500<br />

mm (class 13); 625 mm (class 14); and 750+ mm (class 15). The frequencies and size<br />

classes were log e (x +1) and <strong>the</strong> size classes e centred by subtracting <strong>the</strong> mean. Linear<br />

regression was used to estim<strong>at</strong>e <strong>the</strong> slope and intercept (which is also <strong>the</strong> half-height of <strong>the</strong><br />

slope) of <strong>the</strong> log-transformed spectrum.<br />

Biomass was calcul<strong>at</strong>ed for selected species ≥300 mm. Lengths were converted to weights<br />

using published conversion factors for <strong>the</strong> power rel<strong>at</strong>ionship: weight(grams)=a x<br />

Length(cm)b. The weight estim<strong>at</strong>ions used <strong>the</strong> coefficients compiled by Lyle and Campbell<br />

(1999). The selected species were <strong>the</strong> most common species under heaviest fishing<br />

pressure (where present):<br />

• banded morwong Cheilodactylus spectabilis (a = 0.0629, b = 2.881);<br />

25


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

• bastard trumpeter L<strong>at</strong>ridopsis forsteri (a = 0.0487, b = 3.14);<br />

• blue thro<strong>at</strong>ed wrasse Notolabrus tetricus (a = 0.0539, b = 2.17);<br />

• purple wrasse Notolabrus fucicola (a = 0.0539, b = 2.17);<br />

• crimson banded wrasse Notolabrus gymnogenis (a = 0.0539, b = 2.17); and<br />

• eastern blue groper Achoerodus viridis (a = 0.0539, b = 2.17).<br />

26


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

3 Results<br />

3.1 Macroalgae<br />

3.1.1 Macroalgal Community Structure<br />

The Point Addis sites were distinguished by <strong>the</strong> absence of <strong>the</strong> crayweed Phyllospora<br />

comosa. The canopy was domin<strong>at</strong>ed by common kelp Ecklonia radi<strong>at</strong>a and/or Seirococcus<br />

axillaris and Acrocarpia panicul<strong>at</strong>a. There was rel<strong>at</strong>ively low cover of o<strong>the</strong>r brown algal<br />

species, which included Cystophora retroflexa and Sargassum species. In contrast to o<strong>the</strong>r<br />

sites in this group, <strong>the</strong>re were no species of Cystophora <strong>at</strong> Phyco’s Reef (Site 8).<br />

Understorey species observed included <strong>the</strong> green Caulerpa spp., of which seven Caulerpa<br />

species were observed <strong>at</strong> Point Addis sites. Understorey species included <strong>the</strong> red coralline<br />

alga Haliptilon roseum and smaller fleshy red algae Ballia callitricha, Areschougia congesta<br />

and Plocamium spp.<br />

Algal assemblages <strong>at</strong> <strong>the</strong> two sites with time series d<strong>at</strong>a in <strong>the</strong> MPA were distinct from each<br />

o<strong>the</strong>r, but <strong>the</strong> rel<strong>at</strong>ive changes over time had similar trajectories (Figure 3.1a). The<br />

differences in algal assemblage can be largely <strong>at</strong>tributed to <strong>the</strong> differences in <strong>the</strong> understorey<br />

species <strong>at</strong> each site. The two newly established monitoring sites in <strong>the</strong> MPA are generally<br />

placed in <strong>the</strong> same sector of <strong>the</strong> MDS (Figure 3.1a).<br />

Algal assemblages <strong>at</strong> <strong>the</strong> two reference sites with time series d<strong>at</strong>a were distinct from each<br />

o<strong>the</strong>r and varied over time (Figure 3.1b). Again, <strong>the</strong> two newly established reference sites<br />

are generally placed in <strong>the</strong> same sector of <strong>the</strong> MDS (Figure 3.1a).<br />

Multivari<strong>at</strong>e control charts were examined but <strong>the</strong> time series was not yet long enough or<br />

stable to provide a confident indic<strong>at</strong>ion of community changes.<br />

3.1.2 Macroalgal Species Richness and Diversity<br />

There were no significant changes or trends observed in total algal abundance, species<br />

richness and diversity over time inside and outside <strong>the</strong> MPA (Figure 3.2).<br />

27


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

a. nMDS - Algae - MPA<br />

mpa - 5 Olives<br />

mpa - 6 Ingoldsby Inner<br />

mpa - 13 East of Olives<br />

mpa - 14 Ingoldsby Outer<br />

b. nMDS - Algae - Reference<br />

ref - 7 Angelsea <strong>reef</strong><br />

ref - 8 Phyco Reef<br />

ref - 15 Rocky Point<br />

ref - 16 Torquay Offshore<br />

Figure 3.1. Three-dimensional MDS plot of algal assemblage structure for sites <strong>at</strong> Point Addis. Black<br />

symbols indic<strong>at</strong>e <strong>the</strong> first survey. Kruskal stress = 0.12.<br />

28


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

Algal Abundance Index<br />

Cover Index<br />

0 500 1000 1500<br />

MPA<br />

ref<br />

a.<br />

2004 2006 2008 2010 2012<br />

Year<br />

Algal Species Richness<br />

No. Species<br />

0 10 20 30 40 50<br />

MPA<br />

ref<br />

b.<br />

2004 2006 2008 2010 2012<br />

Year<br />

Algal Diversity<br />

Hills N 2<br />

0 2 4 6 8 10 12<br />

MPA<br />

ref<br />

c.<br />

2004 2006 2008 2010 2012<br />

Year<br />

Figure 3.2. Algal species diversity indic<strong>at</strong>ors (mean ± standard error) inside and outside Point Addis<br />

Marine N<strong>at</strong>ional Park.<br />

29


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

3.1.3 Common Algal Species<br />

In 2012, <strong>the</strong> cover of common kelp Ecklonia radi<strong>at</strong>a recorded within <strong>the</strong> MPA was lower than<br />

th<strong>at</strong> recorded in <strong>the</strong> previous survey of 2006, but within <strong>the</strong> range recorded in o<strong>the</strong>r prior<br />

surveys (Figure 3.3a). Ecklonia radi<strong>at</strong>a cover <strong>at</strong> <strong>the</strong> reference sites has remained generally<br />

stable over time.<br />

The crayweed Phyllospora comosa was recorded within <strong>the</strong> MPA for <strong>the</strong> first time in 2012,<br />

albeit in very low abundance, through <strong>the</strong> introduction of new sites (Figure 3.3b).<br />

A minor and gradual increase in <strong>the</strong> cover of bushy tangle weed Acrocarpia panicul<strong>at</strong>a was<br />

present <strong>at</strong> <strong>the</strong> reference sites from 2004 to 2012 (Figure 3.3c). Acrocarpia panicul<strong>at</strong>a cover<br />

within <strong>the</strong> MPA has remained rel<strong>at</strong>ively stable over time.<br />

The cover of Caulerpa flexilis muelleri was variable within and outside <strong>the</strong> MPA (Figure 3.3d).<br />

Seirococcus axillaris cover increase within <strong>the</strong> MPA since 2006 and cover in 2012 was<br />

similar to th<strong>at</strong> recorded <strong>at</strong> <strong>the</strong> reference sites (Figure 3.3e).<br />

The cover of Phacelocarpus peperocarpos, Haliptilon roseum and Cystophora moniliformis<br />

was generally low, with no substantive changes or trends over time recorded (Figure 3.7<br />

e,f,g).<br />

Ecklonia radi<strong>at</strong>a Cover<br />

Cover (%)<br />

0 10 30 50 70<br />

MPA<br />

ref<br />

a.<br />

2004 2006 2008 2010 2012<br />

Year<br />

Figure 3.3. Percent cover (mean ± standard error) of dominant algal species inside and outside <strong>the</strong><br />

Point Addis Marine N<strong>at</strong>ional Park.<br />

30


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

Phyllospora comosaCover<br />

Cover (%)<br />

0.0 1.0 2.0 3.0<br />

MPA<br />

ref<br />

b.<br />

2004 2006 2008 2010 2012<br />

Year<br />

Acrocarpia panicul<strong>at</strong>aCover<br />

Cover (%)<br />

0 5 10 15<br />

MPA<br />

ref<br />

c.<br />

2004 2006 2008 2010 2012<br />

Year<br />

Caulerpa flexilis meulleriCover<br />

Cover (%)<br />

0 2 4 6 8 10<br />

MPA<br />

ref<br />

d.<br />

2004 2006 2008 2010 2012<br />

Year<br />

Figure 3.3 (continued). Percent cover (mean ± standard error) of dominant algal species inside and<br />

outside <strong>the</strong> Point Addis Marine N<strong>at</strong>ional Park.<br />

31


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

Seirococcus axillarisCover<br />

Cover (%)<br />

0 5 10 20 30<br />

MPA<br />

ref<br />

e.<br />

2004 2006 2008 2010 2012<br />

Year<br />

Phacelocarpus peperocarposCover<br />

Cover (%)<br />

0 2 4 6 8<br />

MPA<br />

ref<br />

f.<br />

2004 2006 2008 2010 2012<br />

Year<br />

Haliptilon roseumCover<br />

Cover (%)<br />

0 2 4 6 8<br />

MPA<br />

ref<br />

g.<br />

2004 2006 2008 2010 2012<br />

Year<br />

Figure 3.3 (continued). Percent cover (mean ± standard error) of dominant algal species inside and<br />

outside <strong>the</strong> Point Addis Marine N<strong>at</strong>ional Park.<br />

32


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

Cystophora moniliformisCover<br />

Cover (%)<br />

0 2 4 6 8<br />

MPA<br />

ref<br />

h.<br />

2004 2006 2008 2010 2012<br />

Year<br />

Figure 3.3 (continued). Percent cover (mean ± standard error) of dominant algal species inside and<br />

outside <strong>the</strong> Point Addis Marine N<strong>at</strong>ional Park.<br />

Figure 3.4. Example of diverse thallose algal community <strong>at</strong> Site 3906 , Ingoldsby Reef Inner, 18 May<br />

2012, Point Addis Marine N<strong>at</strong>ional Park.<br />

33


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

3.2 Invertebr<strong>at</strong>es<br />

3.2.1 Invertebr<strong>at</strong>e Community Structure<br />

The invertebr<strong>at</strong>e fauna was largely composed of <strong>the</strong> gastropod Turbo undul<strong>at</strong>us, <strong>the</strong><br />

dogwhelk Dic<strong>at</strong>hais orbita, and to a lesser extent <strong>the</strong> black lip abalone Haliotis rubra. O<strong>the</strong>r<br />

commonly encountered species included a rel<strong>at</strong>ively diverse assemblage of echinoderms:<br />

Nectria macrobrachia, Nectria multispina, Pseudonepanthia troughtoni and Holopneustes<br />

porosissimus.<br />

Invertebr<strong>at</strong>e assemblages <strong>at</strong> <strong>the</strong> two sites with time series d<strong>at</strong>a within <strong>the</strong> MPA were distinct<br />

from each o<strong>the</strong>r but varied within <strong>the</strong> same general sector of <strong>the</strong> MDS (Figure 3.5a). There<br />

was no consistent trajectory in changes over time. The two newly established monitoring<br />

sites in <strong>the</strong> MPA fall within <strong>the</strong> same sector of <strong>the</strong> MDS.<br />

Invertebr<strong>at</strong>e assemblages <strong>at</strong> <strong>the</strong> reference sites varied considerably over time, with no<br />

consistent directionality to changes (Figure 3.5b). The two newly established reference sites<br />

are generally placed in <strong>the</strong> same sector of <strong>the</strong> MDS.<br />

Multivari<strong>at</strong>e control charts were examined but <strong>the</strong> time series was not yet long enough or<br />

stable to provide a confident indic<strong>at</strong>ion of any community changes.<br />

3.2.2 Invertebr<strong>at</strong>e Species Richness and Diversity<br />

Total invertebr<strong>at</strong>e abundance decreased substantially within <strong>the</strong> MPA from 2004 to 2005 and<br />

has remained rel<strong>at</strong>ively stable since th<strong>at</strong> time (Figure 3.6). Minor changes in invertebr<strong>at</strong>e<br />

species richness within and outside <strong>the</strong> MPA have tracked each o<strong>the</strong>r closely over time. Hill’s<br />

diversity within <strong>the</strong> MPA has increased gradually since 2004, while th<strong>at</strong> <strong>at</strong> <strong>the</strong> reference sites<br />

has decreased (Figure 3.6).<br />

34


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

a. nMDS - Invertebr<strong>at</strong>es - MPA<br />

mpa - 5 Olives<br />

mpa - 6 Ingoldsby Inner<br />

mpa - 13 East of Olives<br />

mpa - 14 Ingoldsby Outer<br />

b. nMDS - Invertebr<strong>at</strong>es - Reference<br />

ref - 7 Angelsea <strong>reef</strong><br />

ref - 8 Phyco Reef<br />

ref - 15 Rocky Point<br />

ref - 16 Torquay Offshore<br />

Figure 3.5. Three-dimensional MDS plot of mobile invertebr<strong>at</strong>e assemblage structure for sites <strong>at</strong> Point<br />

Addis. Black symbols indic<strong>at</strong>e <strong>the</strong> first survey. Kruskal stress = 0.14.<br />

35


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

Invertebr<strong>at</strong>e Total Individuals<br />

Count<br />

0 50 100 150<br />

MPA<br />

ref<br />

a.<br />

2004 2006 2008 2010 2012<br />

Year<br />

Invertebr<strong>at</strong>e Species Richness<br />

No. Species<br />

0 5 10 15<br />

MPA<br />

ref<br />

b.<br />

2004 2006 2008 2010 2012<br />

Year<br />

Invertebr<strong>at</strong>e Diversity<br />

Hills N 2<br />

0 2 4 6 8 10 12<br />

MPA<br />

ref<br />

c.<br />

2004 2006 2008 2010 2012<br />

Year<br />

Figure 3.6. Mobile invertebr<strong>at</strong>e species diversity indic<strong>at</strong>ors (mean ± standard error) inside and outside<br />

Point Addis Marine N<strong>at</strong>ional Park.<br />

36


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

3.2.3 Common Invertebr<strong>at</strong>e Species<br />

The density of blacklip abalone Haliotis rubra was generally higher inside <strong>the</strong> MNP than <strong>at</strong><br />

reference sites throughout <strong>the</strong> initial monitoring period. The abundances of H. rubra were<br />

very low <strong>at</strong> all sites in 2012 (Figure 3.7a). Conversely, <strong>the</strong>re was an increase in <strong>the</strong><br />

abundance of greenlip abalone Haliotis laevig<strong>at</strong>a between 2006 and 2012 (Figure 3.7b). The<br />

density of sou<strong>the</strong>rn rock lobster Jasus edwardsii was rel<strong>at</strong>ively low and variable over time<br />

(Figure 3.7c), although it was noted <strong>the</strong> transects did not generally traverse <strong>the</strong>ir crevice<br />

habit<strong>at</strong>s. Lobsters were observed in nearby crevices, but were not measured or quantified in<br />

anyway (Figure 3.8).<br />

The warrener Turbo undul<strong>at</strong>us was <strong>the</strong> most abundant invertebr<strong>at</strong>e species monitored within<br />

<strong>the</strong> MPA. The mean density was in <strong>the</strong> order of 70 individuals per 200 m 2 during <strong>the</strong> first<br />

survey within <strong>the</strong> MPA in 2003, with a decrease over successive years to less than 20<br />

individuals per 200 m 2 (Figure 3.7d).<br />

The abundance of <strong>the</strong> gastropod Dic<strong>at</strong>hais orbita has been generally low throughout<br />

monitoring (Figure 3.8e). The fea<strong>the</strong>rstar Comanthus trichoptera has been recorded in low<br />

numbers within and outside <strong>the</strong> MPA throughout monitoring (Figure 3.8f).<br />

The urchin Heliocidaris erythrogramma and <strong>the</strong> seastar Tosia australis was recorded in very<br />

low numbers throughout monitoring, with no clear trends or changes observed (Figures 3.8g,<br />

and 3.8h).<br />

Of <strong>the</strong> two Nectria species of seastar recorded <strong>at</strong> Point Addis, N. macrobrachia occurred in<br />

higher abundance than N. ocell<strong>at</strong>a in all surveys (Figures 3.8i and 3.8j).<br />

37


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

Haliotis rubra<br />

Density (per 200 m 2 )<br />

0 20 40 60 80 100<br />

MPA<br />

ref<br />

a.<br />

2004 2006 2008 2010 2012<br />

Year<br />

Haliotis laevig<strong>at</strong>a<br />

Density (per200 m 2 )<br />

0 2 4 6 8 10<br />

MPA<br />

ref<br />

b.<br />

2004 2006 2008 2010 2012<br />

Year<br />

Jasus edwardsii<br />

Density (per 200 m 2 )<br />

0.0 1.0 2.0 3.0<br />

MPA<br />

ref<br />

c.<br />

2004 2006 2008 2010 2012<br />

Year<br />

Figure 3.7. Abundance (mean ± standard error) of dominant mobile invertebr<strong>at</strong>e species inside and<br />

outside <strong>the</strong> Point Addis Marine N<strong>at</strong>ional Park.<br />

38


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

Turbo undul<strong>at</strong>us<br />

Density (per 200 m 2 )<br />

0 20 40 60 80 120<br />

MPA<br />

ref<br />

d.<br />

2004 2006 2008 2010 2012<br />

Year<br />

Dic<strong>at</strong>hais orbita<br />

Density (per 200 m 2 )<br />

0 1 2 3 4 5<br />

MPA<br />

ref<br />

e.<br />

2004 2006 2008 2010 2012<br />

Year<br />

Comanthus trichoptera<br />

Density (per 200 m 2 )<br />

0 2 4 6 8<br />

MPA<br />

ref<br />

f.<br />

2004 2006 2008 2010 2012<br />

Year<br />

Figure 3.7 (continued). Abundance (mean ± standard error) of dominant mobile invertebr<strong>at</strong>e species<br />

inside and outside <strong>the</strong> Point Addis Marine N<strong>at</strong>ional Park.<br />

39


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

Heliocidaris erythrogramma<br />

Density (per 200 m 2 )<br />

0 1 2 3 4 5 6<br />

MPA<br />

ref<br />

g.<br />

2004 2006 2008 2010 2012<br />

Year<br />

Tosia australis<br />

Density (per 200 m 2 )<br />

0.0 0.5 1.0 1.5 2.0<br />

MPA<br />

ref<br />

h.<br />

2004 2006 2008 2010 2012<br />

Year<br />

Nectria ocell<strong>at</strong>a<br />

Density (per 200 m 2 )<br />

0 1 2 3 4 5 6<br />

MPA<br />

ref<br />

i.<br />

2004 2006 2008 2010 2012<br />

Year<br />

Figure 3.7 (continued). Abundance (mean ± standard error) of dominant mobile invertebr<strong>at</strong>e species<br />

inside and outside <strong>the</strong> Point Addis Marine N<strong>at</strong>ional Park.<br />

40


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

Nectria macrobranchia<br />

Density (per 200 m 2 )<br />

0 5 10 15 20<br />

MPA<br />

ref<br />

j.<br />

2004 2006 2008 2010 2012<br />

Year<br />

Figure 3.7 (continued). Abundance (mean ± standard error) of dominant mobile invertebr<strong>at</strong>e species<br />

inside and outside <strong>the</strong> Point Addis Marine N<strong>at</strong>ional Park.<br />

Figure 3.8. Sou<strong>the</strong>rn rock lobster Jasus edwardsii <strong>at</strong> Site 3906, Ingoldsby Reef Inner.<br />

41


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

3.3 Fishes<br />

3.3.1 Fish Community Structure<br />

Abundant fish species <strong>at</strong> <strong>the</strong> Point Addis Marine N<strong>at</strong>ional Park included <strong>the</strong> blue thro<strong>at</strong><br />

wrasse Notolabrus tetricus, herring cale Odax cyanomelas, scalyfin Parma victoriae and <strong>the</strong><br />

horse shoe lea<strong>the</strong>rjacket Meuschenia hippocrepis. O<strong>the</strong>r species present included <strong>the</strong> purple<br />

wrasse Notolabrus fucicola and <strong>the</strong> magpie perch Cheilodactylus nigripes.<br />

Fish assemblages <strong>at</strong> <strong>the</strong> two sites with time series d<strong>at</strong>a in <strong>the</strong> MPA have varied over time<br />

while occupying <strong>the</strong> same general sector of <strong>the</strong> MDS (Figure 3.9a). The two newly<br />

established monitoring sites in <strong>the</strong> MPA fall within <strong>the</strong> same sector of <strong>the</strong> MDS.<br />

Fish assemblages <strong>at</strong> reference sites have varied within a similar range over time (Figure<br />

3.9b). However, <strong>the</strong> Anglesea Reef site in 2012 diverged significantly from <strong>the</strong> previously<br />

recorded range (Figure 3.9b). This may be due in part to a high abundance of oldwife<br />

Enoplosus arm<strong>at</strong>us recorded in 2012 compared to previous years.<br />

3.3.2 Fish Species Richness and Diversity<br />

Total fish abundance inside <strong>the</strong> MPA was lower in 2012 than <strong>the</strong> previous survey in 2006,<br />

but within <strong>the</strong> range observed in o<strong>the</strong>r prior surveys (Figure 3.10). There have been no o<strong>the</strong>r<br />

substantive changes or trends in fish diversity indices.<br />

42


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

a. nMDS - Fishes - MPA<br />

mpa - 5 Olives<br />

mpa - 6 Ingoldsby Inner<br />

mpa - 13 East of Olives<br />

mpa - 14 Ingoldsby Outer<br />

b. nMDS - Fishes - Reference<br />

ref - 7 Angelsea <strong>reef</strong><br />

ref - 8 Phyco Reef<br />

ref - 15 Rocky Point<br />

ref - 16 Torquay Offshore<br />

Figure 3.9. Three-dimensional MDS plot of mobile invertebr<strong>at</strong>e assemblage structure for sites <strong>at</strong> Point<br />

Addis. Black symbols indic<strong>at</strong>e <strong>the</strong> first survey. Kruskal stress = 0.01.<br />

43


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

Fish Total Individuals<br />

Count<br />

0 50 150 250<br />

MPA<br />

ref<br />

a.<br />

2004 2006 2008 2010 2012<br />

Year<br />

Fish Species Richness<br />

No. Species<br />

0 5 10 15 20<br />

MPA<br />

ref<br />

b.<br />

2004 2006 2008 2010 2012<br />

Year<br />

Fish Diversity<br />

Hills N 2<br />

0 2 4 6 8<br />

MPA<br />

ref<br />

c.<br />

2004 2006 2008 2010 2012<br />

Year<br />

Figure 3.10. Fish species diversity indic<strong>at</strong>ors (mean ± standard error) inside and outside Point Addis<br />

Marine N<strong>at</strong>ional Park.<br />

44


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

3.3.3 Common Fish Species<br />

The blue thro<strong>at</strong>ed wrasse Notolabrus tetricus is one of <strong>the</strong> most abundant fish species in <strong>the</strong><br />

Point Addis Marine N<strong>at</strong>ional Park. Abundance of N. tetricus increased dram<strong>at</strong>ically within <strong>the</strong><br />

MPA from 2005 to 2006, with values in 2012 decreasing to be similar to th<strong>at</strong> recorded in <strong>the</strong><br />

reference areas (Figure 3.12a).<br />

Abundance of <strong>the</strong> scalyfin Parma victoriae was highly variable <strong>at</strong> sites within <strong>the</strong> MPA. In<br />

2012, P. victoriae abundance was similar inside and outside <strong>the</strong> MPA with no consistent<br />

p<strong>at</strong>terns observable over time (Figure 3.12b).<br />

The sweep Scorpis aequipinnis was consistently recorded in high abundance within <strong>the</strong> MPA<br />

than outside <strong>the</strong> MPA (Figure 3.12c). Similar to <strong>the</strong> p<strong>at</strong>tern observed for N. tetricus, <strong>the</strong>re<br />

was an increase in abundance of S. aequipinnis within <strong>the</strong> MPA from 2004 to 2006,<br />

decreasing in 2012 but remaining higher than th<strong>at</strong> recorded <strong>at</strong> <strong>the</strong> reference sites.<br />

The oldwife Enoplosus arm<strong>at</strong>us was generally in low numbers throughout <strong>the</strong> monitoring<br />

period, with <strong>the</strong> exception of 2012 when large, but highly variable, numbers were recorded <strong>at</strong><br />

<strong>the</strong> reference sites (Figure 3.12d). The abundance of zebrafish Girella zebra has been<br />

consistently higher within <strong>the</strong> MPA than <strong>at</strong> reference site (Figure 3.12e). Girella zebra<br />

abundance decreased within <strong>the</strong> MPA from 2004 to 2006, and a minor increase between<br />

2006 and 2012.<br />

The abundance of horseshoe lea<strong>the</strong>rjacket Meuschenia hippocrepis was higher inside <strong>the</strong><br />

MPA than outside in 2006 (Figure 3.12f). In 2012, M. hippocrepis abundance was similar<br />

inside and outside <strong>the</strong> MPA.<br />

Figure 3.11. Long snouted boarfish Pentaceropsis revicurvirostris <strong>at</strong> Site 3906, Ingoldsby Reef Inner.<br />

45


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

Notolabrus tetricus<br />

Density (per 2000 m 2 )<br />

0 10 30 50<br />

MPA<br />

ref<br />

a.<br />

2004 2006 2008 2010 2012<br />

Year<br />

Parma victoriae<br />

Density (per 2000 m 2 )<br />

0 5 10 15 20<br />

MPA<br />

ref<br />

b.<br />

2004 2006 2008 2010 2012<br />

Year<br />

Scorpis aequipinnis<br />

Density (per 2000 m 2 )<br />

0 10 20 30<br />

MPA<br />

ref<br />

c.<br />

2004 2006 2008 2010 2012<br />

Year<br />

Figure 3.12. Abundance (mean ± standard error) of dominant fish species inside and outside <strong>the</strong> Point<br />

Addis Marine N<strong>at</strong>ional Park.<br />

46


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

Enoplosus arm<strong>at</strong>us<br />

Density (per 2000 m 2 )<br />

0 5 10 15 20 25<br />

MPA<br />

ref<br />

d.<br />

2004 2006 2008 2010 2012<br />

Year<br />

Girella zebra<br />

Density (per2000 m 2 )<br />

0 5 10 15<br />

MPA<br />

ref<br />

e.<br />

2004 2006 2008 2010 2012<br />

Year<br />

Meuschenia hippocrepis<br />

Density (per 2000 m 2 )<br />

0 10 20 30 40<br />

MPA<br />

ref<br />

f.<br />

2004 2006 2008 2010 2012<br />

Year<br />

Figure 3.12 (continued). Abundance (mean ± standard error) of dominant fish species inside and<br />

outside <strong>the</strong> Point Addis Marine N<strong>at</strong>ional Park.<br />

47


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

3.4 Ecosystem Components<br />

3.4.1 Habit<strong>at</strong> and Production<br />

The cover of crustose coralline algae and canopy brown algae did not vary markedly over <strong>the</strong><br />

monitoring period and had similar coverage inside and outside <strong>the</strong> MNP (Figure 3.13).<br />

Smaller brown seaweeds were initially more abundant inside <strong>the</strong> MPA but dropped slightly to<br />

levels similar to outside <strong>the</strong> MPA by 2012 (Figure 3.13c). Thallose red algae had similar<br />

coverages of 30 % for inside and outside <strong>the</strong> MPA during most surveys (Figure 3.13d). Erect<br />

coralline and green algae generally had below 6 % coverage during <strong>the</strong> monitoring period<br />

(Figure 13.3 e-f).<br />

3.4.2 Invertebr<strong>at</strong>e Groups<br />

The density of invertebr<strong>at</strong>e grazing taxa were much higher inside <strong>the</strong> MNP than in <strong>the</strong><br />

reference area between 2004 to 2006, but this declined levels similar to <strong>the</strong> reference area<br />

by 2012 (Figure 3.14a). Invertebr<strong>at</strong>e filter feeders and pred<strong>at</strong>ors were in rel<strong>at</strong>ively low<br />

abundances <strong>at</strong> all sites and times (Figure 3.14 b-c). Total seastar density was persistently<br />

higher inside <strong>the</strong> MPA and <strong>the</strong>re was an apparent increase both inside and outside between<br />

2006 and 2012 (Figure 3.14d).<br />

3.4.3 Fish Groups<br />

Fish grazers were approxim<strong>at</strong>ely twice <strong>the</strong> density inside <strong>the</strong> MPA compared with <strong>the</strong><br />

reference sites, with a small peak in abundance in 2006 (Figure 3.15a). Fish foragers were<br />

similar in abundance inside <strong>the</strong> MPA to outside, with <strong>the</strong> exception with a peak in abundance<br />

inside <strong>the</strong> MPA in 2006 (Figure 3.15b). Fish planktivores and hunters were highly variable in<br />

abundance between loc<strong>at</strong>ions and times (Figures 3.15 c-d).<br />

3.4.4 Sediment Cover<br />

The percent cover of sediment was generally below 5 % for both <strong>the</strong> MNP and reference<br />

areas, with <strong>the</strong> exception of a peak to 13 % inside <strong>the</strong> MPA in 2005 (Figure 3.16).<br />

3.5 Introduced Species<br />

No introduced algae, invertebr<strong>at</strong>e or fish taxa were observed <strong>at</strong> Point Addis <strong>at</strong> <strong>the</strong> SRMP<br />

monitoring sites.<br />

48


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

Crustose Coralline Algae<br />

Cover (%)<br />

0 5 10 20 30<br />

MPA<br />

ref<br />

a.<br />

2004 2006 2008 2010 2012<br />

Year<br />

Canopy Browns<br />

Cover (%)<br />

0 20 40 60 80<br />

MPA<br />

ref<br />

b.<br />

2004 2006 2008 2010 2012<br />

Year<br />

Smaller Browns<br />

Cover (%)<br />

0 5 10 15<br />

MPA<br />

ref<br />

c.<br />

2004 2006 2008 2010 2012<br />

Year<br />

Figure 3.13. Seaweed functional groups (mean ± standard error) inside and outside <strong>the</strong> Point Addis<br />

Marine N<strong>at</strong>ional Park.<br />

49


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

Thallose Red Algae<br />

Cover (%)<br />

0 10 30 50<br />

MPA<br />

ref<br />

d.<br />

2004 2006 2008 2010 2012<br />

Year<br />

Erect Coralline Algae<br />

Cover (%)<br />

0 2 4 6 8 10<br />

MPA<br />

ref<br />

e.<br />

2004 2006 2008 2010 2012<br />

Year<br />

Green Algae<br />

Cover (%)<br />

0 2 4 6 8 10 12<br />

MPA<br />

ref<br />

f.<br />

2004 2006 2008 2010 2012<br />

Year<br />

Figure 3.13 (continued). Seaweed functional groups (mean ± standard error) inside and outside <strong>the</strong><br />

Point Addis Marine N<strong>at</strong>ional Park.<br />

50


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

Invertebr<strong>at</strong>e Grazers<br />

Density (per 200 m 2 )<br />

0 50 100 150<br />

MPA<br />

ref<br />

a.<br />

2004 2006 2008 2010 2012<br />

Year<br />

Invertebr<strong>at</strong>e Filter Feeders<br />

Density (per 200 m 2 )<br />

0 2 4 6 8 10<br />

MPA<br />

ref<br />

b.<br />

2004 2006 2008 2010 2012<br />

Year<br />

Invertebr<strong>at</strong>e Pred<strong>at</strong>ors<br />

Density (per 200 m 2 )<br />

0 2 4 6 8<br />

MPA<br />

ref<br />

c.<br />

2004 2006 2008 2010 2012<br />

Year<br />

Figure 3.14. Invertebr<strong>at</strong>e functional groups (mean ± standard error) inside and outside <strong>the</strong> Point Addis<br />

Marine N<strong>at</strong>ional Park.<br />

51


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

Seastars<br />

Density (per 200 m 2 )<br />

0 5 10 15 20 25<br />

MPA<br />

ref<br />

d.<br />

2004 2006 2008 2010 2012<br />

Year<br />

Figure 3.14 (continued). Invertebr<strong>at</strong>e functional groups (mean ± standard error) inside and outside<br />

<strong>the</strong> Point Addis Marine N<strong>at</strong>ional Park.<br />

Fish Grazers<br />

Density (per 2000 m 2 )<br />

0 10 20 30 40<br />

MPA<br />

ref<br />

a.<br />

2004 2006 2008 2010 2012<br />

Year<br />

Fish Foragers<br />

Density (per 2000 m 2 )<br />

0 50 100 150<br />

MPA<br />

ref<br />

b.<br />

2004 2006 2008 2010 2012<br />

Year<br />

Figure 3.15. Fish functional groups (mean ± standard error) inside and outside <strong>the</strong> Point Addis Marine<br />

N<strong>at</strong>ional Park.<br />

52


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

Fish Planktivores<br />

Density (per 2000 m 2 )<br />

0 5 10 20 30<br />

MPA<br />

ref<br />

c.<br />

2004 2006 2008 2010 2012<br />

Year<br />

Fish Hunters<br />

Density (per 2000 m 2 )<br />

0 10 20 30 40 50<br />

MPA<br />

ref<br />

d.<br />

2004 2006 2008 2010 2012<br />

Year<br />

Figure 3.15 (continued). Fish functional groups (mean ± standard error) inside and outside <strong>the</strong> Point<br />

Addis Marine N<strong>at</strong>ional Park.<br />

Sediment Cover<br />

Cover (%)<br />

0 5 10 15<br />

MPA<br />

ref<br />

2004 2006 2008 2010 2012<br />

Year<br />

Figure 3.16. Sediment cover (mean ± standard error) inside and outside <strong>the</strong> Point Addis Marine<br />

N<strong>at</strong>ional Park.<br />

53


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

3.6 Clim<strong>at</strong>e Change<br />

3.6.1 Algal Bioregional Affinities<br />

The majority of Point Addis algal richness and abundance was composed of Flindersian and<br />

Maugean province species, i.e. western and sou<strong>the</strong>rn species. There was no apparent<br />

decline in Maugean (sou<strong>the</strong>rn) species (Figure 3.17) and <strong>the</strong>re were no sightings of<br />

distinctively Peronian (eastern) species.<br />

3.6.2 Invertebr<strong>at</strong>e Bioregional Affinities<br />

Invertebr<strong>at</strong>e faunas <strong>at</strong> all sites were composed primarily of a mixture of sou<strong>the</strong>rn and<br />

western province species. There was no apparent change to <strong>the</strong> provincial contributions to<br />

<strong>the</strong> species assemblages.<br />

3.6.3 Fish Bioregional Affinities<br />

Fishes <strong>at</strong> all sites were composed primarily of a mixture of sou<strong>the</strong>rn and western province<br />

species. There was no apparent change to <strong>the</strong> provincial contributions to <strong>the</strong> species<br />

assemblages.<br />

3.6.4 Macrocystis pyrifera<br />

The string kelp Macrocystis pyrifera was not observed <strong>at</strong> <strong>the</strong> Point Addis SRMP sites.<br />

3.6.5 Centrostephanus rodgersii<br />

The long spined sea urchin Centrostephanus rodgersii was not observed <strong>at</strong> <strong>the</strong> Point Addis<br />

SRMP sites.<br />

3.6.6 Durvillaea pot<strong>at</strong>orum<br />

The bull kelp Durvillaea pot<strong>at</strong>orum was not observed <strong>at</strong> <strong>the</strong> Point Addis SRMP sites.<br />

54


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

Maugean Algal Species<br />

No. Species<br />

0 2 4 6 8<br />

MPA<br />

ref<br />

a.<br />

2004 2006 2008 2010 2012<br />

Year<br />

Maugean Algal Abundance<br />

Points Index<br />

0 100 300 500<br />

MPA<br />

ref<br />

b.<br />

2004 2006 2008 2010 2012<br />

Year<br />

Figure 3.17. Richness and abundance (mean ± standard error) of Maugean algae species inside and<br />

outside <strong>the</strong> Point Addis Marine N<strong>at</strong>ional Park.<br />

Proportion of Legal Sized Abalone<br />

Proportion (%)<br />

0 10 30 50 70<br />

MPA<br />

ref<br />

2004 2006 2008 2010 2012<br />

Year<br />

Figure 3.18. Proportion of legal-sized blacklip abalone Haliotis rubra <strong>at</strong> Point Addis Marine N<strong>at</strong>ional<br />

Park and reference areas..<br />

55


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

3.7 Fishing<br />

3.7.1 Abalone<br />

As noted above, <strong>the</strong> blacklip abalone H. rubra declined in abundance from 2004 to 2005, and<br />

again from 2006 to 1012, and are now <strong>at</strong> similar, low abundances to <strong>the</strong> reference areas<br />

(Figure 3.7a). This decline included undersized H. rubra as well (Figure 3.18).<br />

In contrast, <strong>the</strong> greenlip abalone H. laevig<strong>at</strong>a increased moder<strong>at</strong>ely in abundance from 2006<br />

to 2012 in both <strong>the</strong> MPA and reference areas (figure 3.7b).<br />

3.7.2 Rock Lobster<br />

The densities of sou<strong>the</strong>rn rock lobster Jasus edwardsii was low <strong>at</strong> all SRMP sites throughout<br />

<strong>the</strong> monitoring program with few of <strong>the</strong> transects crossing appropri<strong>at</strong>e lobster habit<strong>at</strong>. There<br />

were, however, observ<strong>at</strong>ions of larger-sized lobsters on <strong>reef</strong>s adjacent to some of <strong>the</strong><br />

transects inside <strong>the</strong> MPA.<br />

3.7.3 Fishes<br />

The fish size spectrum slope and intercept for <strong>the</strong> MNP and reference sites were rel<strong>at</strong>ively<br />

consistent throughout <strong>the</strong> monitoring period (Figure 3.19).<br />

The density and biomass of fished species over 200 mm decreased between 2004 and 2006<br />

in <strong>the</strong> reference area, with a corresponding increase within <strong>the</strong> MPA (Figures 3.20 and 3.21).<br />

The biomass of fishes within <strong>the</strong> MPA subsequently declined to near-reference levels in 2012<br />

(Figure 3.21). There was a similar 2006 peak in <strong>the</strong> density of all fishes (Figure 2.22).<br />

The mean size of <strong>the</strong> blue thro<strong>at</strong> wrasse Notolabrus tetricus changed little over time. The<br />

MNP popul<strong>at</strong>ion was consistently larger in size than th<strong>at</strong> for <strong>the</strong> reference areas with a<br />

gre<strong>at</strong>er proportion of 200-250 mm individuals (Figure 3.23). The size frequencies of all fishes<br />

also hard a markedly higher represent<strong>at</strong>ion of <strong>the</strong> 200-250 mm size class inside <strong>the</strong> MPA<br />

(Figure 3.24).<br />

Although sample sizes were small, <strong>the</strong>re was an apparent decrease in <strong>the</strong> mean size of<br />

sen<strong>at</strong>or wrasse P. l<strong>at</strong>iclavius and magpie morwong C. nigripes from 2004 to 2006 (Figure<br />

3.25). There was no marked change between 2006 and 2012.<br />

56


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

Fish Size Spectrum Intercept<br />

Spectrum intercept<br />

0.0 1.0 2.0 3.0<br />

MPA<br />

ref<br />

a.<br />

2004 2006 2008 2010 2012<br />

Year<br />

Fish Size Spectrum Slope<br />

Spectrum slope<br />

-2.0 -1.0 0.0 1.0<br />

MPA<br />

ref<br />

b.<br />

2004 2006 2008 2010 2012<br />

Year<br />

Figure 3.19. Fish size (mean ± standard error) spectra inside and outside <strong>the</strong> Point Addis Marine<br />

N<strong>at</strong>ional Park.<br />

57


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

Density of Fished Species - Total<br />

Density (per 2000 m 2 )<br />

0 10 30 50 70<br />

MPA<br />

ref<br />

a.<br />

2004 2006 2008 2010 2012<br />

Year<br />

Density of Fished Species - over 200 mm<br />

Density (per 2000 m 2 )<br />

0 5 10 15 20<br />

MPA<br />

ref<br />

b.<br />

2004 2006 2008 2010 2012<br />

Year<br />

Figure 3.20. Density (mean ± standard error) of fished fish species inside and outside <strong>the</strong> Point Addis<br />

Marine N<strong>at</strong>ional Park.<br />

58


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

Biomass of Fished Species - Total<br />

Biomass (kg)<br />

0 5 10 15 20<br />

MPA<br />

ref<br />

a.<br />

2004 2006 2008 2010 2012<br />

Year<br />

Biomass of Fished Species - over 200 mm<br />

Biomass (kg)<br />

0 5 10 15<br />

MPA<br />

ref<br />

b.<br />

2004 2006 2008 2010 2012<br />

Year<br />

Figure 3.21. Biomass (mean ± standard error) of fished species inside and outside <strong>the</strong> Point Addis<br />

Marine N<strong>at</strong>ional Park.<br />

59


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

Density of All Fishes<br />

Density (per2000 m 2 )<br />

0 50 150 250<br />

MPA<br />

ref<br />

a.<br />

2004 2006 2008 2010 2012<br />

Year<br />

Density of Fishes - over 200 mm<br />

Density (per 2000 m 2 )<br />

0 20 40 60 80<br />

MPA<br />

ref<br />

b.<br />

2004 2006 2008 2010 2012<br />

Year<br />

Figure 3.22. Abundance (mean ± standard error) of different size classes of fishes <strong>at</strong> Point Addis<br />

Marine N<strong>at</strong>ional Park and reference sites.<br />

60


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

Notolabrus tetricusMean Size<br />

Length (mm)<br />

0 50 100 150 200<br />

MPA<br />

ref<br />

2004 2006 2008 2010 2012<br />

Year<br />

MPA<br />

Reference<br />

Density<br />

0.006<br />

0.004<br />

0.002<br />

0.000<br />

Density<br />

0.012<br />

0.010<br />

0.008<br />

0.006<br />

0.004<br />

0.002<br />

0.000<br />

100 200 300 400 500<br />

Length (mm)<br />

100 200 300 400 500<br />

Length (mm)<br />

Figure 3.23. Size structure of blue thro<strong>at</strong> wrasse, Notolabrus tetricus <strong>at</strong> Point Addis Marine N<strong>at</strong>ional<br />

Park and reference sites.<br />

61


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

MPA<br />

Reference<br />

Density<br />

0.006<br />

0.005<br />

0.004<br />

0.003<br />

0.002<br />

0.001<br />

0.000<br />

Density<br />

0.008<br />

0.006<br />

0.004<br />

0.002<br />

0.000<br />

100 200 300 400 500<br />

Length (mm)<br />

100 200 300 400 500<br />

Length (mm)<br />

Figure 3.24. Size structure of all fishes <strong>at</strong> Point Addis Marine N<strong>at</strong>ional Park and reference sites.<br />

62


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

Pictilabrus l<strong>at</strong>iclaviusMean Size<br />

Length (mm)<br />

0 50 100 150 200<br />

MPA<br />

ref<br />

a.<br />

2004 2006 2008 2010 2012<br />

Year<br />

Cheilodactylus nigripesMean Size<br />

Length (mm)<br />

0 100 200 300 400<br />

MPA<br />

ref<br />

b.<br />

2004 2006 2008 2010 2012<br />

Year<br />

Figure 3.25. Sizes (mean ± standard error) of common fishes, <strong>at</strong> Point Addis Marine N<strong>at</strong>ional Park<br />

and reference sites.<br />

63


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

4 Acknowledgements<br />

This project was initially funded by <strong>the</strong> Department of Sustainability and Environment<br />

(formerly Department of N<strong>at</strong>ural Resources and Environment) and subsequently by <strong>Parks</strong><br />

<strong>Victoria</strong>. Supervision was by Dr Steffan Howe.<br />

5 References<br />

Anderson M. J. (2008) ControlChart: a FORTRAN computer program for calcul<strong>at</strong>ing control<br />

charts for multivari<strong>at</strong>e response d<strong>at</strong>a through time, based on a chosen resemblance<br />

measure. Department of St<strong>at</strong>istics, University of Auckland, New Zealand.<br />

Anderson M. J. and Thompson A. A. (2004) Multivari<strong>at</strong>e control charts for ecological and<br />

environmental monitoring. Ecological Applic<strong>at</strong>ions 14, 1921-1935.<br />

Andrew N. L. and Underwood A. J. (1993) Density-Dependent foraging in <strong>the</strong> sea-urchin<br />

Centrostephanus rodgersii on shallow subtidal <strong>reef</strong>s in New-South-Wales, Australia. Marine<br />

Ecology Progress Series 99, 89-98<br />

Clarke K. R. (1993) Non-parametric multivari<strong>at</strong>e analyses of changes in community structure.<br />

Australian Journal of Ecology 18, 117-143.<br />

Conserv<strong>at</strong>ion Forests and Lands (1989) <strong>Victoria</strong>’s Marine <strong>Parks</strong> and Reserves. Protecting<br />

<strong>the</strong> Treasure of Ocean and Shoreline. Government Printer, Melbourne.<br />

Dayton P. K., Tegner M. J., Edwards P. B. and Riser K. L. (1998) Sliding baselines, ghosts,<br />

and reduced expect<strong>at</strong>ions in kelp forest communities. Ecological Applic<strong>at</strong>ions 8, 309-322.<br />

Ebeling A. W., Laur D. R. and Rowley R. J. (1985) Severe storm disturbances and reversal<br />

of community structure in a sou<strong>the</strong>rn California kelp forest. Marine Biology 84, 287-294.<br />

Edgar G. J. (1981) An initial survey of potential <strong>marine</strong> reserves in Tasmania. Occasional<br />

Paper No. 4. N<strong>at</strong>ional <strong>Parks</strong> and Wildlife Service Tasmania, Hobart.<br />

Edgar G. J. (1998) Impact on and recovery of subtidal <strong>reef</strong>s. In: Iron Barron Oil Spill, July<br />

1995: Long Term Environmental Impact and Recovery. Tasmanian Department of Primary<br />

Industries and Environment, Hobart, pp 273-293.<br />

Edgar G. J., Barrett N. S. (1997) Short term monitoring of biotic change in Tasmanian <strong>marine</strong><br />

reserves. Journal of Experimental Marine Biology and Ecology 213, 261-279.<br />

Edgar G. J. and Barrett N. S. (1999) Effects of <strong>the</strong> declar<strong>at</strong>ion of <strong>marine</strong> reserves on<br />

Tasmanian <strong>reef</strong> fishes, invertebr<strong>at</strong>es and plants. Journal of Experimental Marine Biology and<br />

Ecology 242, 107-144.<br />

64


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

Edgar G. J., Moverly J., Barrett N. S., Peters D., and Reed C. (1997) The conserv<strong>at</strong>ionrel<strong>at</strong>ed<br />

benefits of a system<strong>at</strong>ic <strong>marine</strong> biological sampling program: <strong>the</strong> Tasmanian <strong>reef</strong><br />

bioregionalis<strong>at</strong>ion as a case study. Biological Conserv<strong>at</strong>ion 79, 227-240.<br />

Edmunds M. and Hart S. (2003). <strong>Parks</strong> <strong>Victoria</strong> Standard Oper<strong>at</strong>ing Procedure: Biological<br />

Monitoring of Subtidal Reefs. <strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 9. <strong>Parks</strong> <strong>Victoria</strong>,<br />

Melbourne.<br />

Edmunds E., Roob R. and Ferns L. (2000a) Marine Biogeography of <strong>the</strong> Central <strong>Victoria</strong> and<br />

Flinders Bioregions – a Preliminary Analysis of Reef Flora and Fauna. In: L. W. Ferns and D.<br />

Hough (eds). Environmental Inventory of <strong>Victoria</strong>’s Marine Ecosystems Stage 3 (Volume 2).<br />

<strong>Parks</strong>, Flora and Fauna Division, Department of N<strong>at</strong>ural Resources and Environment, East<br />

Melbourne. Australia.<br />

Edyvane K. (2003) Conserv<strong>at</strong>ion, Monitoring and Recovery of Thre<strong>at</strong>ened Giant Kelp<br />

(Macrocystis pyrifera) beds in Tasmania – Final Report. Report to Environment Australia<br />

(Marine Species Protection Program), Tasmanian Department of Primary Industries, W<strong>at</strong>er<br />

and Environment, Hobart.<br />

Environment Conserv<strong>at</strong>ion Council (1999) Marine, Coastal and Estuarine Investig<strong>at</strong>ion:<br />

Interim Report. Environment Conserv<strong>at</strong>ion Council, Melbourne.<br />

Environment Conserv<strong>at</strong>ion Council (2000) Marine, Coastal and Estuarine Investig<strong>at</strong>ion: Final<br />

Report. Environment Conserv<strong>at</strong>ion Council, Melbourne.<br />

Faith D., Minchin P. and Belbin L. (1987) Compositional dissimilarity as a robust measure of<br />

ecological distance. Veget<strong>at</strong>ion 69, 57-68.<br />

Holling C. S. (1978) Adaptive Environmental Assessment and Management. Wiley,<br />

Chichester.<br />

Fraser C. I. , Spencer H. G. and W<strong>at</strong>ers J. M. (2009) Glacial oceanographic contrasts explain<br />

phylogeography of Australian bull kelp. Molecular Ecology 18, 2287-2296.<br />

Harmen N., Harvey E. and Kendrick G. (2003). Differences in fish assemblages from<br />

different <strong>reef</strong> habit<strong>at</strong>s in Hamelin Bay, south-western Australia. Marine and Freshw<strong>at</strong>er<br />

Research 54, 177-184.<br />

Harvey E. S., Fletcher D. and Shortis M. R. (2001a). A comparison of <strong>the</strong> precision and<br />

accuracy of estim<strong>at</strong>es of <strong>reef</strong>-fish lengths made by divers and a stereo-video system.<br />

Fisheries Bulletin 99, 63-71.<br />

Harvey E. S., Fletcher D. and Shortis M. R. (2001b). Improving <strong>the</strong> st<strong>at</strong>istical power of visual<br />

length estim<strong>at</strong>es of <strong>reef</strong> fish: A comparison of estim<strong>at</strong>es determined visually by divers with<br />

estim<strong>at</strong>es produced by a stereo-video system. Fisheries Bulletin 99, 72-80.<br />

65


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

Harvey E. S., Fletcher D. and Shortis M. R. (2002b). Estim<strong>at</strong>ion of <strong>reef</strong> fish length by divers<br />

and by stereo-video. A first comparison of <strong>the</strong> accuracy and precision in <strong>the</strong> field on living<br />

fish under oper<strong>at</strong>ional conditions. Fisheries Research 57, 257-267.<br />

Harvey E. S., Shortis M. R., Stadler M. and Cappo M. (2002a). A comparison of <strong>the</strong> accuracy<br />

and precision of digital and analogue stereo-video systems. Marine Technology Society<br />

Journal 36, 38-49.<br />

Holling C. S. (1978)<br />

Chichester.<br />

Adaptive Environmental Assessment and Management. Wiley,<br />

Ivanovici A. (Editor) (1984). Inventory of Declared Marine and Estuarine Protected Areas in<br />

Australian W<strong>at</strong>ers, Volumes 1 and 2. Australian N<strong>at</strong>ional <strong>Parks</strong> and Wildlife Service, Special<br />

Public<strong>at</strong>ion 12.<br />

Krebs C. J. (1999) Ecological Methodology, Second Edition. Benjamin/Cummings, Menlo<br />

Park.<br />

Lyle J. M. and Campbell D. A. (1999). Species and Size Composition of Recre<strong>at</strong>ional<br />

C<strong>at</strong>ches, with Particular Reference to Licensed Fishing Methods. Final Report to <strong>the</strong> Marine<br />

Recre<strong>at</strong>ional Fishery Advisory Committee. Tasmania Aquaculture and Fisheries Institute,<br />

Hobart.<br />

Johnson C., Ling S., Ross J., Shepherd S. and Miller K. (2005) Establishment of <strong>the</strong> Long-<br />

Spined Sea Urchin (Centrostephanus rodgersii) in Tasmania: First Assessment of Potential<br />

Thre<strong>at</strong>s to Fisheries. FRDC Project No 2001/044. Tasmanian Aquaculture and Fisheries<br />

Institute, Hobart.<br />

Macaya E. C. and Zuccarello G. C. (2010) DNA barcoding and genetic divergence in <strong>the</strong><br />

giant kelp Macrocystis (Laminariales). Journal of Phycology, published online: May 13 2010<br />

5:00pm, DOI: 10.1111/j.1529-8817.2010.00845.<br />

McCullagh P. and Nelder J. A. (1989) Generalized Linear Models, Second Edition.<br />

Monographs on St<strong>at</strong>istics and Applied Probability 37. Chapman and Hall, London.<br />

Meredith C. (1997) Best Practice in Performance Reporting in N<strong>at</strong>ural Resource<br />

Management. Department of N<strong>at</strong>ural Resources and Environment, Melbourne.<br />

O’Toole M. and Turner M. (1990) Down Under <strong>at</strong> <strong>the</strong> Prom. Field N<strong>at</strong>uralists Club of <strong>Victoria</strong><br />

and Department of Conserv<strong>at</strong>ion and Environment, Melbourne.<br />

Rapport D. J. (1992) Evalu<strong>at</strong>ing ecosystem health. Journal of Aqu<strong>at</strong>ic Ecosystem Health 1,<br />

15-24.<br />

Roob R., Edmunds M. and Ball D. (2000) <strong>Victoria</strong>n Oil Spill Response Atlas: Biological<br />

resources. Macroalgal Communities in Central <strong>Victoria</strong>. Unpublished report to Australian<br />

Marine Safety Authority, Australian Marine Ecology Report No. 109, Melbourne.<br />

66


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 83<br />

Point Addis Subtidal Reef Monitoring<br />

Stuart-Smith R., Barrett N., Crawford C., Edgar G. and Frusher S. (2008) Condition of Rocky<br />

Reef Communities: A Key Marine Habit<strong>at</strong> around Tasmania. NRM/NHT Final Report.<br />

Tasmanian Aquaculture and Fisheries Institute, Hobart.<br />

Swe<strong>at</strong>man H., Abdo D., Burgess S., Cheal A., Coleman G., Delean S., Emslie M., Miller I.,<br />

Osborne K., Oxley W., Page C. and Thompson A. 2003. Long-term Monitoring of <strong>the</strong> Gre<strong>at</strong><br />

Barrier Reef. St<strong>at</strong>us Report Number 6. Australian Institute of Marine Science, Townsville.<br />

Thrush S. F., Hewitt J. E., Dayton P. K., Coco G., Lohrer A. M., Norkko A., Norkko J. and<br />

Chiantore M. (2009) Forecasting <strong>the</strong> limits of resilience: integr<strong>at</strong>ing empirical research with<br />

<strong>the</strong>ory. Proceedings of <strong>the</strong> Royal Society B 276, 3209-3217.<br />

Turner D. J., Kildea T. N., Murray-Jones S. (2006) Examining <strong>the</strong> health of subtidal <strong>reef</strong><br />

environments in South Australia, Part 1: Background review and r<strong>at</strong>ionale for <strong>the</strong><br />

development of <strong>the</strong> monitoring program. South Australian Research and Development<br />

Institute (Aqu<strong>at</strong>ic Sciences), Adelaide. 62 pp. SARDI Public<strong>at</strong>ion Number RD03/0252-3.<br />

W<strong>at</strong>son D. L., Harvey E. S., Fitzp<strong>at</strong>rick B. M., Langlois T. J. and Shedrawi G. (2010)<br />

Assessing <strong>reef</strong> fish assemblage structure: how do different stereo-video techniques<br />

compare Marine Biology 157, 1237-1250.<br />

Westera M., Lavery P. and Hyndes P. (2003) Differences in recre<strong>at</strong>ionally targeted fishes<br />

between protected and fished areas of a coral <strong>reef</strong> <strong>marine</strong> <strong>park</strong>. Journal of Experimental<br />

Marine Biology and Ecology 294, 145-168.<br />

67


<strong>Parks</strong> <strong>Victoria</strong> is responsible for managing <strong>the</strong> <strong>Victoria</strong>n protected<br />

area network, which ranges from wilderness areas to metropolitan<br />

<strong>park</strong>s and includes both <strong>marine</strong> and terrestrial components.<br />

Our role is to protect <strong>the</strong> n<strong>at</strong>ural and cultural values of <strong>the</strong> <strong>park</strong>s<br />

and o<strong>the</strong>r assets we manage, while providing a gre<strong>at</strong> range of<br />

outdoor opportunities for all <strong>Victoria</strong>ns and visitors.<br />

A broad range of environmental research and monitoring activities<br />

supported by <strong>Parks</strong> <strong>Victoria</strong> provides inform<strong>at</strong>ion to enhance <strong>park</strong><br />

management decisions. This Technical Series highlights some of<br />

<strong>the</strong> environmental research and monitoring activities done within<br />

<strong>Victoria</strong>’s protected area network.<br />

Healthy <strong>Parks</strong> Healthy People<br />

For more inform<strong>at</strong>ion contact <strong>the</strong> <strong>Parks</strong> <strong>Victoria</strong> Inform<strong>at</strong>ion Centre<br />

on 13 1963, or visit www.<strong>park</strong>web.vic.gov.au

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!