03.01.2015 Views

Mastering product complexity (PDF, 3316 KB) - Roland Berger

Mastering product complexity (PDF, 3316 KB) - Roland Berger

Mastering product complexity (PDF, 3316 KB) - Roland Berger

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Mastering</strong><br />

<strong>product</strong><br />

<strong>complexity</strong><br />

Düsseldorf, November 2012


2<br />

Contents<br />

Page<br />

A. Key findings 3<br />

B. Examples of <strong>product</strong> <strong>complexity</strong> management in practice 17<br />

1. Customer-oriented car retailing 18<br />

2. Modularization strategy for a leading car manufacturer 23<br />

3. Complexity reduction for an FMCG company 31<br />

4. Product value management for a leading consumer goods manufacturer 38<br />

© <strong>Roland</strong> <strong>Berger</strong> Strategy Consultants GmbH


A.<br />

Key findings


4<br />

A. KEY FINDINGS<br />

Our study shows how different industries are coping with customer<br />

appetite for differentiation<br />

1<br />

Complexity has increased dramatically: The variety of <strong>product</strong>s has more than doubled in the past<br />

15 years, while <strong>product</strong> lifecycles have shortened significantly (by about 25%)<br />

2<br />

This raises challenges for manufacturers: Product variety drives costs throughout the entire value<br />

chain. Inventory management, more volatile demand and differentiation in customer requirements<br />

are key issues<br />

3<br />

Cross-industry comparison reveals different performance levels: In the discrete industries,<br />

automotive leads the field in <strong>product</strong> <strong>complexity</strong> management, while FMCG is the most advanced of<br />

the process industries<br />

4<br />

Four major optimization approaches have been confirmed across industry segments:<br />

Supply chain segmentation, supply chain integration, <strong>product</strong>ion flexibility and <strong>product</strong> structure<br />

optimization all rank as highly relevant. Although implementation still lags behind overall, automotive<br />

and FMCG are the most advanced industries in this respect. Other industries should adopt the best<br />

practices developed there<br />

5<br />

Huge savings potential: Examples in the automotive and consumer goods industries show that<br />

good <strong>complexity</strong> management reduces <strong>product</strong>ion and sourcing costs by roughly 2.5-3.5%.<br />

Machinery companies worldwide could save approx. EUR 39-54 bn, chemical companies EUR 29-49<br />

bn and the pharmaceutical industry EUR 6-9 bn


5<br />

A. KEY FINDINGS<br />

Product variety has more than doubled in the past 15 years –<br />

Product lifecycles have shortened by about 25%<br />

Increase of <strong>product</strong> variety across all industries 1)<br />

1<br />

250%<br />

200%<br />

220%<br />

185%<br />

250%<br />

215%<br />

No. of sales <strong>product</strong>s<br />

No. of raw materials and<br />

components<br />

> Complexity has increased<br />

dramatically. Product variety<br />

more than doubled between<br />

1997 and 2012, while the<br />

number of raw materials and<br />

components increased only to a<br />

lesser extent<br />

150%<br />

100%<br />

50%<br />

76%<br />

70%<br />

Duration of <strong>product</strong><br />

lifecycle<br />

> The smaller rate of increase in<br />

raw materials and components<br />

is due to the standardization and<br />

modularization efforts of leading<br />

industries such as automotive<br />

and FMCG<br />

0<br />

1997 2002 2007 2012 2015<br />

1) Automotive, chemicals, machinery, FMCG, pharmaceuticals


6<br />

A. KEY FINDINGS<br />

Increasing <strong>product</strong> variety drives costs and value – Operations and<br />

Sales have different views<br />

Cost and value of <strong>product</strong> variety<br />

2<br />

COST Versus VALUE<br />

"Operations view" on <strong>product</strong> variety<br />

> Higher raw material stock levels<br />

> Smaller purchasing lot sizes<br />

> More changeovers in <strong>product</strong>ion<br />

(scrap, downtime)<br />

> Higher stock levels of finished goods<br />

> More <strong>complexity</strong> in logistics<br />

> Higher planning <strong>complexity</strong><br />

> Lower service level<br />

> …<br />

"Sales view" on <strong>product</strong> variety<br />

> Conquer new customer groups<br />

> Have a complete portfolio<br />

(no gateway for competitors)<br />

> Improve brand image<br />

> Develop new <strong>product</strong> to be profitable in the<br />

medium/long term<br />

> Retailers demand complete <strong>product</strong><br />

portfolio<br />

> …<br />

> Increasing <strong>product</strong> variety drives<br />

value chain costs<br />

> On the other hand, <strong>product</strong><br />

variety is a key differentiator in<br />

the market. Using it can unlock<br />

further sales potential<br />

"You can paint it any color, as long<br />

as it's black."<br />

H. Ford<br />

"Endless choice is creating<br />

unlimited demand"<br />

C. Anderson


7<br />

A. KEY FINDINGS<br />

Product variety and ever shorter <strong>product</strong> lifecycles push up costs<br />

throughout the entire value chain<br />

Product variety costs in the value chain<br />

2<br />

Product<br />

development<br />

Planning<br />

Procurement<br />

Manufacturing<br />

Warehousing<br />

& distribution<br />

Marketing &<br />

sales<br />

> Additional<br />

design<br />

drawings<br />

> Additional bills<br />

of materials<br />

> More tests<br />

> Lower<br />

<strong>product</strong>ivity<br />

> Market testing<br />

> Product specs<br />

> Bill of<br />

materials<br />

> Decreased<br />

effectiveness<br />

– Multiple<br />

tasks<br />

– Crisis<br />

management<br />

> Systems maintenance<br />

> Forecasting<br />

> Planning tasks<br />

> Higher<br />

purchase<br />

prices on<br />

broader range<br />

of materials<br />

> Higher raw<br />

materials<br />

stocks and<br />

write-offs<br />

> Increased<br />

handling and<br />

inspection<br />

costs<br />

> Packaging<br />

> Scheduling<br />

> More frequent<br />

downtime<br />

– Changeover<br />

– Processrelated<br />

problems<br />

> Higher waste<br />

> Higher WIP 1)<br />

> Additional<br />

tools<br />

> Additional<br />

work<br />

schedules<br />

> More complex<br />

<strong>product</strong>ion<br />

control<br />

> Increased<br />

space and<br />

labor<br />

> Higher<br />

inventory<br />

levels (e.g.,<br />

safety stocks)<br />

> Increased<br />

handling and<br />

shipping costs<br />

(smaller<br />

quantities)<br />

> Inventories<br />

> Transport cost<br />

accounting<br />

> Additional<br />

staff training<br />

> Additional<br />

sales<br />

materials<br />

> Higher promotion<br />

costs and<br />

write-offs<br />

> More mistakes<br />

in order<br />

processing<br />

> Documentation<br />

> Availability/<br />

service level<br />

> Samples cost<br />

increase<br />

1) Work in progress


8<br />

A. KEY FINDINGS<br />

We identified inventory management, differentiation in customer<br />

requirements and more volatile demand as the key challenges facing<br />

manufacturers<br />

Relevance of <strong>complexity</strong> related challenges across all industries<br />

2<br />

Low<br />

1<br />

High<br />

3 4<br />

5<br />

1<br />

Increasing importance of inventory<br />

management<br />

4.1<br />

2<br />

3<br />

4<br />

5<br />

Stronger differentiation in customer<br />

requirements (delivery time, flexibility, etc.)<br />

More volatile demand driven by a more<br />

fragmented <strong>product</strong> portfolio<br />

Greater <strong>complexity</strong> in global supply chains<br />

(suppliers, customers)<br />

Rising process costs caused by more<br />

complex planning<br />

3.6<br />

3.5<br />

3.4<br />

3.3<br />

6<br />

More frequent <strong>product</strong> phase-in and phaseout,<br />

plus shorter <strong>product</strong> lifecycles<br />

3.1


9<br />

A. KEY FINDINGS<br />

In the discrete industries, automotive leads in mastering <strong>product</strong><br />

<strong>complexity</strong><br />

Increase of <strong>product</strong> variety in discrete industries [%]<br />

AUTOMOTIVE<br />

MACHINERY<br />

3<br />

Heavy investment in standardization<br />

and modularization in recent years<br />

has taken the automotive industry to<br />

a very mature level of <strong>product</strong><br />

<strong>complexity</strong> management<br />

450<br />

400<br />

350<br />

300<br />

250<br />

200<br />

170% 189%<br />

150<br />

127% 129%<br />

100<br />

91%<br />

93%<br />

50<br />

0<br />

'97 '02 '07 '12 '15<br />

Companies in the machinery<br />

industry started later but are<br />

adopting standardization and<br />

modularization concepts to cope<br />

with <strong>complexity</strong><br />

450<br />

400<br />

350<br />

300<br />

257%<br />

250<br />

216% 217%<br />

200<br />

150<br />

190%<br />

100<br />

50<br />

81% 76%<br />

0<br />

'97 '02 '07 '12 '15<br />

> The automotive industry started<br />

launching standardization and<br />

modularization efforts early on<br />

to fight increasing variety in raw<br />

materials and components.<br />

Machinery companies, on the<br />

other hand, started to optimize<br />

their <strong>product</strong> structure only in the<br />

past few years<br />

Lead industry<br />

No. of sales <strong>product</strong>s<br />

No. of raw materials and components<br />

Duration of <strong>product</strong> lifecycle


10<br />

A. KEY FINDINGS<br />

FMCG is most advanced in <strong>product</strong> <strong>complexity</strong> management in the<br />

process industries<br />

Increase of <strong>product</strong> variety in process industries [%]<br />

FMCG<br />

CHEMICALS<br />

PHARMA<br />

3<br />

In light of the economic crisis,<br />

FMCG companies have focused<br />

even more strongly on <strong>product</strong><br />

<strong>complexity</strong> management and are<br />

now ahead of other processes<br />

industries<br />

450<br />

400<br />

350<br />

300<br />

250<br />

200<br />

162% 163%<br />

150<br />

140%<br />

100<br />

135%<br />

50<br />

46%<br />

54%<br />

0<br />

'97 '02 '07 '12 '15<br />

Only in the past 10 years, strategic<br />

customer focus has led chemical<br />

companies to diversify their <strong>product</strong><br />

portfolio – Little <strong>complexity</strong><br />

management in place yet<br />

450<br />

442%<br />

400<br />

350<br />

313%<br />

300<br />

279%<br />

250<br />

204%<br />

200<br />

150<br />

100<br />

50<br />

50%<br />

63%<br />

0<br />

'97 '02 '07 '12 '15<br />

In the past, pharmaceutical<br />

companies have faced less severe<br />

economic pressure, and have<br />

therefore so far done less to reduce<br />

<strong>complexity</strong><br />

450<br />

400<br />

350<br />

315%<br />

300<br />

268%<br />

250<br />

225%<br />

223%<br />

200<br />

150<br />

100<br />

88%<br />

92%<br />

50<br />

0<br />

'97 '02 '07 '12 '15<br />

> The chemicals industry is late in<br />

the process – Product variety<br />

has exploded in the past 10<br />

years, little <strong>complexity</strong><br />

management in place yet<br />

> At pharmaceutical companies,<br />

raw materials/components have<br />

increased more strongly than<br />

sales <strong>product</strong>s due to a need for<br />

second sources and regulatory<br />

requirements (e.g. differentiated<br />

leaflets)<br />

Lead industry<br />

No. of sales <strong>product</strong>s<br />

No. of raw materials and components<br />

Duration of <strong>product</strong> lifecycle


11<br />

A. KEY FINDINGS<br />

Four optimization approaches improve companies' flexibility and<br />

responsiveness in light of increasing <strong>product</strong> variety<br />

4<br />

PRODUCT<br />

SUPPLY CHAIN<br />

PRODUCTION<br />

Approaches to optimization<br />

Approach Principle Effect<br />

PRODUCT<br />

STRUCTURE<br />

OPTIMIZATION 1)<br />

SUPPLY CHAIN<br />

SEGMENTATION<br />

SUPPLY CHAIN<br />

INTEGRATION<br />

PRODUCTION<br />

FLEXIBILITY<br />

> Share and increase common parts,<br />

e.g. through option pricing, and move<br />

the point of <strong>product</strong> differentiation<br />

toward the end of the supply chain<br />

> Split and adapt supply chains in line<br />

with customer requirements<br />

> Establish responsive supply chain<br />

design for highly differentiated<br />

<strong>product</strong> groups and volatile demand<br />

> Integrate processes and information<br />

flows across functions and supply<br />

chain partners<br />

> Establish end-to-end KPI system<br />

and common incentive system<br />

> Segment <strong>product</strong>ion and increase<br />

flexibility<br />

> Reduce cycle times in order<br />

processing, <strong>product</strong>ion and logistics<br />

> Economies of scale in upstream<br />

supply chain<br />

> Greater forecast accuracy for semifinished<br />

<strong>product</strong>s and enabling<br />

function for build-to-order strategies<br />

> Supply chain design fits <strong>product</strong> and<br />

demand characteristics<br />

> Superior supply chain performance<br />

> Greater transparency regarding<br />

supply performance<br />

> Integrated control makes firms more<br />

responsive to shifts in demand and<br />

optimizes global performance<br />

> Reduced delivery lead times<br />

> Larger part of supply chain can be<br />

controlled based on customer order<br />

1) Product portfolio streamlining not in scope, since a differentiated <strong>product</strong> portfolio is seen as a given framework condition<br />

for which appropriate <strong>complexity</strong> levers need to be established


12<br />

A. KEY FINDINGS<br />

Detailed levers for mastering <strong>product</strong> variety are addressed in our<br />

study<br />

4<br />

PRODUCT<br />

SUPPLY CHAIN<br />

Overview of levers<br />

Optimization<br />

approach<br />

PRODUCT<br />

STRUCTURE<br />

OPTIMIZATION<br />

SUPPLY CHAIN<br />

SEGMENTATION<br />

Levers<br />

1 Sharing common parts and processes<br />

2 Adopting modular <strong>product</strong> structures<br />

3 Differentiating <strong>product</strong>s after <strong>product</strong>ion, packaging or logistics processes<br />

1 Segmenting the <strong>product</strong> portfolio and identifying market characteristics for differentiated <strong>product</strong>s<br />

2 Segmenting and adopting the supply chain for differentiated processes<br />

PRODUCTION<br />

SUPPLY CHAIN<br />

INTEGRATION<br />

PRODUCTION<br />

FLEXIBILITY<br />

1 Measuring speed, efficiency and flexibility with a set of end-to-end performance KPIs<br />

2 Creating common incentives for all functions; SC partners to optimize supply chain performance<br />

3 Aligning roles and responsibilities to optimize collaboration between SC functions and partners<br />

4 Integrating global IT systems and sharing data platforms with customers and suppliers<br />

5 Operating supply hubs with vendor-managed inventory close to assembly plants<br />

1 Segmenting <strong>product</strong>ion and flexibilization of manufacturing equipment<br />

2 Reducing order throughput time<br />

3 Executing processes simultaneously


13<br />

A. KEY FINDINGS<br />

Relevance of optimization approaches was confirmed across all industry<br />

segments – Implementation still lags behind<br />

Optimization approaches across all industries<br />

4<br />

Low<br />

High<br />

1 3 4 5<br />

SUPPLY CHAIN SEGMENTATION<br />

Split and adapt supply chains in line with customer<br />

requirements<br />

SUPPLY CHAIN INTEGRATION<br />

Integrate processes and information flows across<br />

functions and supply chain partners<br />

PRODUCTION FLEXIBILITY<br />

Increase <strong>product</strong>ion flexibility and reduce cycle<br />

times in order processing and <strong>product</strong>ion<br />

PRODUCT STRUCTURE OPTIMIZATION<br />

Share common parts and move the point of<br />

<strong>product</strong> differentiation towards the end of the value<br />

chain<br />

2.7<br />

2.6<br />

2.8<br />

2.6<br />

3.4<br />

3.7<br />

3.7<br />

3.9<br />

Relevance<br />

Degree of implementation


14<br />

A. KEY FINDINGS<br />

The lead industries automotive and FMCG are superior in mastering<br />

<strong>complexity</strong> – Other industries can apply best practices to catch up<br />

Degree of implementation by industry<br />

DISCRETE INDUSTRIES<br />

PROCESS INDUSTRIES<br />

4<br />

SUPPLY CHAIN<br />

SEGMENTATION<br />

MACHI-<br />

NERY<br />

AUTO-<br />

MOTIVE<br />

CHEMI-<br />

CALS<br />

PHARMA<br />

FMCG<br />

> Whereas in discrete industries<br />

car companies are at the<br />

forefront in terms of level of<br />

implementation, in the process<br />

industries FMCG companies<br />

have reached a very high level<br />

of implementation<br />

SUPPLY CHAIN<br />

INTEGRATION<br />

PRODUCTION<br />

FLEXIBILITY<br />

PRODUCT<br />

STRUCTURE<br />

OPTIMIZATION<br />

> Machinery, chemical and<br />

pharmaceutical companies<br />

can learn from the best<br />

practices of front-runner<br />

industries to catch up with<br />

implementation, especially in<br />

terms of optimizing <strong>product</strong><br />

structures and supply chain<br />

integration<br />

Lead industry<br />

1 2 3 4 5 1 2 3 4 5<br />

Low<br />

High Low<br />

High


15<br />

A. KEY FINDINGS<br />

Automotive and FMCG demonstrate the savings impact of <strong>complexity</strong><br />

management – Huge potential exists for other industries too<br />

Examples<br />

5<br />

Car manufacturer<br />

Diary producer<br />

Chocolate manufacturer<br />

COGS reduction<br />

[%]<br />

Modular construction based<br />

on MQB platform and further<br />

standardization measures<br />

3.0%<br />

Complexity reduction based<br />

on single variant cost model<br />

2.8%<br />

Complexity reduction based<br />

on single variant cost model<br />

3.2%<br />

Approximation<br />

Projection for other<br />

global industries<br />

MACHINERY<br />

PHARMA<br />

CHEMICALS<br />

COGS reduction<br />

[EUR bn]<br />

[%]<br />

39-54<br />

6-9<br />

29-49<br />

(2.5-3.5%) (2.5-3.5%) (1.5-2.5%)


16<br />

A. KEY FINDINGS<br />

We investigated European companies in five industry clusters<br />

METHODOLOGY<br />

> Survey based on structured questionnaire<br />

> Three sections:<br />

– Development of <strong>complexity</strong> indicators<br />

from 1997 through 2015<br />

- No. of different sales <strong>product</strong>s<br />

- No. of different raw materials and<br />

components<br />

- Product lifecycle duration<br />

– Relevance of challenges to supply<br />

chain management<br />

– Relevance and degree of<br />

implementation of supply chain levers<br />

> Results, summarized on a global level and<br />

by industry<br />

SCOPE<br />

> Europe<br />

> More than 100 respondents<br />

> Five industry clusters<br />

Pharmaceuticals<br />

Chemicals<br />

Automotive<br />

16%<br />

17%<br />

13%<br />

21%<br />

33%<br />

FMCG<br />

Machinery


B.<br />

Examples of<br />

<strong>product</strong> <strong>complexity</strong><br />

management in<br />

practice


B.1<br />

Customer-oriented<br />

car retailing


19<br />

B.1 CUSTOMER-ORIENTED CAR RETAILING<br />

One leading car manufacturer optimized its supply chain to enable<br />

customer-oriented retailing<br />

OBJECTIVE<br />

CHALLENGES for a car manufacturer<br />

Customer-oriented car retailing<br />

New brands<br />

1960 Product offering<br />

2015<br />

> Constantly growing model variety and <strong>complexity</strong> of<br />

<strong>product</strong> offering<br />

> Limited space at dealerships – higher number of demo<br />

cars reduces space for unused stock cars<br />

> Sales planning focus has shifted toward mix<br />

optimization and contribution – decentralized stock<br />

management unable to tap market potential<br />

"The right car for my customer, not a<br />

customer for my car"<br />

A<br />

B<br />

Centralized stock management<br />

Retail-oriented planning and ordering


20<br />

B.1 CUSTOMER-ORIENTED CAR RETAILING<br />

Customer-oriented retailing was achieved through central stock<br />

management and retail-oriented planning and ordering<br />

A<br />

Pooling cars in central warehouses and<br />

optimizing the car mix improves availability<br />

in downstream warehouses and reduces<br />

swapping costs<br />

CENTRAL STOCK MANAGEMENT<br />

Supplier<br />

Car manufacturer Central warehouse Dealers<br />

B<br />

RETAIL-ORIENTED PLANNING AND ORDERING<br />

Integrated ordering and planning process makes the order<br />

pipeline more transparent, takes account of restrictions on the<br />

<strong>product</strong>ion and supply sides and creates a feasible supply plan<br />

in line with market demand


21<br />

B.1 CUSTOMER-ORIENTED CAR RETAILING<br />

Six levers allow car stock management to be centralized<br />

LEVERS<br />

BENEFITS<br />

Central<br />

stock<br />

management<br />

A 1<br />

2<br />

Template-based configuration<br />

Stock Advisory Circle<br />

> Optimized engine, model and option mix<br />

> Increased stock variety<br />

> Fewer specification mistakes<br />

> Ensures integration of market know-how/trends and future<br />

orientation for conscious decisions<br />

> Secures dealer buy-in for template generation process<br />

3<br />

Central compound logic<br />

> Reduces total stock<br />

> Increases variety offered to customer<br />

> Lowers amount of aging stock<br />

4<br />

Sales front-end enhancement<br />

> Optimized customer needs assessment for search inquiry<br />

5<br />

Pipeline search<br />

> Optimized offer for customer according to preferences<br />

> No or fewer ageing cars<br />

> FIFO principle enforced<br />

6<br />

Aging stock management<br />

> Aging stock more transparent<br />

> Incentive to sell aging stock (e.g. Dutch auction)


22<br />

B.1 CUSTOMER-ORIENTED CAR RETAILING<br />

Retail-oriented planning and ordering is based on full process<br />

integration to better coordinate demand and supply side factors<br />

LEVERS<br />

BENEFITS<br />

Retailoriented<br />

planning<br />

and<br />

ordering<br />

B<br />

1<br />

2<br />

Template-based Retail oriented ordering configuration<br />

Volume planning process<br />

> Orders can be better prioritized (no more automatic build-to-order<br />

prioritization)<br />

> Planning & order pipeline more transparent<br />

> Increased market transparency<br />

> Reduced planning effort<br />

3<br />

Option planning<br />

> Increased planning quality and efficiency<br />

> Restrictions are more transparent and can be detected earlier to<br />

reduce order delays<br />

4<br />

Market roundtable philosophy<br />

> Market trends and opportunities integrated into the planning process<br />

> Proactive measures coordinated to ensure volume and financial<br />

targets


B.2<br />

Modularization<br />

strategy for a<br />

leading car<br />

manufacturer


Magnitude of <strong>product</strong><br />

standardization impact<br />

24<br />

B.2 MODULARIZATION STRATEGY FOR A LEADING CAR MANUFACTURER<br />

Depending on their culture and past standardization strategy, OEMs<br />

pursue different modularization pathways<br />

OEM maturity level in modularization strategies<br />

Sharing<br />

complex components<br />

across<br />

platforms<br />

Most advanced<br />

OEMs<br />

Sharing<br />

complex components<br />

on one<br />

platform<br />

Sharing simple<br />

components<br />

PATHWAY<br />

1 Carry-over<br />

approaches<br />

2 Platform<br />

approaches<br />

3 Module<br />

approaches


25<br />

B.2 MODULARIZATION STRATEGY FOR A LEADING CAR MANUFACTURER<br />

The different pathways address different scopes of standardization<br />

Modularization pathways<br />

PATHWAY<br />

1 Carry-over<br />

approaches<br />

2 Platform<br />

approaches<br />

3 Module<br />

approaches<br />

SCOPE Basic components Common technical perimeter<br />

for several models<br />

(unperceived underbody)<br />

Complex systems or<br />

subsystems dedicated to an<br />

entire function<br />

PRINCIPLE<br />

Same component used<br />

across models or for model<br />

renewals to facilitate<br />

development and increase<br />

commonality<br />

Platforms with a maximum<br />

number of common parts<br />

shared between different<br />

models & brands<br />

Vehicle structure divided into<br />

modules, sharing standard<br />

interfaces and base<br />

components but allowing<br />

differentiation within variants<br />

GOVERNANCE<br />

Standardization plans<br />

managed by technical<br />

departments<br />

Engineering organized<br />

according to technical<br />

platforms<br />

Modular architecture<br />

organization


26<br />

B.2 MODULARIZATION STRATEGY FOR A LEADING CAR MANUFACTURER<br />

Modularization generates cost savings and speeds up time to market<br />

Modularization effects<br />

MODULARIZATION<br />

1<br />

Significant cost reduction in purchasing & manufacturing<br />

2<br />

Increased number and frequency of new model launches<br />

3<br />

Reduction of time to market and associated R&D spending<br />

4<br />

Improvement of <strong>product</strong>/process quality<br />

5<br />

Enables global engineering with module expert centers


27<br />

B.2 MODULARIZATION STRATEGY FOR A LEADING CAR MANUFACTURER<br />

A leading car manufacturer has successfully introduced a<br />

modularization strategy<br />

PROJECT PROFILE<br />

> Client: Leading car manufacturer<br />

> Goal: Significantly increase reuse<br />

of parts across vehicle lines<br />

by establishing a modular<br />

approach<br />

> Scope covered: All major<br />

modules and vehicle lines<br />

> <strong>Roland</strong> <strong>Berger</strong> support:<br />

Concept phase and implementation,<br />

in total more than<br />

1 year<br />

> Results I: Modular shelf<br />

established, variant/part numbers<br />

significantly reduced<br />

> Results II: Organization<br />

transformed – new methodology,<br />

processes and cross-functional<br />

collaboration established<br />

Modules developed<br />

specifically for a vehicle<br />

line/brand<br />

Vehicle architecture<br />

standardized<br />

Developing a module with<br />

derivatives/variants for specific<br />

standard architectures<br />

Module applied across vehicle<br />

lines/brands


28<br />

B.2 MODULARIZATION STRATEGY FOR A LEADING CAR MANUFACTURER<br />

The modularization concept is based on five elements<br />

Modularization concept<br />

1 Portfolio<br />

concept<br />

Brand, segment and<br />

<strong>product</strong> approach for<br />

the various markets<br />

2 Vehicle architecture 4 Module<br />

strategies<br />

Anchor points and interfaces<br />

designed to decouple vehicle and<br />

module development<br />

3 Functional strategies<br />

Modular shelf and<br />

cycle plan<br />

Functional requirements for vehicles,<br />

systems and modules<br />

5 Enablers<br />

Requirements for engineering framework, organization,<br />

governance and development process


29<br />

B.2 MODULARIZATION STRATEGY FOR A LEADING CAR MANUFACTURER<br />

The modular structure is the backbone of the approach<br />

Modularization scheme<br />

Modular <strong>product</strong> architecture<br />

Module substructure<br />

PRODUCT<br />

ARCHITECTURE<br />

EXTERIOR MIRROR (example)<br />

Blinker<br />

Housing<br />

MODULES<br />

(80-100)<br />

Frame<br />

Glass adjustment<br />

drive<br />

Glass<br />

SUB-<br />

MODULES<br />

(400-500)


30<br />

B.2 MODULARIZATION STRATEGY FOR A LEADING CAR MANUFACTURER<br />

The standardization of modules/components led to significant benefits<br />

Standardization/modularization – HVAC<br />

Heat<br />

exchanger<br />

Filter<br />

Fan<br />

Commonization of<br />

components<br />

Car segment 1<br />

Model 1 …<br />

Car segment 2<br />

Model 2 Model 3 Model …<br />

Step control<br />

motors<br />

Air distribution<br />

unit<br />

Fan control<br />

unit<br />

HVAC box<br />

Air distribution unit<br />

Heat exchanger<br />

Fan<br />

HVAC box<br />

Filter<br />

Fan control unit<br />

Step control motors<br />

Unique designs<br />

Part numbers<br />

Investment<br />

[EUR m/year]<br />

Variable costs<br />

[EUR/piece]<br />

7<br />

-86%<br />

1<br />

104<br />

-57%<br />

36<br />

5<br />

-40%<br />

3<br />

140<br />

-31%<br />

96<br />

> Engineering<br />

> Manufacturing<br />

– Production facilities<br />

– Tools<br />

> Material cost<br />

> Manufacturing cost<br />

> Warranty & goodwill<br />

> Logistics<br />

Actual<br />

Target


B.3<br />

Complexity<br />

reduction for an<br />

FMCG company


32<br />

B.3 COMPLEXITY REDUCTION FOR AN FMCG COMPANY<br />

For one leading FMCG manufacturer, <strong>complexity</strong> management was a<br />

key enabler to increase company performance<br />

> Performance<br />

improvement for leading<br />

chocolate manufacturer<br />

> Private label business<br />

dramatically increased<br />

<strong>complexity</strong><br />

> Of the ten identified<br />

improvement levers,<br />

<strong>complexity</strong> management<br />

was a key enabler to<br />

improve performance<br />

3<br />

R&D<br />

Target cost<br />

<strong>product</strong><br />

development<br />

Planning<br />

Controlling<br />

Administration, etc.<br />

2<br />

Product<br />

<strong>complexity</strong><br />

management<br />

Packaging<br />

development<br />

1<br />

Portfolio<br />

optimization<br />

Marketing & Sales<br />

Procurement Production Packaging Logistics<br />

STRATEGIC<br />

4 PURCHASING 5 OPERATIONS/LOGISTICAL EFFICIENCY<br />

6<br />

7<br />

COST<br />

ACCOUNTING<br />

8<br />

MASTER<br />

DATA<br />

VALUE CHAIN CONTROL<br />

9<br />

EFFICIENCY<br />

OVERHEAD<br />

Product development<br />

10<br />

SEGMEN-<br />

TATION/<br />

SYNER-<br />

GIES


Contribution margin<br />

33<br />

B.3 COMPLEXITY REDUCTION FOR AN FMCG COMPANY<br />

The company activated three levers to optimize <strong>complexity</strong><br />

Portfolio optimization<br />

1 2 3<br />

Product <strong>complexity</strong><br />

management<br />

Target cost <strong>product</strong><br />

development process<br />

DB2<br />

> Target%<br />

I<br />

Green Green Green Green<br />

Complexity reduction based on single<br />

variant cost model<br />

A target-cost-oriented process was<br />

defined<br />

DB2<br />

> 0%<br />

II<br />

Focus Focus Focus Focus<br />

Ideenfindung &<br />

-verdichtung<br />

Konzeptphase<br />

G3<br />

G3<br />

Entwicklungsund<br />

Testphase<br />

G3<br />

Einführungsphase<br />

5<br />

G4<br />

Launch und<br />

Erfolgskontrolle<br />

DB2<br />

< 0% III<br />

Exit Watch Watch Focus<br />

Grobkonzept EA<br />

Go/NoGo Liefertermin best. Erstauslieferung<br />

1 2 3 4<br />

6 7<br />

Idee Marketing-Konzept Offertkalk Absatzplan Erstproduktion<br />

Nachkalk<br />

DB1 var.<br />

< 0% IV<br />

Exit Exit Watch Watch<br />

Wirtschaftlichkeitsprüfung<br />

Wertorientierte<br />

Produktkonzeption<br />

Standardkatalog<br />

Kosten- und termingerechte<br />

Druckumsetzung<br />

Nachkalkulation<br />

D C B A<br />

< 50 TCHF > 50 TCHF > 100 TCHF > 500 TCHF<br />

< 100 TCHF < 500 TCHF<br />

Turnover<br />

Inhaltliche<br />

Koordination<br />

zwischen<br />

Projekten<br />

Detailierte<br />

Zielkostenvorgabe<br />

für Inhalt-, Pack-,<br />

Fertigungs-kosten<br />

Mengenabhängige<br />

Kalkulation aller<br />

Komponenten<br />

Ergebnisoffener<br />

Make or Buy<br />

Entscheid<br />

> Assessment of <strong>product</strong> portfolio<br />

based on contribution margin<br />

and turnover<br />

> Evaluation of scenarios for<br />

portfolio streamlining<br />

> Implementation of "exit" list<br />

> Optimization of <strong>product</strong> costs for<br />

top 25 SKUs<br />

> Product standardization across<br />

all links in value chain based on<br />

single variant cost model<br />

> Formulation of catalog for<br />

standard assortment<br />

> Implementation of a new<br />

organizational structure with a<br />

central <strong>product</strong> management<br />

department<br />

> Process integration<br />

> Adaptation of calculation design<br />

(volume-based)


34<br />

B.3 COMPLEXITY REDUCTION FOR AN FMCG COMPANY<br />

The variant tree highlights how <strong>complexity</strong> increases with each link in<br />

the value chain – 60% of SKUs represent only 20% of the total volume<br />

Variant tree analysis<br />

Chocolate bars<br />

Confectionery<br />

Cocoa mass<br />

80% of tonnage<br />

80% of tonnage<br />

[# of variants] [%] [# of variants] [%]<br />

5 83%<br />

5 83%<br />

Chocolate mass<br />

Fillings<br />

Semi-finished (unpacked)<br />

Primary packaging<br />

Secondary packaging<br />

Tertiary packaging<br />

30 37%<br />

46 45%<br />

134 31%<br />

320 45%<br />

23 35%<br />

3 21%<br />

17 31%<br />

20 34%<br />

62 25%<br />

134 31%<br />

13 27%<br />

4 29%<br />

SKU 364 39%<br />

182 45%<br />

Share of variants that account for 80% of volume produced<br />

Share of variants that account for 100% of volume produced


35<br />

B.3 COMPLEXITY REDUCTION FOR AN FMCG COMPANY<br />

The single variant cost model enables <strong>complexity</strong>-related cost<br />

increases to be evaluated<br />

Single-variant <strong>complexity</strong> cost model<br />

PURCHASING<br />

PURCHASING<br />

188 6%<br />

PLANT<br />

99 21%<br />

SUPPLY CHAIN<br />

39 34%<br />

Cocoa beans<br />

& butter<br />

Milk powder<br />

69<br />

22<br />

2%<br />

1%<br />

Cocoa<br />

mass<br />

Chocolate<br />

mass<br />

Fillings<br />

Primary<br />

packaging<br />

Semifinished<br />

Secondary<br />

packaging<br />

Tertiary<br />

packaging<br />

Co-packing<br />

7<br />

100%<br />

Sugar<br />

Hazelnuts<br />

Other raw<br />

materials<br />

Packaging<br />

materials<br />

17<br />

9<br />

33<br />

33<br />

1%<br />

4%<br />

19%<br />

6%<br />

11 16 19<br />

5%<br />

23%<br />

31%<br />

25 19<br />

23%<br />

19%<br />

6 4<br />

15%<br />

11%<br />

Warehousing<br />

21<br />

29%<br />

Transport<br />

11<br />

2%<br />

R&D 4 25%<br />

MARKETING<br />

TOTAL 330 TOTAL COST OF COMPLEXITY EUR 47 m 14% FTE impact<br />

xx COGS [EUR m]<br />

xx<br />

Share of COGS when more than one variant is produced<br />

D&A impact<br />

5<br />

17%<br />

19%<br />

27%


36<br />

B.3 COMPLEXITY REDUCTION FOR AN FMCG COMPANY<br />

COGS were cut by 3% for chocolate bars and confectionery<br />

COGS savings<br />

Chocolate bars<br />

Confectionery<br />

Achievable reduction<br />

[% of variants; EUR m]<br />

Achievable reduction<br />

[% of variants; EUR m]<br />

Cocoa mass<br />

4 6<br />

-33% 0.1<br />

4 6<br />

-33% 0.1<br />

Chocolate mass<br />

54 82<br />

-34% 0.8<br />

40 55<br />

-27% 0.6<br />

Fillings<br />

62 102<br />

-39% 1.7<br />

41 60<br />

-31% 1.3<br />

Semi-finished (unpacked)<br />

328 432<br />

-24% 1.7<br />

195 247<br />

-21% 1.2<br />

Primary packaging<br />

598 712<br />

-16% 1.0<br />

358 279<br />

-17% 0.6<br />

Secondary packaging<br />

48 67<br />

-28% 0.2<br />

43 49<br />

-23% 0.1<br />

Tertiary packaging<br />

11 15<br />

-30% 0.1<br />

12 14<br />

-40% 0.1<br />

SKU<br />

794 939 -15% 1) 0.5<br />

360 405 -11% 1) 0.3<br />

EUR 6.0 m/3.1% COGS<br />

EUR 4.4 m/3.5% COGS<br />

% of full potential: 22%<br />

% of full potential: 22%<br />

No of variants in 2010<br />

Minimum achievable no. of variants<br />

1) Affects supply chain and marketing only; purchasing and plant already taken into account in reduction of variants


37<br />

B.3 COMPLEXITY REDUCTION FOR AN FMCG COMPANY<br />

Complexity management generated savings of EUR 17 m<br />

Total savings [EUR m]<br />

5.0 17.2<br />

10.4<br />

1.8<br />

Product<br />

portfolio<br />

optimization<br />

Product<br />

<strong>complexity</strong><br />

management<br />

Target cost<br />

<strong>product</strong><br />

development<br />

Total savings


B.4<br />

Product value<br />

management for a<br />

leading consumer<br />

goods manufacturer


39<br />

B.4 PRODUCT VALUE MANAGEMENT FOR A LEADING CONSUMER GOODS MANUFACTURER<br />

One leading consumer goods manufacturer introduced <strong>product</strong> value<br />

management to increase its profitability<br />

SITUATION<br />

OBJECTIVE: Introduce <strong>product</strong> value management<br />

Leading consumer goods<br />

manufacturer<br />

> Net sales growth<br />

significantly below<br />

benchmark<br />

> Return on sales clearly<br />

below competitors<br />

> Potential from <strong>product</strong><br />

performance<br />

improvement not<br />

leveraged<br />

VALUE<br />

COST<br />

FUNCTIONAL<br />

COST<br />

REDUCTION<br />

Product<br />

Value<br />

Management<br />

(PVM)<br />

> Optimize overall <strong>product</strong><br />

value (cost/performance)<br />

and improve <strong>product</strong><br />

profitability<br />

APPROACH:<br />

> Definition of 23 methods to be<br />

applied during the <strong>product</strong><br />

development process<br />

> Systematic application of<br />

methods in cross-functional<br />

teams (R&D, Procurement, SC,<br />

Quality, Controlling, etc.) in pilot<br />

projects<br />

> Methods solidly anchored by<br />

communication, training, etc.<br />

TODAY<br />

TOMORROW


40<br />

B.4 PRODUCT VALUE MANAGEMENT FOR A LEADING CONSUMER GOODS MANUFACTURER<br />

A four-step approach was used to integrate customer and company<br />

perspectives – Customer view as starting point and end point<br />

Approach<br />

Customer<br />

view<br />

A<br />

Which features<br />

do customers<br />

prefer<br />

In which order<br />

of priority<br />

At what cost<br />

> Feature check<br />

> Focus groups<br />

> …<br />

D<br />

What<br />

alternatives<br />

are valued by<br />

customers and<br />

maximize<br />

profitability<br />

> Sales volume<br />

testing<br />

> Price positioning<br />

> …<br />

> We started by analyzing customer<br />

preferences<br />

> We then identified cost drivers<br />

> In a <strong>product</strong> workshop, we<br />

defined alternative solutions to<br />

reduce <strong>product</strong> costs and<br />

increase performance<br />

Company<br />

view<br />

B<br />

What drives<br />

cost and how<br />

can we influence<br />

it early on<br />

> Value-based<br />

featuring<br />

> Cost driver<br />

analysis<br />

> …<br />

C<br />

What alternatives<br />

can optimize<br />

<strong>product</strong> cost/<br />

performance<br />

> Product teardown<br />

> Product<br />

convention<br />

> …<br />

> Lastly, the solution was evaluated<br />

and optimized from the<br />

customer's perspective<br />

Customer/external view<br />

Company/internal view<br />

Sample methods


41<br />

B.4 PRODUCT VALUE MANAGEMENT FOR A LEADING CONSUMER GOODS MANUFACTURER<br />

The company applied a broad range of tools to optimize <strong>product</strong> value<br />

in all four steps<br />

Methods (excerpt)<br />

CUSTOMER<br />

TRANSPARENCY ALTERNATIVES VALUE<br />

A PREFERENCES B C D MAXIMIZATION<br />

Customer observation<br />

Cost driver analysis<br />

Product teardown<br />

Sales volume testing<br />

Focus<br />

groups<br />

Linear performance<br />

pricing<br />

Commonality<br />

Value engineering<br />

Part Functions Sub-Functions<br />

Fuel Fuel Tank Tank Fuel Total<br />

Pump Valves Shell Straps Gauge<br />

Value Added 1) [EUR]<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

Supplier 2<br />

Supplier 3<br />

Supplier 1<br />

Target<br />

corridor<br />

Fuel Tanks<br />

SAFETY<br />

STORE FUEL<br />

DELIVER FUEL<br />

GAUGE FUEL<br />

Crash Worthiness 2 2 2 4 0 10<br />

Fire Proof 0 0 1 2 0 3<br />

Durability 2 0.5 0.5 12 0 15<br />

Maximise volume 0 2 1 0 0 3<br />

Easy to fill 0 1 1 0 0 2<br />

Vent fuel gas 0 2 3 0 0 5<br />

Provide supply at pressure 28 0 0 0 0 28<br />

Maximize fuel suck up 2 0 1 0 0 3<br />

Deliver while dynamic driving 3 0 1 0 0 4<br />

Supply clean fuel 8 0 0 0 0 8<br />

Tell customer whats left 0 0 0 0 7 7<br />

Warn customer running out 0 0 0 0 1 1<br />

20<br />

10<br />

0<br />

Stop air in system 1 0 0 0 1 2<br />

Emissions compliance 1 1 3 0 0 5<br />

Fire proof 0 0 0 0 0 0<br />

LEGAL COMPLIANCE<br />

Crash proof 0 0 0 0 0 0<br />

0 9 10 11 12 13 14 15 16 17 18<br />

Durability 0 0 0 0 0 0<br />

Weight [kg]<br />

TOTAL<br />

47 8 13 18 9 96<br />

Cost drivers


42<br />

B.4 PRODUCT VALUE MANAGEMENT FOR A LEADING CONSUMER GOODS MANUFACTURER<br />

Examples demonstrate that <strong>product</strong> value management reduces<br />

<strong>product</strong> costs and drives sales<br />

Benefits (excerpt)<br />

BODY CARE<br />

COSTS DOWN!<br />

FACIAL CARE<br />

SALES UP!<br />

HAIR COLORING PRODUCTS<br />

-10-15% of packaging costs<br />

> Switch from silk screen printing<br />

technology to offset printing<br />

> No negative impact on<br />

consumer value perception<br />

(no visible difference)<br />

-15% folding box costs<br />

> Size of folding box reduced by<br />

20%<br />

> Positive effect on logistics costs<br />

> Optimization of interior design,<br />

elimination of glue dots, etc.<br />

> Positive customer impact<br />

(driven by sustainability)<br />

+ 1.6% market share<br />

> Differentiation of hair coloring<br />

<strong>product</strong>s by market to meet<br />

local price standards and<br />

consumer needs<br />

– Smaller packaging and<br />

elimination of deep<br />

conditioner inserts in CEE,<br />

India, for example<br />

– Lower cost of goods sold<br />

– Lower price points


43<br />

B.4 PRODUCT VALUE MANAGEMENT FOR A LEADING CONSUMER GOODS MANUFACTURER<br />

Implementing 10 pilot projects enabled the company to reduce the cost<br />

of sales by EUR 60 m<br />

Impact of 10 pilot projects on cost of sales [EUR m]<br />

480<br />

62<br />

418<br />

RESULTS:<br />

> Products with the right features at<br />

the right cost thanks to<br />

– Better transparency<br />

– Better alternatives<br />

– Better decisions<br />

> >100 people from various<br />

functions involved in pilot projects<br />

> Savings potential of over<br />

EUR 60 m identified and realized<br />

> Additional potential through sales<br />

push<br />

Before PVM 1) Savings After PVM 1)<br />

1) Product value management

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!