11.01.2015 Views

TMT Optics Discussions with Industry - Thirty Meter Telescope

TMT Optics Discussions with Industry - Thirty Meter Telescope

TMT Optics Discussions with Industry - Thirty Meter Telescope

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>TMT</strong><br />

<strong>Telescope</strong> <strong>Optics</strong><br />

Eric Williams<br />

<strong>Discussions</strong> <strong>with</strong> <strong>Industry</strong><br />

November 2009<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 1


Outline<br />

<strong>Telescope</strong> <strong>Optics</strong> Overview<br />

Primary Mirror<br />

Secondary and Tertiary Mirror Systems<br />

Optical Coating & Equipment<br />

Test Instruments<br />

– Prime Focus Camera<br />

– Global Metrology System<br />

CO 2 Snow Cleaning System<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 2


Overview of <strong>Telescope</strong> <strong>Optics</strong><br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 3


<strong>Telescope</strong> <strong>Optics</strong><br />

M1 System<br />

M2 System<br />

M3 System<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 4


<strong>TMT</strong> Optical Design:<br />

Ritchey Chrétien<br />

M1 Parameters<br />

– ø30m, f/1, Hyperboloid<br />

k = -1.000953<br />

– Paraxial RoC = 60.0m<br />

– Sag = 1.8m<br />

– Asphericity = 29.3mm (entire M1)<br />

M2 Parameters<br />

– ø3.1m, ~f/1, Convex hyperboloid,<br />

k = -1.31823<br />

– Paraxial RoC = -6.228m<br />

– Sag = ~196mm<br />

– Asphericity = 850 μm<br />

M3 Parameters<br />

– Flat<br />

– Elliptical, 2.5 X 3.5m<br />

– Articulated for instrument tracking and fast instrument switching<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 5


Outline<br />

<strong>Telescope</strong> <strong>Optics</strong> Overview<br />

Primary Mirror<br />

Secondary and Tertiary Mirror Systems<br />

Optical Coating & Equipment<br />

Test Instruments<br />

– Prime Focus Camera<br />

– Global Metrology System<br />

CO2 Snow Cleaning System<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 6


M1 Array Parameters<br />

Segment pattern:<br />

– 30m circumscribed, well-filled aperture<br />

– 492 segments<br />

Six identical sectors of segments:<br />

– Take advantage of 6-fold symmetry<br />

– 82 types per sector, each <strong>with</strong>:<br />

Unique hex outline<br />

Unique optical prescription<br />

SECTOR-B<br />

Y M1<br />

1<br />

2<br />

3<br />

4<br />

5<br />

SECTOR-A<br />

55<br />

45 66<br />

36 56<br />

28 46 67<br />

37 57<br />

15 21 29 47 68<br />

38 58 77<br />

6 10 30 48 69<br />

23 39 59 78<br />

7 11 16 22<br />

17 31 49 70<br />

12 24 40 60 79<br />

8 18 32 50 71<br />

13 25 41 61 80<br />

9 19 33 51 72<br />

14 26 42 62 81<br />

20 34 52 73<br />

27 43 63 82<br />

35 53 74<br />

44 64<br />

54 75<br />

65<br />

76<br />

X M1<br />

SECTOR-D<br />

SECTOR-E<br />

Ø 30m<br />

View from Sky<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 7


The <strong>TMT</strong> Primary Mirror (M1)<br />

Segment Parameters<br />

– Low Expansion glass or glass-ceramic<br />

– ~1.44m x 45mm thick<br />

Segments mounted to mirror cell<br />

– Each an off-axis asphere<br />

Maximum asphericity is 225μm<br />

– 2.5mm gaps, 0.5mm edge bevels<br />

Segment Support Assembly (SSA):<br />

– Provides passive support for<br />

3 in-plane DOF<br />

2 lateral directions and clocking<br />

– Permits active control of<br />

3 out-of-plane DOF by M1CS<br />

Piston/Tip/Tilt<br />

– Periodic shape correction by M1CS<br />

21 DOF Warping Harness<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 8


Polished Mirror Assembly<br />

PMA is Produced by Polisher and Delivered to <strong>TMT</strong><br />

– 7 sets of 82 types<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 9


Polished Mirror Assembly<br />

Polished Mirror<br />

SSA<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 10


M1 Segment Fabrication Requirements<br />

M1 Requirements and Specifications are posted on the <strong>TMT</strong> website:<br />

Surface figure requirements specified in terms of a Structure Function<br />

<strong>with</strong> an additional allowance for Low-Order shape errors<br />

Segments are to be mounted and final figured on the support system,<br />

zenith pointing, at mean observing temperature (2°C)<br />

Additionally,<br />

– Surface quality: Roughness


M1 Cell<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 12


M1 Cell<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 13


M1 Cell<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 14


M1 Cell<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 15


M1 Cell<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 16


M1 Segment Installation<br />

Mounted<br />

Segment<br />

Segment Assembly<br />

Installed (MSA) in<br />

Array<br />

Subcell<br />

Mirror Cell<br />

(partial)<br />

Segment Position<br />

Actuators<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 17


Segment Support Assembly (SSA)<br />

SSA Design is mature:<br />

– Under development for several years<br />

– Extensive trade-studies and FEA optimization performed<br />

– Prototypes have been built and tested<br />

Mechanical prototype complete (Aluminum Segment)<br />

Glass prototype in process<br />

– Detailed prototype drawings<br />

have been released<br />

In Final Design Phase:<br />

– Making minor improvements<br />

based on prototype testing<br />

– Design for manufacturability<br />

– Additional prototypes<br />

SSA design-description and drawings<br />

are on the <strong>TMT</strong> Website<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 18


Axial Support System<br />

Two level, 27-point whiffletree system<br />

– All-Aluminum design (nearly)<br />

– Triangles nested for compactness<br />

– Small triangles made from extrusions<br />

– Large triangles made from castings<br />

82 SSA types due to segmentation<br />

– Variation in hex outlines must be<br />

compensated for.<br />

– Accomplished by “shifting pivots”<br />

Pivots are the joints in the whiffletree<br />

12 Pivot holes machined in unique<br />

locations to re-balance the whiffletree<br />

– SSAs outwardly identical<br />

– Internal difference is a few mm<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 19<br />

Whiffletrees ride on Moving Frame


Lateral Support System<br />

Lateral Support Design<br />

– Flat Central Diaphragm w/Outer Rim Slots<br />

– Material: Invar 36<br />

– Bonded directly to mirror<br />

Rim<br />

t=3mm<br />

Central<br />

hub<br />

t=9mm<br />

Moving Frame concept isolates diaphragm<br />

– Makes operating diaphragm deflections small<br />

– High strength material not required<br />

Flexure<br />

t=0.350mm<br />

Diaphragm<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 20


Subcell Design<br />

Fixed Frame<br />

– Provides a stiff, stable interface between MSA and Mirror Cell<br />

– Welded 6061-T6 Aluminum (2 versions due to segmentation)<br />

– Interfaces<br />

Mirror cell (via AAPs)<br />

Segment (via tower registration features)<br />

Actuators (bolted and pinned joints at ends of Fixed Frame)<br />

Fixed Frame<br />

AAP (3x)<br />

Actuator<br />

Attachment (3x)<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 21


Subcell Alignment<br />

Subcell Installation & Alignment:<br />

– M1 Array populated <strong>with</strong> 492 Fixed Frames<br />

– Mass Simulators installed<br />

Mass load mirror cell<br />

– Surveying targets attached to fixed Frames:<br />

Required surveying accuracy 0.100 mm<br />

Mass Simulator<br />

(~215kg Lead)<br />

Qty. = 492<br />

~105 tons<br />

Surveying<br />

Target, 3 ea.<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 22


SSA Prototype Gravity Testing<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 23


Segment Production Plans<br />

Production plan: See Statement of Work on <strong>TMT</strong> website<br />

– Contract start - October 2011<br />

– Facilitization, First Article PMA and Low Rate Production<br />

First article PMA – Mid 2013 (~18 mo. after contract start)<br />

Produce the first ~12 segments - Complete end 2013<br />

Develop and refine production processes<br />

Demonstrate scalable processes<br />

– Full Production (574 segments total)<br />

Production rate increase to support delivery schedule<br />

– First 120 segments to observatory: Mid 2016<br />

– Next 372 segments in equal lots – ~30/mo., over next 1 year<br />

– 82 spare segments follows – Complete late 2018<br />

– Segment Support Assemblies (qty. 574) – Complete as required<br />

– Production of 500 Subcells – Complete End 2015<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 24


Outline<br />

<strong>Telescope</strong> <strong>Optics</strong> Overview<br />

Primary Mirror<br />

Secondary and Tertiary Mirror Systems<br />

Optical Coating & Equipment<br />

Test Instruments<br />

– Prime Focus Camera<br />

– Global Metrology System<br />

CO2 Snow Cleaning System<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 25


M2 / M3 Requirements<br />

M2 and M3 requirements are posted on the <strong>TMT</strong> website:<br />

Surface figure requirements specified in terms of a Structure Function<br />

<strong>with</strong> an additional allowance for Low-Order shape errors<br />

Additionally,<br />

– Surface quality: Roughness


M2 System – Conceptual Design<br />

<strong>Telescope</strong> Top-end:<br />

– M2 Positioner Assembly (M2PA)<br />

– M2 Cell Assembly (M2CA)<br />

<strong>Telescope</strong> Top-end<br />

M2PA<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 27<br />

M2CA


M2 System – Conceptual Design<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 28


M2 Conceptual Design<br />

M2 Positioner<br />

M2 System<br />

M2 Cell Assembly<br />

60 ACTIVE Axial<br />

Support Actuators<br />

Up to 24 Lateral Support<br />

Actuators<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 29


Secondary Mirror (M2)<br />

M2 is a large convex aspheric mirror<br />

– 100mm thick solid meniscus<br />

Low expansion glass or glass ceramic<br />

Testing will be performed on the support system in 2 orientations:<br />

– Mirror face down and<br />

– Horizon pointing<br />

Sag 193 mm<br />

Clear Aperture ID 0.22 m<br />

Clear Aperture OD 3.024 m<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 30


M3 System - Conceptual Design<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 31


M3 System - Conceptual Design<br />

Tertiary Mirror<br />

3.5m x 2.5m (elliptical flat)<br />

M3CA<br />

Rotation<br />

Axis<br />

Tilt Axis<br />

M3PA<br />

3.5 m<br />

Cable<br />

Wrap<br />

(inside)<br />

Tertiary<br />

tower<br />

M1<br />

M3 Control<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03<br />

Electronics<br />

32


Tertiary Mirror (M3)<br />

Mirror blank – similar to M2<br />

– Low expansion glass or glass ceramic<br />

– Mirror thickness: 100 mm<br />

Mirror support system<br />

– Also has an Active 60-point axial support<br />

– 24 point lateral support system<br />

Gravity components in both X & Y due<br />

to tracking<br />

Testing will be performed on the support<br />

system in 3 orientations:<br />

– mirror face up<br />

– two horizon pointing orientations<br />

Y M3<br />

vertical & X M3<br />

vertical<br />

Y M3<br />

60-point axial<br />

support pattern<br />

X M3<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 33


Key M2 Positioner Requirements<br />

Motion Requirements<br />

DOF<br />

Piston<br />

Tip & Tilt<br />

X & Y De-center<br />

Range of Motion<br />

+/- 15mm<br />

+/- 2 mrad<br />

+/- 15mm<br />

Max. Error<br />

±2 μm<br />

± 30 arcsec<br />

± 100 μm<br />

Accuracy: 30mm RMS<br />

Smoothness of motion is critical (TBD)<br />

Control Bandwidth: > 0.1 Hz<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 34


M3 Tracking Motion<br />

M3 must be able to steer the beam to<br />

any one of ~ 8 science instruments on the<br />

Nasmyth platforms<br />

For instruments not on the elevation<br />

axis, the M3 must track at variable<br />

rates in tilt and rotation as the<br />

telescope moves in elevation<br />

Tip/Tilt range: 50°+/- 8°<br />

Rotation range: +/-180°<br />

Elevation Axis<br />

MIRES<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 35


M2 / M3 Development &<br />

Procurement Plan<br />

M2 and M3 Production begins October 2011<br />

<strong>TMT</strong> anticipates:<br />

– 12 month Preliminary Design Phase (PDP)<br />

– Final Design (12 months)<br />

– Fabrication, Integration & Testing (~ 4 years)<br />

– Shipment to the summit and AIV (2 months)<br />

M3 Schedule same<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 36


Outline<br />

<strong>Telescope</strong> <strong>Optics</strong> Overview<br />

Primary Mirror<br />

Secondary and Tertiary Mirror Systems<br />

Optical Coating & Equipment<br />

Test Instruments<br />

– Prime Focus Camera<br />

– Global Metrology System<br />

CO2 Snow Cleaning System<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 37


Key Optical Coating Requirements<br />

Coating Requirements Documents are available on the <strong>TMT</strong> website<br />

<strong>TMT</strong> requires high reflectance over wide spectral range:<br />

– 340nm-28μm (Required)<br />

– 310nm-28μm (Goal)<br />

Low Emissivity<br />

– [(M1+M2+M3) 0.90<br />

0.90 -> 0.95<br />

0.95 -> 0.97<br />

0.97<br />

Goal<br />

0.80<br />

0.90<br />

0.90 -> 0.95<br />

0.95 -> 0.98<br />

0.98<br />

0.98<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 38


Coating Plants<br />

Design Requirements documents for Coating Plants are<br />

available on the <strong>TMT</strong> website.<br />

<strong>TMT</strong> will have two dedicated coating plants:<br />

– A large (3.5m capacity), batch-type system for recoating M2 & M3<br />

Conventional in design, used every 1-2 years<br />

– A production-capable system for routine recoating of M1 Segments<br />

called an In-line sputter system<br />

Load-locked to maintain a clean, high-vacuum process space<br />

Repeatable, high-yield process<br />

Includes up to 6 linear sputtering targets<br />

– permitting future process upgrades as the state-of-the-art in<br />

astronomical coatings is advanced<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 39


Outline<br />

<strong>Telescope</strong> <strong>Optics</strong> Overview<br />

Primary Mirror<br />

Secondary and Tertiary Mirror Systems<br />

Optical Coating & Equipment<br />

Test Instruments<br />

– Prime Focus Camera<br />

– Global Metrology System<br />

CO2 Snow Cleaning System<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 40


Prime Focus Camera<br />

Prime Focus Camera<br />

– Used during telescope assembly<br />

– Installed in telescope top-end<br />

before M2 mirror installation<br />

Mounts at Prime Focus<br />

– Used for segment alignment and<br />

diagnostics<br />

– Includes motorized alignment<br />

stages<br />

– Design Requirements Documents<br />

are pending<br />

Top End during AIV - On Sky Test<br />

PFC<br />

Dummy<br />

Mass<br />

Camera<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 41


Global Metrology System (GMS)<br />

The GMS measures the positions of optics and instruments for diagnostic or<br />

alignment purposes intermittently during operation<br />

<strong>Telescope</strong>-mounted system<br />

Always “warm”, and on “stand-by’<br />

– Can be used to re-align the telescope<br />

at any time<br />

Requirements:<br />

– Rapid and autonomous execution of<br />

programmed measurement routines<br />

– Measurement accuracy 50um (1σ)<br />

per axis<br />

Possibly based on laser trackers<br />

and permanently mounted retro-reflectors<br />

– Position calculation by distance<br />

measurements and trilateration<br />

Includes control and analysis software<br />

Design Requirements Documents are Pending<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 42


Outline<br />

<strong>Telescope</strong> <strong>Optics</strong> Overview<br />

Primary Mirror<br />

Secondary and Tertiary Mirror Systems<br />

Optical Coating & Equipment<br />

Test Instruments<br />

– Prime Focus Camera<br />

– Global Metrology System<br />

CO2 Snow Cleaning System<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 43


CO 2 Snow Cleaning<br />

Mirrors must be regularly cleaned between re-coatings<br />

– CO 2 Snow cleaning every 2 weeks<br />

Mechanical process: momentum transfer form snow flakes<br />

<strong>Telescope</strong> parked at the Horizon (so dust falls off after<br />

cleaning)<br />

Well established process on 8 & 10m telescopes<br />

<strong>TMT</strong> Requires three CO 2 cleaning systems:<br />

– M2: A hand-held system (supply, wand, nozzles)<br />

– M3: An automated system that self-deploys, operates, and re-stows<br />

– M1: A large scale system, fully automated, and rapid (660 m 2 )<br />

Must stow and not block field of view<br />

Must be inherently safe<br />

– cannot damage mirrors (even in a major earthquake)<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 44


Subaru CO 2 Snow<br />

Cleaning Implementation<br />

CO 2<br />

Cleaning<br />

Boom<br />

Click<br />

Here<br />

8m primary<br />

mirror,<br />

seen nearly<br />

edge-on<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 45


<strong>TMT</strong> M1 CO 2 System Concept<br />

(one of a few)<br />

Curved composite<br />

boom, equipped <strong>with</strong><br />

CO 2 nozzles<br />

Pivot axis pointed at<br />

center of curvature,<br />

constant distance to<br />

the optical surface<br />

Support member fixed<br />

to top-end<br />

compression member,<br />

Counter-tensioned<br />

cable system actuates<br />

the boom<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 46


Counterclockwise Rotation<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 47


Center Position<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 48


Clockwise Rotation<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 49


Stowed Configuration<br />

System stows in shadow of top-end structure<br />

Click picture to show<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 50


Acknowledgements<br />

The <strong>TMT</strong> Project gratefully acknowledges the support of the<br />

<strong>TMT</strong> partner institutions. They are the Association of<br />

Canadian Universities for Research in Astronomy (ACURA),<br />

the Association of Universities for Research in Astronomy<br />

(AURA), the California Institute of Technology and the<br />

University of California. This work was supported, as well,<br />

by the Canada Foundation for Innovation, the Gordon and<br />

Betty Moore Foundation, the National Optical Astronomy<br />

Observatory, which is operated by AURA under cooperative<br />

agreement <strong>with</strong> the National Science Foundation, the<br />

Ontario Ministry of Research and Innovation, and the<br />

National Research Council of Canada.<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 51


Back-up Material<br />

Additional M1, M2 and M3 Requirements<br />

– Surface figure structure function<br />

Segment Support Assembly<br />

– FEA Overview<br />

– Design Details<br />

– Warping Harness<br />

– Integration<br />

Coating<br />

– Facility Layout<br />

– Gemini Coating Performance<br />

Keck <strong>Telescope</strong> Heritage<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 52


Back-up Material<br />

Additional M1, M2 & M3 Requirements<br />

Mirror surface structure function<br />

M2 & M3 Positioner motion<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 53


M1 System Engineering<br />

M1 design requirements flow-down from top-level ORD and OAD<br />

– M1 Design Requirements Document (DRD) <strong>TMT</strong>.OPT.DRD.07.007.REL01<br />

Segment Polishing Spec.<br />

<strong>TMT</strong> OPT SPE 07 002 CCR03<br />

– Polished Segment Drawing 280-<strong>TMT</strong>-01-01000 Rev C<br />

– Polished Mirror Assembly Drawing 280-<strong>TMT</strong>-01-11000_C_PMA<br />

Mirror Segment Blank Spec.<br />

– <strong>Telescope</strong> Performance Error Budgets<br />

<strong>TMT</strong> OPT SPE 07 001 CCR06<br />

These documents are on the <strong>TMT</strong> Website<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 54


Segment Polishing and Metrology<br />

Requirements (1/3)<br />

The surface figure of finished<br />

segments is specified by an<br />

atmospheric structure function<br />

(tilt removed)<br />

– Relates the amplitude of surface error<br />

to the separation distance<br />

– Based on a Kolmogorov atmosphere<br />

having r 0<br />

= 1.0m<br />

Structure Function (D), nm 2<br />

Separation distance δ, m<br />

Surface of Optic<br />

Requirement<br />

D(δ) = 〈[z(x) – z(x + δ)] 2 〉 < A[10.60(δ/d) 5/3 – 13.75(δ/d) 2 + 3.42(δ/d) 3 ] + 2B 2<br />

x = a given position on the mirror surface<br />

5<br />

z(x) = surface figure error at location x<br />

2<br />

2 3<br />

⎛ 1 ⎞ ⎛ 500nm<br />

⎞ ⎛ d ⎞<br />

A = leading coefficient = 2907 nm 2<br />

A = ⎜ ⎟ ⎜ ⎟<br />

2 2<br />

⎜<br />

⎟<br />

⎝ ⎠ ⎝ π ⎠ ⎝ r0<br />

B = High frequency surface roughness = 2 nm<br />

⎠<br />

δ = Separation between point pairs<br />

d = diameter of segment = 1.44 meters<br />

r 0<br />

= Quasi-Fried’s parameter <strong>TMT</strong>.OPT.PRE.09.099.DRF03 = 1.0 meters<br />

55


Segment Polishing and Metrology<br />

Requirements (2/3)<br />

Segments are to be final figured on the support system<br />

– Tested zenith pointing, at mean observing temperature (2°C)<br />

This removes the 1-g print-thru and much of the thermal distortion<br />

Polisher allowed to subtract low order aberrations from final test<br />

– Permitted in order to reduce polishing cost and production risk<br />

Subtracted errors are due to polishing and metrology errors<br />

These errors are removable by segment warping harness<br />

Aberration<br />

Focus<br />

Astigmatism<br />

Coma<br />

Trefoil<br />

Allowable Surface Error<br />

nm RMS<br />

50<br />

100<br />

10<br />

20<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 56


Segment Polishing and Metrology<br />

Requirements (3/3)<br />

Segments must be good right to the edge – no edge roll-off<br />

– Required for PFI Image contrast & APS segment phasing accuracy<br />

Surface quality: Roughness


Key M2 and M3<br />

Mirror Cell Requirements<br />

Surface figure specified by Structure Function<br />

– Similar to approach used to specify segment figure requirement<br />

Described in DRD’s on <strong>TMT</strong> Website<br />

– Controls errors due to:<br />

Polishing and Metrology<br />

Support system manufacturing tolerances<br />

Thermal distortion: Blank material and support system<br />

Low-order allowance<br />

Active optic correction by look-up table<br />

– Correct figure using 60 axial<br />

support actuators:<br />

Aberration<br />

M2<br />

Fabrication errors<br />

Focus<br />

N/A<br />

Coating stress<br />

Astigmatism 200<br />

Thermal distortion<br />

Coma<br />

20<br />

Stiffness to reject wind<br />

Trefoil<br />

50<br />

Seismic requirements<br />

Allowable Surface Error, nm RMS<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 58<br />

M3<br />

100<br />

200<br />

20<br />

50


M2 Structure Function Requirements<br />

The surface figure of the M2 mirror is<br />

specified by an atmospheric structure<br />

function (tilt removed)<br />

– Relates the amplitude of surface error<br />

to the separation distance<br />

– Based on a Kolmogorov atmosphere<br />

having r 0<br />

= 3.20m<br />

Surface of Optic<br />

Structure Function (D), nm 2<br />

25000<br />

20000<br />

15000<br />

10000<br />

5000<br />

Requirement<br />

0<br />

0 0.2 0.4 0.6 0.8 1<br />

Separation distance, δ/d<br />

D(δ) = 〈[z(x) – z(x + δ)] 2 〉 < A[10.60(δ/d) 5/3 – 13.75(δ/d) 2 + 3.42(δ/d) 3 ] + 2B 2<br />

x = a given position on the mirror surface<br />

5<br />

z(x) = surface figure error at location x<br />

2<br />

2<br />

3<br />

⎛ 1 ⎞ ⎛ 500nm<br />

⎞ ⎛ 30m<br />

⎞<br />

A = leading coefficient = 65989 nm 2<br />

A = ⎜ ⎟ ⎜ ⎟<br />

B = High frequency surface roughness = 2 nm<br />

2 2<br />

⎜<br />

⎟<br />

⎝ ⎠ ⎝ π ⎠ ⎝ r0<br />

⎠<br />

δ = Separation between point pairs<br />

d = diameter of beam footprint = 3.046 meters<br />

r 0<br />

= Quasi-Fried’s parameter <strong>TMT</strong>.OPT.PRE.09.099.DRF03 = 3.20 meters<br />

59


M3 Structure Function Requirements<br />

The surface figure of the M3 mirror is<br />

specified by an atmospheric structure<br />

function (tilt removed)<br />

– Relates the amplitude of surface error<br />

to the separation distance<br />

– Based on a Kolmogorov atmosphere<br />

having r 0<br />

= 4.0m<br />

Surface of Optic<br />

Structure Function (D), nm 2<br />

35000<br />

30000<br />

25000<br />

20000<br />

15000<br />

10000<br />

5000<br />

Requirement<br />

0<br />

0 0.2 0.4 0.6 0.8 1<br />

Separation distance, δ/d<br />

D(δ) = 〈[z(x) – z(x + δ)] 2 〉 < A[10.60(δ/d) 5/3 – 13.75(δ/d) 2 + 3.42(δ/d) 3 ] + 2B 2<br />

x = a given position on the mirror surface<br />

5<br />

2<br />

z(x) = surface figure error at location x<br />

3<br />

A = leading coefficient = 105508 nm 2<br />

0 2 ⎛ 500nm<br />

⎞ ⎛ 30m<br />

⎞<br />

A = cos(45 ) ⎜ ⎟<br />

B = High frequency surface roughness = 2 nm<br />

2<br />

⎜<br />

⎟<br />

⎝ π ⎠ ⎝ r0<br />

⎠<br />

δ = Separation between point pairs<br />

d = diameter of beam footprint = 1.33 meters<br />

r 0<br />

= Quasi-Fried’s parameter <strong>TMT</strong>.OPT.PRE.09.099.DRF03 = 4.00 meters<br />

60


Back-up Material<br />

Segment Support Assembly<br />

FEA Overview<br />

SSA Design Details<br />

Warping Harness<br />

Integration<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 61


Mechanical Simulation<br />

SSA development relied heavily on FEA<br />

Detailed FE models:<br />

– Included all load paths and<br />

significant masses<br />

Typical FEA Unit load case results<br />

Lateral (+1g X<br />

)<br />

RMS = 11.99 nm, P-V = 219 nm<br />

Purple = -110. nm, Red = +110. nm<br />

Y<br />

Lateral (+1g Y<br />

)<br />

RMS = 11.99 nm, P-V = 219 nm<br />

Purple = -110. nm, Red = +110. nm<br />

X<br />

Axial (-1g Z<br />

)<br />

RMS = 10.4 nm, P-V = 60 nm<br />

Purple = -26. nm, Red = +35. nm<br />

ΔT = +1°C<br />

RMS = 2.28 nm, P-V = 13.11 nm<br />

Purple = -8.55 nm, Red = +4.55 nm<br />

Credit: IMTEC<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 62


Segment Support Performance<br />

Segment passive support print-thru:<br />

Print-thru Error<br />

Axial Support<br />

AO Surface<br />

Figure Error<br />


Segment Assembly<br />

Polished & Coated Segment<br />

Mounted Primary Segment Segment Support Assembly (PSA) (MSA)<br />

Edge Sensors<br />

and cables<br />

Segment Position<br />

Actuators<br />

Credit: IMTEC<br />

Subcell<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 64


Installed on Mirror Cell<br />

Actuator flexure<br />

Actuator<br />

Mirror Cell<br />

Note: Does not represent<br />

assembly sequence<br />

Credit: IMTEC<br />

Adjustable Alignment<br />

Positioner (AAP)<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 65


Flexures Bonded to Segment<br />

Segment<br />

Central Diaphragm<br />

(bonded to segment)<br />

Edge Sensor<br />

12 ea.<br />

Alignment Arrow<br />

Points to center of M1<br />

Note: Does not represent<br />

assembly sequence<br />

Credit: IMTEC<br />

Axial flexure assemblies<br />

27 ea. bonded to segment<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 66


Small Whiffletree Triangles Attached<br />

Note: Does not represent<br />

assembly sequence<br />

Small whiffletree triangle<br />

- 3 inner<br />

- 6 outer<br />

Credit: IMTEC<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 67


Large Whiffletree Triangles Attached<br />

Large whiffletree triangle<br />

Credit: IMTEC<br />

Axial Support: Two level, 27-point whiffletree system<br />

– All-Aluminum design (nearly)<br />

– Triangles and sheet flexures Aluminum<br />

– Rod Flexures Stainless Steel<br />

Triangles nested for compactness<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 68


Sheet Flexures Added<br />

Sheet flexure, 6ea<br />

In-plane connection between Whiffletree<br />

Triangles and Moving Frame<br />

Note: Does not represent<br />

assembly sequence<br />

Credit: IMTEC<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 69


Moving Frame Attached<br />

Sheet flexure, 6ea<br />

In-plane connection between Whiffletree<br />

Triangles and Moving Frame<br />

Note: Does not represent<br />

assembly sequence<br />

Moving frame<br />

Credit: IMTEC<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 70


Warping Harness Added<br />

Warping harness leaf-spring<br />

Warping harness actuator<br />

Note: Does not represent<br />

assembly sequence<br />

Credit: IMTEC<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 71


Tower & Locks Installed<br />

Tower Assembly<br />

<strong>with</strong> Repeatable Interface<br />

Electrical Connector Bulkhead Panel<br />

Note: Does not represent<br />

assembly sequence<br />

Credit: IMTEC<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 72


Fixed Frame Included<br />

Note: Does not represent<br />

assembly sequence<br />

Credit: IMTEC<br />

Fixed Frame<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 73


WH Approach & Architecture<br />

Warping Harness Purpose<br />

– Allow automated periodic correction of low order surface distortions<br />

Fundamental Approach<br />

– Re-shapes the mirror by bending it in a controlled manner using whiffletree<br />

Architecture – 21 actuators per segment<br />

– Stepper motor drives lead screw that pushes on an instrumented leaf spring<br />

Small Whiffletree Triangle<br />

Small Whiffletree Triangle<br />

Large Triangle<br />

Axial Support Flexure<br />

Nut<br />

Screw<br />

WT Joint Flexure<br />

(sheet flexure not shown)<br />

Strain<br />

Gauge<br />

Leaf-spring<br />

Stepper Motor<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 74


Warping Harness Design<br />

WH Actuator<br />

Assy (shown<br />

on test fixture)<br />

Actuator<br />

(typ.)<br />

Leaf Spring<br />

WH Drive Screw<br />

Assy / Nut<br />

Actuator Layout<br />

- 21 Actuators integrated<br />

into axial support system<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 75


Section of Mirror Cell Top Chord<br />

Credit: IMTEC<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 76


Group of Segments<br />

View of Seven Adjacent Segments – Top View<br />

– Note: M1 Array is continuous, not in pods or rafts of seven segments<br />

Credit: IMTEC<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 77


Group of Segments<br />

View of Seven Adjacent Segments – Bottom View<br />

Credit: IMTEC<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 78


Back-up Material<br />

Coating Facility Layout<br />

Gemini Coating Performance<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 79


Coating Facility Layout<br />

The Coating Facility has been designed to efficiently support routine<br />

coating operations<br />

<strong>Telescope</strong> Enclosure<br />

Mirror<br />

Maintenance<br />

Room<br />

Segment Storage<br />

Area for 82 spares<br />

Stripping &<br />

Cleaning<br />

M1 Segment<br />

Clean room (10k)<br />

Process front end<br />

M2/M3<br />

M2<br />

M3<br />

M1<br />

ILSS<br />

ILSS<br />

Equipment &<br />

Storage<br />

Coating Plant<br />

Credit: M3 Engineering<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 80


Baseline Coating Process<br />

Performance of the Gemini Coating relative to <strong>TMT</strong> Specifications<br />

100<br />

95<br />

Reflectance per Surface, %<br />

90<br />

85<br />

80<br />

75<br />

<strong>TMT</strong> Requirement<br />

Gemini Protected Silver<br />

70<br />

300 500 700 900 1100 1300<br />

Wavelength [nm]<br />

<strong>TMT</strong>.OPT.PRE.09.099.DRF03 81

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!