11.01.2015 Views

PSA of Accidents in the Spent Fuel Pool - EDF Hinkley Point

PSA of Accidents in the Spent Fuel Pool - EDF Hinkley Point

PSA of Accidents in the Spent Fuel Pool - EDF Hinkley Point

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

NOT PROTECTIVELY MARKED<br />

NNB GENERATION COMPANY LTD<br />

HINKLEY POINT C PRE CONSTRUCTION SAFETY REPORT<br />

SUB CHAPTER 15.3<br />

<strong>PSA</strong> OF ACCIDENTS IN THE SPENT FUEL POOL<br />

PART OF CHAPTER 15, PROBABILISTIC<br />

SAFETY ASSESSMENT<br />

Version 2.0<br />

Date <strong>of</strong> Issue 31 st August 2012<br />

Document No.<br />

Next Review Date<br />

Produced by<br />

(Company/Organisation)<br />

HPC-NNBOSL-U0-000-RES-000034<br />

NNB GenCo<br />

© 2012 Published <strong>in</strong> <strong>the</strong> United K<strong>in</strong>gdom by NNB Generation Company Limited (NNB GenCo), 90 Whitfield Street - London,<br />

W1T 4EZ. All rights reserved. No part <strong>of</strong> this publication may be reproduced or transmitted <strong>in</strong> any form or by any means, <strong>in</strong>clud<strong>in</strong>g<br />

photocopy<strong>in</strong>g and record<strong>in</strong>g, without <strong>the</strong> written permission <strong>of</strong> <strong>the</strong> copyright holder NNB GenCo, application for which should be<br />

addressed to <strong>the</strong> publisher. Such written permission must also be obta<strong>in</strong>ed before any part <strong>of</strong> this publication is stored <strong>in</strong> a retrieval<br />

system <strong>of</strong> any nature. Requests for copies <strong>of</strong> this document should be referred to Head <strong>of</strong> Management Arrangements, NNB<br />

Generation Company Limited (NNB GenCo), 90 Whitfield Street - London, W1T 4EZ. The electronic copy is <strong>the</strong> current issue and<br />

pr<strong>in</strong>t<strong>in</strong>g renders this document uncontrolled. Controlled copy-holders will cont<strong>in</strong>ue to receive updates as usual.<br />

UNCONTROLLED WHEN PRINTED<br />

NOT PROTECTIVELY MARKED<br />

Page 1 <strong>of</strong> 37


HPC-NNBOSL-U0-000-RES-000034 Version 2.0<br />

<strong>PSA</strong> <strong>of</strong> <strong>Accidents</strong> <strong>in</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong><br />

NOT PROTECTIVELY MARKED<br />

{ PI removed }<br />

Text with<strong>in</strong> this document that is enclosed with<strong>in</strong> curly brackets “{…}” is AREVA or <strong>EDF</strong><br />

Commercially Confidential Information (CCI) or Personal Information (PI) and has been removed.<br />

UNCONTROLLED WHEN PRINTED<br />

NOT PROTECTIVELY MARKED<br />

Page 2 <strong>of</strong> 37


HPC-NNBOSL-U0-000-RES-000034 Version 2.0<br />

<strong>PSA</strong> <strong>of</strong> <strong>Accidents</strong> <strong>in</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong><br />

NOT PROTECTIVELY MARKED<br />

{ PI removed }<br />

UNCONTROLLED WHEN PRINTED<br />

NOT PROTECTIVELY MARKED<br />

Page 3 <strong>of</strong> 37


HPC-NNBOSL-U0-000-RES-000034 Version 2.0<br />

<strong>PSA</strong> <strong>of</strong> <strong>Accidents</strong> <strong>in</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong><br />

NOT PROTECTIVELY MARKED<br />

TABLE OF CONTENTS<br />

1 INTRODUCTION .................................................................................................................. 6<br />

2 DESCRIPTION OF INITIATING EVENTS ........................................................................... 6<br />

2.1 Description <strong>of</strong> <strong>Fuel</strong> <strong>Pool</strong> Cool<strong>in</strong>g System ........................................................................ 6<br />

2.2 Repair and Recovery Assumptions .................................................................................. 7<br />

2.2.1 Recovery <strong>of</strong> <strong>the</strong> Cool<strong>in</strong>g Cha<strong>in</strong> (RRI [CCWS]-SEC [ESWS]) ......................................... 7<br />

2.2.2 Recovery <strong>of</strong> External Power Supply Sources ................................................................. 7<br />

2.3 Initiat<strong>in</strong>g Event Frequency Assessment ........................................................................... 7<br />

2.4 External Event: Loss <strong>of</strong> Ultimate Heat S<strong>in</strong>k ..................................................................... 8<br />

3 INITIAL DATA AND <strong>PSA</strong> ASSUMPTIONS ......................................................................... 9<br />

3.1 Operational Modes ............................................................................................................. 9<br />

3.1.1 Non-Dra<strong>in</strong><strong>in</strong>g Initiat<strong>in</strong>g Events ......................................................................................... 9<br />

3.1.2 Dra<strong>in</strong><strong>in</strong>g Initiat<strong>in</strong>g Events ............................................................................................... 10<br />

3.2 Reliability Data .................................................................................................................. 10<br />

3.3 Consequences .................................................................................................................. 11<br />

3.4 Preventative Ma<strong>in</strong>tenance ................................................................................................ 11<br />

4 <strong>PSA</strong> FOR NON-DRAINING EVENTS ................................................................................ 11<br />

4.1 Introduction ....................................................................................................................... 11<br />

4.2 Specific Assumptions for <strong>the</strong> Non-dra<strong>in</strong><strong>in</strong>g Initiat<strong>in</strong>g Events ...................................... 12<br />

4.3 Evaluation <strong>of</strong> <strong>the</strong> Frequency <strong>of</strong> Loss <strong>of</strong> <strong>the</strong> PTR [FPCS].............................................. 12<br />

4.3.1 Events Studied ................................................................................................................ 12<br />

4.3.2 Failures <strong>of</strong> <strong>the</strong> Third PTR [FPCS] Tra<strong>in</strong> ......................................................................... 13<br />

4.4 Evaluation <strong>of</strong> Boil<strong>in</strong>g and <strong>Fuel</strong> Damage Risks ............................................................... 13<br />

4.4.1 Analysis Assumptions .................................................................................................... 13<br />

4.4.2 Analysis <strong>of</strong> <strong>the</strong> Accident ................................................................................................. 16<br />

4.4.3 Quantification .................................................................................................................. 16<br />

4.4.4 Results ............................................................................................................................. 18<br />

5 <strong>PSA</strong> FOR DRAINING EVENTS ......................................................................................... 25<br />

5.1 Introduction ....................................................................................................................... 25<br />

5.2 Identification <strong>of</strong> Rapid Dra<strong>in</strong><strong>in</strong>g Events .......................................................................... 25<br />

5.2.1 Dra<strong>in</strong><strong>in</strong>g via a Break <strong>in</strong> <strong>the</strong> Pipes Connected to <strong>the</strong> Reactor Build<strong>in</strong>g <strong>Pool</strong>s ............ 25<br />

5.2.2 Dra<strong>in</strong><strong>in</strong>g via a Break <strong>in</strong> <strong>the</strong> Pipes Connected to <strong>the</strong> <strong>Fuel</strong> Build<strong>in</strong>g <strong>Pool</strong>s .................. 26<br />

5.2.3 Dra<strong>in</strong><strong>in</strong>g due to Alignment Error on <strong>the</strong> Pipes Connected to <strong>the</strong> Reactor Build<strong>in</strong>g<br />

<strong>Pool</strong>s ................................................................................................................................. 27<br />

5.2.4 Dra<strong>in</strong><strong>in</strong>g due to Alignment Error on <strong>the</strong> Pipes Connected to <strong>the</strong> <strong>Fuel</strong> Build<strong>in</strong>g <strong>Pool</strong>s<br />

.......................................................................................................................................... 27<br />

5.3 Prelim<strong>in</strong>ary Evaluation <strong>of</strong> <strong>the</strong> Risk <strong>of</strong> Damage .............................................................. 27<br />

5.3.1 Study Assumptions ......................................................................................................... 27<br />

5.3.2 Analysis <strong>of</strong> <strong>the</strong> Accident ................................................................................................. 29<br />

UNCONTROLLED WHEN PRINTED<br />

NOT PROTECTIVELY MARKED<br />

Page 4 <strong>of</strong> 37


HPC-NNBOSL-U0-000-RES-000034 Version 2.0<br />

<strong>PSA</strong> <strong>of</strong> <strong>Accidents</strong> <strong>in</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong><br />

NOT PROTECTIVELY MARKED<br />

5.3.3 Risk <strong>of</strong> <strong>Fuel</strong> Damage follow<strong>in</strong>g a breach <strong>of</strong> Pipework Connected to <strong>the</strong> Reactor<br />

Build<strong>in</strong>g <strong>Pool</strong>s .................................................................................................................. 29<br />

5.3.4 Risk <strong>of</strong> <strong>Fuel</strong> Damage follow<strong>in</strong>g a break <strong>of</strong> Pipework Connected to <strong>the</strong> <strong>Fuel</strong> Build<strong>in</strong>g<br />

<strong>Pool</strong>s ................................................................................................................................. 30<br />

5.3.5 Risk <strong>of</strong> <strong>Fuel</strong> damage follow<strong>in</strong>g an Alignment Error on Pipework Connected to <strong>the</strong><br />

Reactor Build<strong>in</strong>g <strong>Pool</strong>s ................................................................................................... 30<br />

5.3.6 Risk <strong>of</strong> <strong>Fuel</strong> damage follow<strong>in</strong>g an Alignment Error on <strong>the</strong> Pipework Connected to<br />

<strong>the</strong> <strong>Fuel</strong> Build<strong>in</strong>g .............................................................................................................. 31<br />

5.4 Summary <strong>of</strong> Results ........................................................................................................ 31<br />

6 CONCLUSION ................................................................................................................... 31<br />

7 REFERENCES AND ABBREVIATIONS ........................................................................... 32<br />

7.1 References ........................................................................................................................ 32<br />

7.2 Abbreviations ................................................................................................................... 33<br />

8 TABLES ............................................................................................................................ 34<br />

9 FIGURES ........................................................................................................................... 37<br />

LIST OF TABLES<br />

Sub-chapter 15.3 - Table 1: Frequency <strong>of</strong> <strong>the</strong> Non-Dra<strong>in</strong><strong>in</strong>g Initiat<strong>in</strong>g Events considered <strong>in</strong> <strong>the</strong><br />

Probabilistic Assessment .............................................................................................................. 34<br />

Sub-chapter 15.3 - Table 2: Frequency <strong>of</strong> <strong>the</strong> Dra<strong>in</strong><strong>in</strong>g Initiat<strong>in</strong>g Events considered <strong>in</strong> <strong>the</strong><br />

Probabilistic Assessment [Ref. 4] ................................................................................................. 35<br />

LIST OF FIGURES<br />

Sub-chapter 15.3 - Figure 1: Simplified Diagram <strong>of</strong> PTR [RPCS]................................................. 37<br />

UNCONTROLLED WHEN PRINTED<br />

NOT PROTECTIVELY MARKED<br />

Page 5 <strong>of</strong> 37


HPC-NNBOSL-U0-000-RES-000034 Version 2.0<br />

<strong>PSA</strong> <strong>of</strong> <strong>Accidents</strong> <strong>in</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong><br />

NOT PROTECTIVELY MARKED<br />

1 INTRODUCTION<br />

Sub-chapter 15.3 addresses <strong>the</strong> likelihood <strong>of</strong> damage to <strong>the</strong> fuel assemblies located <strong>in</strong><br />

<strong>the</strong> spent fuel pool, or <strong>of</strong> boil<strong>in</strong>g to <strong>the</strong> fuel build<strong>in</strong>g atmosphere. An assessment <strong>of</strong> <strong>the</strong><br />

frequency <strong>of</strong> <strong>in</strong>itiat<strong>in</strong>g events affect<strong>in</strong>g <strong>the</strong> spent fuel pool cool<strong>in</strong>g is presented, toge<strong>the</strong>r<br />

with plant data assumptions and reliability data. The results <strong>of</strong> <strong>the</strong> analysis, for events<br />

<strong>in</strong>volv<strong>in</strong>g both non-dra<strong>in</strong><strong>in</strong>g and dra<strong>in</strong><strong>in</strong>g <strong>of</strong> <strong>the</strong> spent fuel pool, are presented <strong>in</strong> terms <strong>of</strong><br />

derived event sequence frequencies and <strong>the</strong> risk <strong>of</strong> fuel damage expressed as per<br />

reactor per year. The analysis is reported <strong>in</strong> [Ref. 8].<br />

Key assumptions are <strong>in</strong>dicated <strong>in</strong> <strong>the</strong> text by (AS-xxxx). These assumptions are also<br />

recorded and tracked <strong>in</strong> <strong>the</strong> live Assumptions Log [Ref. 9].<br />

2 DESCRIPTION OF INITIATING EVENTS<br />

2.1 Description <strong>of</strong> <strong>Fuel</strong> <strong>Pool</strong> Cool<strong>in</strong>g System<br />

The description is based on <strong>the</strong> system design documents [Refs. 1, 2]<br />

The <strong>Fuel</strong> <strong>Pool</strong> Cool<strong>in</strong>g System (PTR [FPCS]) comprises:<br />

<br />

<br />

Two identical ma<strong>in</strong> tra<strong>in</strong>s:<br />

o A normal or ma<strong>in</strong> PTR [FPCS] tra<strong>in</strong> comprises:<br />

• Two parallel normal PTR [FPCS] l<strong>in</strong>es (or sub tra<strong>in</strong>).<br />

• A tube heat exchanger and a motorised valve.<br />

• A manual valve (suction side) and a check valve (discharge side).<br />

A normal l<strong>in</strong>e comprises two manual valves, a pump and a series checkvalve.<br />

o Both <strong>of</strong> <strong>the</strong> heat exchangers can be cooled by two Components Cool<strong>in</strong>g Water<br />

(RRI [CCWS]) tra<strong>in</strong>s, and each active component has an emergency power<br />

supply.<br />

o The PTR [FPCS] power supply is provided by four safety tra<strong>in</strong>s which are<br />

backed-up by emergency diesel generators.<br />

A third tra<strong>in</strong>, which is equipped with a pump (100%) and a tube heat exchanger.<br />

o The heat exchanger is cooled by an <strong>in</strong>termediate cool<strong>in</strong>g channel, shared with<br />

a Conta<strong>in</strong>ment Heat Removal System (EVU [CHRS]) tra<strong>in</strong>, connected to <strong>the</strong><br />

dedicated heat s<strong>in</strong>k (SRU [UCWS]).<br />

o The power supply for <strong>the</strong> third tra<strong>in</strong> is <strong>in</strong>dependent from <strong>the</strong> power supply to<br />

<strong>the</strong> ma<strong>in</strong> tra<strong>in</strong>s <strong>of</strong> <strong>the</strong> PTR [FPCS].<br />

o The power supply is provided by two electrical divisions. This third tra<strong>in</strong> is<br />

backed-up by a Station Blackout generator <strong>in</strong> states D, E and F.<br />

A simplified flow diagram <strong>of</strong> <strong>the</strong> PTR [FPCS] is presented <strong>in</strong> Sub-chapter 15.3 - Figure 1.<br />

UNCONTROLLED WHEN PRINTED<br />

NOT PROTECTIVELY MARKED<br />

Page 6 <strong>of</strong> 37


HPC-NNBOSL-U0-000-RES-000034 Version 2.0<br />

<strong>PSA</strong> <strong>of</strong> <strong>Accidents</strong> <strong>in</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong><br />

NOT PROTECTIVELY MARKED<br />

2.2 Repair and Recovery Assumptions<br />

The follow<strong>in</strong>g repair possibilities are assumed <strong>in</strong> <strong>the</strong> analysis:<br />

2.2.1 Recovery <strong>of</strong> <strong>the</strong> Cool<strong>in</strong>g Cha<strong>in</strong> (RRI [CCWS]-SEC [ESWS])<br />

In <strong>the</strong> event <strong>of</strong> a Loss Of Cool<strong>in</strong>g Cha<strong>in</strong> (LOCC), <strong>the</strong> repair <strong>of</strong> <strong>the</strong> RRI [CCWS] and SEC<br />

[ESWS] pumps concerned is assumed possible with a Mean Time To Repair (MTTR) <strong>of</strong><br />

30 hours. (Assumption AS-0001 [Ref. 9])<br />

2.2.2 Recovery <strong>of</strong> External Power Supply Sources<br />

Total Loss Of Offsite Power (LOOP) situations, discussed <strong>in</strong> Sub-chapter 2.1 [Ref. 13]<br />

and section 4 <strong>of</strong> Sub-chapter 15.1 [Ref. 12], are assessed on <strong>the</strong> basis <strong>of</strong> <strong>the</strong> maximum<br />

time required for recover<strong>in</strong>g <strong>the</strong> supply sources and not <strong>the</strong> average repair time. It is<br />

assumed that <strong>the</strong> short external power losses (2 hours) and <strong>the</strong> long external power<br />

losses (24 hours) are restored after 2 hours and 24 hours. Only <strong>the</strong> long LOOP with a<br />

maximum recovery time <strong>of</strong> 24 hours is considered.<br />

2.3 Initiat<strong>in</strong>g Event Frequency Assessment<br />

The consequence <strong>of</strong> concern <strong>in</strong> this sub-chapter is clad rupture affect<strong>in</strong>g <strong>the</strong> fuel<br />

assemblies stored <strong>in</strong> <strong>the</strong> spent fuel pool, and lead<strong>in</strong>g to radioactive releases. This can<br />

be caused by <strong>the</strong> follow<strong>in</strong>g conditions:<br />

<br />

<br />

<br />

fuel uncover<strong>in</strong>g after dra<strong>in</strong><strong>in</strong>g, or<br />

an <strong>in</strong>crease <strong>in</strong> temperature <strong>of</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong> (SFP) giv<strong>in</strong>g boil<strong>in</strong>g conditions, or<br />

a reduction <strong>of</strong> <strong>the</strong> boron concentration lead<strong>in</strong>g to a criticality accident.<br />

This last potential event is not addressed <strong>in</strong> <strong>the</strong> present study (see section 4.1 <strong>of</strong> this<br />

Sub-chapter, AS-0002).<br />

For dra<strong>in</strong><strong>in</strong>g events, <strong>the</strong> set <strong>of</strong> <strong>in</strong>itiat<strong>in</strong>g events is derived from an analysis [Ref. 3] <strong>of</strong> all<br />

situations <strong>in</strong> which <strong>the</strong> spent fuel pool is connected with o<strong>the</strong>r pool compartments. The<br />

quantification is based on <strong>the</strong> French experience on exist<strong>in</strong>g operat<strong>in</strong>g NPPs for events<br />

<strong>in</strong>itiated by human error or on expert judgement [Ref. 4] for pipework ruptures. They take<br />

<strong>in</strong>to account <strong>the</strong> studies on <strong>the</strong> timescale from <strong>the</strong> start <strong>of</strong> pool dra<strong>in</strong><strong>in</strong>g to fuel<br />

uncover<strong>in</strong>g.<br />

For non-dra<strong>in</strong><strong>in</strong>g events, <strong>the</strong> set <strong>of</strong> <strong>in</strong>itiat<strong>in</strong>g events is derived from an analysis <strong>of</strong> <strong>the</strong><br />

situations lead<strong>in</strong>g to a temperature <strong>in</strong>crease, i.e. to loss <strong>of</strong> <strong>the</strong> cool<strong>in</strong>g system [Ref. 14].<br />

The spent fuel pool is cooled by <strong>the</strong> PTR [FPCS], and operational experience <strong>of</strong> French<br />

and German NPPs and system analysis <strong>of</strong> <strong>the</strong> EPR design enabled loss <strong>of</strong> PTR [FPCS]<br />

to be identified as <strong>the</strong> potential <strong>in</strong>itiat<strong>in</strong>g event. This may be due ei<strong>the</strong>r to loss <strong>of</strong> <strong>the</strong><br />

pump or to failure <strong>of</strong> <strong>the</strong> header, or to <strong>the</strong> loss <strong>of</strong> <strong>the</strong> support functions, <strong>the</strong> electrical<br />

supply or <strong>the</strong> cool<strong>in</strong>g cha<strong>in</strong>.<br />

Hence, <strong>the</strong> follow<strong>in</strong>g <strong>in</strong>itiat<strong>in</strong>g events are considered:<br />

Incidents or accidents affect<strong>in</strong>g <strong>the</strong> support systems <strong>of</strong> PTR [FPCS] ma<strong>in</strong> tra<strong>in</strong>s<br />

(<strong>in</strong>itiat<strong>in</strong>g events), compris<strong>in</strong>g:<br />

o Loss <strong>of</strong> Electrical Supply (LESUPPLY).<br />

o Loss Of Offsite Power (LOOP) for 24 hours.<br />

UNCONTROLLED WHEN PRINTED<br />

NOT PROTECTIVELY MARKED<br />

Page 7 <strong>of</strong> 37


HPC-NNBOSL-U0-000-RES-000034 Version 2.0<br />

<strong>PSA</strong> <strong>of</strong> <strong>Accidents</strong> <strong>in</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong><br />

NOT PROTECTIVELY MARKED<br />

<br />

o Loss Of Cool<strong>in</strong>g Cha<strong>in</strong> (LOCC).<br />

Loss <strong>of</strong> PTR [FPCS] ma<strong>in</strong> tra<strong>in</strong>s caused by <strong>the</strong> loss <strong>of</strong> PTR [FPCS] pump or header<br />

(LFPCP and LHEADER).<br />

Loss <strong>of</strong> <strong>the</strong> two PTR [FPCS] ma<strong>in</strong> tra<strong>in</strong>s (L2FCP) caus<strong>in</strong>g <strong>the</strong> total loss <strong>of</strong> fuel pool<br />

cool<strong>in</strong>g, i.e. simultaneous unavailability <strong>of</strong> <strong>the</strong> two PTR [FPCS] ma<strong>in</strong> tra<strong>in</strong>s with a<br />

potential for los<strong>in</strong>g <strong>the</strong> third tra<strong>in</strong>.<br />

<br />

<strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong> empty<strong>in</strong>g (fast level drop).<br />

Follow<strong>in</strong>g such events, <strong>the</strong> follow<strong>in</strong>g consequences <strong>in</strong> <strong>the</strong> fuel build<strong>in</strong>g can arise:<br />

Saturation conditions <strong>in</strong> <strong>the</strong> pool <strong>in</strong> <strong>the</strong> event <strong>of</strong> <strong>the</strong> total loss <strong>of</strong> <strong>the</strong> PTR [FPCS]<br />

(boil<strong>in</strong>g),<br />

<br />

Degradation <strong>of</strong> <strong>the</strong> fuel assemblies <strong>in</strong> <strong>the</strong> pool follow<strong>in</strong>g boil<strong>in</strong>g <strong>of</strong> water <strong>in</strong> <strong>the</strong> <strong>Spent</strong><br />

<strong>Fuel</strong> <strong>Pool</strong> (fuel damage).<br />

Sub-chapter 15.3 - Table 1 gives <strong>the</strong> frequency per year <strong>of</strong> <strong>the</strong> <strong>in</strong>itiat<strong>in</strong>g events<br />

studied for <strong>the</strong> Non Dra<strong>in</strong><strong>in</strong>g Events. All reactor states are covered. The reactor states<br />

are described <strong>in</strong> sub-section 3.1.1 <strong>of</strong> this sub-chapter. Compared to <strong>the</strong> UK EPR GDA TM<br />

step 4 <strong>PSA</strong> model, <strong>the</strong> frequencies <strong>of</strong> long LOOP <strong>in</strong>itiat<strong>in</strong>g events <strong>in</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong><br />

<strong>PSA</strong> have changed and come from [Ref. 8]. Indeed, long LOOP frequencies for <strong>the</strong><br />

H<strong>in</strong>kley Po<strong>in</strong>t site are derived from British operat<strong>in</strong>g experience [Ref. 11]. Note that <strong>the</strong><br />

frequency <strong>of</strong> long LOOP <strong>in</strong>itiat<strong>in</strong>g event <strong>in</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong> <strong>PSA</strong> <strong>in</strong> <strong>the</strong> at-power state<br />

<strong>in</strong>cludes <strong>the</strong> contribution <strong>of</strong> long LOOP consequential to Reactor Trip.<br />

Sub-chapter 15.3 - Table 2 gives <strong>the</strong> frequency per year <strong>of</strong> <strong>the</strong> <strong>in</strong>itiat<strong>in</strong>g events<br />

studied for <strong>the</strong> Dra<strong>in</strong><strong>in</strong>g Events [Ref. 4]. All reactor states are covered. The reactor<br />

states are described <strong>in</strong> sub-section 3.1.2 <strong>of</strong> this sub-chapter.<br />

At power or dur<strong>in</strong>g shutdown with <strong>the</strong> core <strong>in</strong> <strong>the</strong> vessel, <strong>the</strong> frequency <strong>of</strong> Initiat<strong>in</strong>g<br />

Events affect<strong>in</strong>g <strong>the</strong> <strong>Fuel</strong> <strong>Pool</strong> Cool<strong>in</strong>g System is { CCI removed } a :<br />

The dom<strong>in</strong>ant <strong>in</strong>itiat<strong>in</strong>g event is <strong>the</strong> loss <strong>of</strong> a PTR [FPCS] pump (48%).<br />

<br />

97% <strong>of</strong> <strong>the</strong> risk <strong>of</strong> los<strong>in</strong>g <strong>the</strong> PTR [FPCS] occurs dur<strong>in</strong>g at-power states.<br />

Dur<strong>in</strong>g refuell<strong>in</strong>g, <strong>the</strong> frequency <strong>of</strong> loss <strong>of</strong> <strong>the</strong> PTR [FPCS] is evaluated as<br />

{ CCI removed } a :<br />

The dom<strong>in</strong>ant <strong>in</strong>itiat<strong>in</strong>g event is <strong>the</strong> loss <strong>of</strong> both PTR [FPCS] operat<strong>in</strong>g tra<strong>in</strong>s<br />

follow<strong>in</strong>g <strong>the</strong> loss <strong>of</strong> <strong>the</strong> RRI [CCWS]/SEC [ESWS] cool<strong>in</strong>g system (60%).<br />

<br />

The second ma<strong>in</strong> cause <strong>of</strong> <strong>the</strong> loss <strong>of</strong> <strong>the</strong> ma<strong>in</strong> PTR [FPCS] tra<strong>in</strong>s is <strong>the</strong> failure <strong>of</strong> <strong>the</strong><br />

pumps <strong>in</strong> operation (32%).<br />

2.4 External Event: Loss <strong>of</strong> Ultimate Heat S<strong>in</strong>k<br />

In <strong>the</strong> GDA step 4 UK EPR <strong>PSA</strong>, <strong>the</strong> Loss Of Ultimate Heat S<strong>in</strong>k (LUHS) <strong>in</strong>itiat<strong>in</strong>g<br />

events were not modelled for <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong>, based on an argument that <strong>the</strong><br />

correspond<strong>in</strong>g fuel damage frequency would be very low.<br />

In <strong>the</strong> HPC <strong>PSA</strong> model, new event trees have been added to model <strong>the</strong> transient<br />

follow<strong>in</strong>g Loss Of Ultimate Heat S<strong>in</strong>k event. As for an accident <strong>in</strong> <strong>the</strong> Reactor Build<strong>in</strong>g<br />

(cf. PCSR Sub-chapter 15.2, [Ref. 15]), <strong>the</strong> <strong>in</strong>itiat<strong>in</strong>g event Loss Of Ultimate Heat S<strong>in</strong>k is<br />

modelled as a fault tree. Massive <strong>in</strong>gress <strong>of</strong> mar<strong>in</strong>e organisms is <strong>the</strong> only hazard that<br />

has been modelled for LUHS <strong>in</strong>itiat<strong>in</strong>g event. It is assumed that o<strong>the</strong>r hazards that could<br />

UNCONTROLLED WHEN PRINTED<br />

NOT PROTECTIVELY MARKED<br />

Page 8 <strong>of</strong> 37


HPC-NNBOSL-U0-000-RES-000034 Version 2.0<br />

<strong>PSA</strong> <strong>of</strong> <strong>Accidents</strong> <strong>in</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong><br />

NOT PROTECTIVELY MARKED<br />

lead to Loss Of Ultimate Heat S<strong>in</strong>k <strong>in</strong>itiat<strong>in</strong>g event <strong>in</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong> are less<br />

significant (AS-0003).<br />

The <strong>in</strong>itiat<strong>in</strong>g event Loss Of Ultimate Heat S<strong>in</strong>k <strong>in</strong> <strong>the</strong> spent fuel pool is def<strong>in</strong>ed as a<br />

failure <strong>of</strong> <strong>the</strong> CFI [CWFS] system lead<strong>in</strong>g to its <strong>in</strong>ability to supply any SEC [ESWS] or<br />

SRU [UCWS] tra<strong>in</strong>, follow<strong>in</strong>g massive <strong>in</strong>gress <strong>of</strong> mar<strong>in</strong>e organisms. Diversification <strong>of</strong><br />

SRU [UCWS] water supply through <strong>the</strong> discharge pond is considered <strong>in</strong> <strong>the</strong> Loss Of<br />

Ultimate Heat S<strong>in</strong>k <strong>in</strong>itiat<strong>in</strong>g event for spent fuel pool analysis (AS-0004). This<br />

diversification is carried out manually. The reliability <strong>of</strong> <strong>the</strong> operator action to switch SRU<br />

[UCWS] water supply to <strong>the</strong> discharge pond is 5E-02/d, as o<strong>the</strong>r post-accident operator<br />

actions performed locally <strong>in</strong> GDA step 4 UK EPR <strong>PSA</strong> model [Ref. 10]. More details<br />

about <strong>the</strong> fault tree modell<strong>in</strong>g are given <strong>in</strong> [Ref. 8].<br />

Thus, <strong>the</strong> modell<strong>in</strong>g <strong>of</strong> <strong>the</strong> Loss Of Ultimate Heat S<strong>in</strong>k transient <strong>in</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong> is<br />

similar to <strong>the</strong> modell<strong>in</strong>g <strong>of</strong> Loss Of Cool<strong>in</strong>g Cha<strong>in</strong> transient, especially <strong>the</strong> grace periods<br />

for operator actions are <strong>the</strong> same. However, compared to <strong>the</strong> LOCC transient, <strong>the</strong> third<br />

PTR [FPCS] tra<strong>in</strong> is already lost due to <strong>the</strong> LUHS <strong>in</strong>itiat<strong>in</strong>g event.<br />

The previous fault tree is multiplied by a basic event correspond<strong>in</strong>g to <strong>the</strong> time spent <strong>in</strong><br />

<strong>the</strong> analysed reactor state over a year to get <strong>the</strong> <strong>in</strong>itiat<strong>in</strong>g event frequency for a given<br />

reactor state. The reactor states considered are <strong>the</strong> same as for o<strong>the</strong>r transients <strong>in</strong> <strong>the</strong><br />

spent fuel pool: AB, C, D, half <strong>of</strong> state E, and refuell<strong>in</strong>g (o<strong>the</strong>r half <strong>of</strong> state E + state F).<br />

The <strong>in</strong>itiat<strong>in</strong>g event frequencies issued from <strong>the</strong> fault trees are <strong>the</strong> follow<strong>in</strong>g ones:<br />

At power, <strong>the</strong> dom<strong>in</strong>ant cutset is <strong>the</strong> massive <strong>in</strong>gress <strong>of</strong> mar<strong>in</strong>e organisms followed by<br />

<strong>the</strong> failure <strong>of</strong> <strong>the</strong> CFI [CWFS] sensors that detect heat s<strong>in</strong>k clogg<strong>in</strong>g, and <strong>the</strong>n failure <strong>of</strong><br />

<strong>the</strong> operator action to switch SRU [UCWS] water supply to <strong>the</strong> discharge pond.<br />

3 INITIAL DATA AND <strong>PSA</strong> ASSUMPTIONS<br />

This analysis is based on <strong>the</strong> operat<strong>in</strong>g pr<strong>of</strong>ile <strong>of</strong> <strong>the</strong> Level 1 <strong>PSA</strong> described <strong>in</strong><br />

Sub-chapter 15.1.This analysis is based on a reactor power <strong>of</strong> 4900MW. (AS-0005)<br />

This is a conservative assumption <strong>in</strong> relation to an equivalent analysis with <strong>the</strong> EPR<br />

reactor power <strong>of</strong> 4500MW 1 .<br />

This <strong>PSA</strong> uses <strong>the</strong> methodology presented <strong>in</strong> Sub-chapter 15.1.<br />

Note: <strong>Fuel</strong> Handl<strong>in</strong>g accidents are presented <strong>in</strong> Sub-chapter 15.5.<br />

3.1 Operational Modes<br />

3.1.1 Non-Dra<strong>in</strong><strong>in</strong>g Initiat<strong>in</strong>g Events<br />

It is necessary to study each plant state because <strong>of</strong> <strong>the</strong> different configurations or<br />

characteristics <strong>of</strong> <strong>the</strong> support systems <strong>of</strong> electrical supply or cool<strong>in</strong>g cha<strong>in</strong>.<br />

1 The reactor power value is directly l<strong>in</strong>ked to <strong>the</strong> decay heat to be considered for <strong>the</strong> event evaluation.<br />

UNCONTROLLED WHEN PRINTED<br />

NOT PROTECTIVELY MARKED<br />

Page 9 <strong>of</strong> 37


HPC-NNBOSL-U0-000-RES-000034 Version 2.0<br />

<strong>PSA</strong> <strong>of</strong> <strong>Accidents</strong> <strong>in</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong><br />

NOT PROTECTIVELY MARKED<br />

The probabilistic assessment is carried out for <strong>the</strong> follow<strong>in</strong>g situations:<br />

Situations aris<strong>in</strong>g dur<strong>in</strong>g power or shutdown states with <strong>the</strong> core <strong>in</strong> <strong>the</strong> reactor<br />

vessel. In <strong>the</strong>se circumstances one PTR [FPCS] tra<strong>in</strong> is required to be <strong>in</strong> operation<br />

with one pump. This phase covers <strong>the</strong> operational modes A, B, C, D and half <strong>of</strong> state<br />

E <strong>of</strong> <strong>the</strong> reactor. The <strong>in</strong>itial conditions <strong>of</strong> state D are applied conservatively to all <strong>of</strong><br />

<strong>the</strong> reactor states while mak<strong>in</strong>g a dist<strong>in</strong>ction between <strong>the</strong> state prior to unload<strong>in</strong>g and<br />

<strong>the</strong> state follow<strong>in</strong>g refuell<strong>in</strong>g. The highest <strong>the</strong>rmal power <strong>in</strong> <strong>the</strong> <strong>Fuel</strong> <strong>Pool</strong> is at <strong>the</strong><br />

Beg<strong>in</strong>n<strong>in</strong>g Of Cycle (BOC) and corresponds to state D follow<strong>in</strong>g refuell<strong>in</strong>g.<br />

Situations aris<strong>in</strong>g dur<strong>in</strong>g shutdown for refuell<strong>in</strong>g. In <strong>the</strong>se circumstances, both PTR<br />

[FPCS] ma<strong>in</strong> tra<strong>in</strong>s are required to be <strong>in</strong> operation with one pump each. This phase<br />

covers half <strong>of</strong> state E and state F <strong>of</strong> <strong>the</strong> reactor. This means that all <strong>the</strong> fuel<br />

assemblies are <strong>in</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong>.<br />

The follow<strong>in</strong>g table def<strong>in</strong>es <strong>the</strong> PTR [FPCS] configuration <strong>in</strong>, and duration <strong>of</strong>, <strong>the</strong><br />

different plant states:<br />

Plant States Code Duration PTR [FPCS] Configuration<br />

Power operation AB 8225 h 1 Tra<strong>in</strong> with 1 pump<br />

RCP [RCS] closed C 137 h 1 Tra<strong>in</strong> with 1 pump<br />

Vessel head lift<strong>in</strong>g D 44 h 1 Tra<strong>in</strong> with 1 pump<br />

<strong>Fuel</strong> handl<strong>in</strong>g E/2 60.5 h 1 Tra<strong>in</strong> with 1 pump<br />

Refuell<strong>in</strong>g REF 293.5 h 2 Tra<strong>in</strong>s with 1 pump each<br />

The follow<strong>in</strong>g terms are also used to describe <strong>the</strong> states considered for <strong>the</strong> reactor:<br />

Beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> Cycle (BOC), End <strong>of</strong> Cycle (EOC) and Refuell<strong>in</strong>g (REF).<br />

3.1.2 Dra<strong>in</strong><strong>in</strong>g Initiat<strong>in</strong>g Events<br />

For pool dra<strong>in</strong><strong>in</strong>g, <strong>the</strong> standard reactor states as def<strong>in</strong>ed <strong>in</strong> Sub-chapter 15.1 are used.<br />

The probabilistic assessment is carried out for <strong>the</strong> follow<strong>in</strong>g situations:<br />

While <strong>the</strong> reactor is at power or shutdown, <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong> is isolated from <strong>the</strong><br />

reactor build<strong>in</strong>g pool (states A, B, C and D).<br />

In shutdown dur<strong>in</strong>g <strong>the</strong> unload<strong>in</strong>g or <strong>the</strong> refuell<strong>in</strong>g <strong>of</strong> <strong>the</strong> reactor, when <strong>the</strong> <strong>Spent</strong><br />

<strong>Fuel</strong> <strong>Pool</strong> and <strong>the</strong> reactor build<strong>in</strong>g pool are connected (state E).<br />

In shutdown with <strong>the</strong> core unloaded, when <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong> and <strong>the</strong> reactor<br />

build<strong>in</strong>g pool are isolated from each o<strong>the</strong>r (state F).<br />

3.2 Reliability Data<br />

For this specific analysis, <strong>the</strong> reliability data [Ref. 6] are taken from <strong>EDF</strong> operat<strong>in</strong>g<br />

experience, German operat<strong>in</strong>g experience and <strong>the</strong> EG&G generic database as<br />

described <strong>in</strong> Sub-chapter 15.1.<br />

For <strong>the</strong> PTR [FPCS] pumps, <strong>the</strong> reliability data ga<strong>the</strong>red is from <strong>EDF</strong> [Ref. 4]. The same<br />

reliability data is used for <strong>the</strong> components <strong>of</strong> <strong>the</strong> PTR [FPCS] ma<strong>in</strong> tra<strong>in</strong>s and <strong>the</strong><br />

emergency tra<strong>in</strong> (third tra<strong>in</strong>).<br />

UNCONTROLLED WHEN PRINTED<br />

NOT PROTECTIVELY MARKED<br />

Page 10 <strong>of</strong> 37


HPC-NNBOSL-U0-000-RES-000034 Version 2.0<br />

<strong>PSA</strong> <strong>of</strong> <strong>Accidents</strong> <strong>in</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong><br />

NOT PROTECTIVELY MARKED<br />

Common Cause Failure (CCF) between <strong>the</strong> ma<strong>in</strong> tra<strong>in</strong>s and <strong>the</strong> third tra<strong>in</strong> is discounted<br />

because <strong>the</strong> ma<strong>in</strong> components, heat exchanger, pumps etc. are diverse apart from <strong>the</strong><br />

electrical supply components.<br />

The equipment repair times are taken from <strong>EDF</strong> operat<strong>in</strong>g experience feedback [Ref. 4]<br />

from <strong>the</strong> units <strong>in</strong> operation and <strong>the</strong> repair times are estimated us<strong>in</strong>g <strong>the</strong> Human<br />

Cognitive Reliability (HCR) Model [Ref. 7].<br />

3.3 Consequences<br />

Two consequences can occur due to loss <strong>of</strong> <strong>the</strong> active fuel pool cool<strong>in</strong>g:<br />

Boil<strong>in</strong>g to <strong>the</strong> atmosphere <strong>of</strong> <strong>the</strong> fuel build<strong>in</strong>g is assumed to occur once a<br />

temperature <strong>of</strong> 97°C is reached <strong>in</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong> (AS-0006) as discussed <strong>in</strong><br />

sub-section 4.4.1 <strong>of</strong> this sub-chapter. An adequate level <strong>in</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong> is<br />

ma<strong>in</strong>ta<strong>in</strong>ed by a makeup system thus prevent<strong>in</strong>g fuel uncover<strong>in</strong>g and damage.<br />

The more severe consequence, fuel damage, is assumed if <strong>the</strong> fuel assemblies <strong>in</strong><br />

<strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong> are uncovered for an extended period <strong>of</strong> time.<br />

3.4 Preventative Ma<strong>in</strong>tenance<br />

Preventative ma<strong>in</strong>tenance is considered <strong>in</strong> <strong>the</strong> probabilistic assessment <strong>of</strong> <strong>the</strong> loss <strong>of</strong> <strong>the</strong><br />

<strong>Fuel</strong> <strong>Pool</strong> Cool<strong>in</strong>g System:<br />

<br />

Preventative ma<strong>in</strong>tenance on <strong>the</strong> second RRI [CCWS] / SEC [ESWS] tra<strong>in</strong> dur<strong>in</strong>g <strong>the</strong><br />

at-power state.<br />

Preventative ma<strong>in</strong>tenance <strong>in</strong> at-power states on <strong>the</strong> first sub-tra<strong>in</strong> <strong>of</strong> PTR [FPCS]<br />

tra<strong>in</strong> 2.<br />

Note: Preventative ma<strong>in</strong>tenance <strong>in</strong> at-power states on <strong>the</strong> PTR [FPCS] should be<br />

considered on tra<strong>in</strong> 1, for which cool<strong>in</strong>g is affected by <strong>the</strong> preventative ma<strong>in</strong>tenance<br />

on <strong>the</strong> RRI [CCWS] / SEC [ESWS], but this modell<strong>in</strong>g choice is made to accurately<br />

calculate <strong>the</strong> risk <strong>of</strong> boil<strong>in</strong>g and fuel damage for <strong>in</strong>itiat<strong>in</strong>g events <strong>in</strong>duc<strong>in</strong>g <strong>the</strong> loss <strong>of</strong><br />

PTR [FPCS] tra<strong>in</strong> 1.<br />

Preventative ma<strong>in</strong>tenance on <strong>the</strong> second RRI [CCWS] / SEC [ESWS] tra<strong>in</strong> dur<strong>in</strong>g<br />

state E/2.<br />

4 <strong>PSA</strong> FOR NON-DRAINING EVENTS<br />

4.1 Introduction<br />

Follow<strong>in</strong>g a loss <strong>of</strong> cool<strong>in</strong>g <strong>of</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong>, and if <strong>the</strong>re is no recovery <strong>of</strong> <strong>the</strong><br />

situation, <strong>the</strong> consequences are a temperature rise up to 100°C, boil<strong>in</strong>g <strong>of</strong>f <strong>of</strong> <strong>the</strong> water<br />

and fuel damage due to <strong>the</strong> uncover<strong>in</strong>g <strong>of</strong> <strong>the</strong> fuel assemblies.<br />

Several signals exist to <strong>in</strong>form <strong>the</strong> operator about <strong>the</strong> abnormal situation follow<strong>in</strong>g <strong>the</strong><br />

loss <strong>of</strong> cool<strong>in</strong>g <strong>of</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong>. In particular, various alarms <strong>in</strong>dicat<strong>in</strong>g<br />

unavailability <strong>of</strong> a pump, high temperature, low flow rate, low suction or discharge<br />

pressure. These lead <strong>the</strong> operator to start <strong>the</strong> stand-by PTR [FPCS] pump or tra<strong>in</strong>. In <strong>the</strong><br />

event <strong>of</strong> <strong>the</strong> lack <strong>of</strong> <strong>in</strong>dication, <strong>the</strong> temperature <strong>of</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong> <strong>in</strong>creases up to<br />

boil<strong>in</strong>g. To support <strong>the</strong> restart <strong>of</strong> ano<strong>the</strong>r PTR [FPCS] tra<strong>in</strong> or pump, and hence avoid<br />

UNCONTROLLED WHEN PRINTED<br />

NOT PROTECTIVELY MARKED<br />

Page 11 <strong>of</strong> 37


HPC-NNBOSL-U0-000-RES-000034 Version 2.0<br />

<strong>PSA</strong> <strong>of</strong> <strong>Accidents</strong> <strong>in</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong><br />

NOT PROTECTIVELY MARKED<br />

fuel uncover<strong>in</strong>g, <strong>the</strong> operator <strong>in</strong>itiates <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong> makeup. This uses ei<strong>the</strong>r<br />

normal means or a backup until <strong>the</strong> failed components have been repaired.<br />

The safety functions for <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong> that are challenged by <strong>the</strong> event are <strong>the</strong><br />

follow<strong>in</strong>g:<br />

<br />

<br />

<br />

<br />

Reactivity Control: <strong>the</strong> boron concentration must be sufficient to avoid criticality.<br />

Details on reactivity control <strong>in</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong> are given <strong>in</strong> Sub-chapter 9.1.<br />

Removal <strong>of</strong> decay heat. This safety function is divided <strong>in</strong>to:<br />

o Residual Heat Removal: In order to prevent boil<strong>in</strong>g, <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong> must<br />

be cooled by <strong>the</strong> dedicated <strong>Fuel</strong> <strong>Pool</strong> Cool<strong>in</strong>g and Purification System.<br />

o Long term cool<strong>in</strong>g: In order to avoid fuel uncover<strong>in</strong>g, <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong><br />

must be cooled by <strong>the</strong> dedicated <strong>Fuel</strong> <strong>Pool</strong> Cool<strong>in</strong>g and Purification System<br />

and makeup must be activated when necessary.<br />

<strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong> [FPCS] <strong>in</strong>tegrity (conta<strong>in</strong>ment): <strong>in</strong> <strong>the</strong> event <strong>of</strong> fuel damage, <strong>the</strong>re<br />

is a risk <strong>of</strong> radioactive release. Thus, <strong>the</strong> <strong>in</strong>tegrity <strong>of</strong> <strong>the</strong> conta<strong>in</strong>ment system must be<br />

ma<strong>in</strong>ta<strong>in</strong>ed and <strong>the</strong> different components should be protected.<br />

<strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong> <strong>in</strong>ventory control: <strong>the</strong> <strong>in</strong>ventory needs to be ma<strong>in</strong>ta<strong>in</strong>ed above <strong>the</strong><br />

m<strong>in</strong>imum level to support PTR [FPCS] operation and prevent fuel uncover<strong>in</strong>g. As<br />

discussed above, <strong>in</strong> <strong>the</strong> long term, makeup would be required.<br />

4.2 Specific Assumptions for <strong>the</strong> Non-dra<strong>in</strong><strong>in</strong>g Initiat<strong>in</strong>g Events<br />

The follow<strong>in</strong>g assumptions, specific to non-dra<strong>in</strong><strong>in</strong>g <strong>in</strong>itiat<strong>in</strong>g events, are made <strong>in</strong><br />

addition to <strong>the</strong> general <strong>PSA</strong> assumptions described <strong>in</strong> section 3 <strong>of</strong> this sub-chapter.<br />

External leaks from <strong>the</strong> <strong>Fuel</strong> <strong>Pool</strong> are assumed not to have any direct effect on <strong>the</strong> <strong>Fuel</strong><br />

<strong>Pool</strong> Cool<strong>in</strong>g System. Such leaks are assumed to be detected by <strong>the</strong> leak detection<br />

system and to be covered by <strong>the</strong> makeup function <strong>of</strong> <strong>the</strong> <strong>Fuel</strong> <strong>Pool</strong> Purification System,<br />

which is started manually follow<strong>in</strong>g a fuel pool low-level signal. (AS-0007)<br />

External leakage and rupture on <strong>the</strong> RRI [CCWS] and SEC [ESWS] systems are<br />

assumed to lead to <strong>the</strong> Loss <strong>of</strong> <strong>the</strong> Cool<strong>in</strong>g Cha<strong>in</strong> <strong>of</strong> <strong>the</strong> PTR [FPCS] (LOCC <strong>in</strong>itiat<strong>in</strong>g<br />

event). (AS-0008)<br />

External leakage from <strong>the</strong> PTR [FPCS] header is assumed to lead to <strong>the</strong> loss <strong>of</strong> PTR<br />

[FPCS] ma<strong>in</strong> tra<strong>in</strong> as an <strong>in</strong>itiat<strong>in</strong>g event. (AS-0009)<br />

Dur<strong>in</strong>g refuell<strong>in</strong>g, <strong>the</strong> loss <strong>of</strong> both PTR [FPCS] l<strong>in</strong>es <strong>in</strong> service has been taken as <strong>the</strong><br />

bound<strong>in</strong>g case. Therefore it has been used as an <strong>in</strong>itiat<strong>in</strong>g event as it is assumed to<br />

lead to more severe consequences than <strong>the</strong> loss <strong>of</strong> one l<strong>in</strong>e <strong>in</strong> service. (AS-0010).<br />

4.3 Evaluation <strong>of</strong> <strong>the</strong> Frequency <strong>of</strong> Loss <strong>of</strong> <strong>the</strong> PTR [FPCS]<br />

4.3.1 Events Studied<br />

Analyses <strong>of</strong> <strong>the</strong> postulated events <strong>in</strong>volv<strong>in</strong>g <strong>the</strong> PTR [FPCS] are carried out for:<br />

The reactor at–power state or dur<strong>in</strong>g shutdown with <strong>the</strong> core <strong>in</strong> <strong>the</strong> vessel (states A<br />

to D and half <strong>of</strong> state E): non refuell<strong>in</strong>g states.<br />

<br />

The reactor shutdown with <strong>the</strong> whole core <strong>in</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong> (half <strong>of</strong> state E and<br />

state F): refuell<strong>in</strong>g states (REF).<br />

UNCONTROLLED WHEN PRINTED<br />

NOT PROTECTIVELY MARKED<br />

Page 12 <strong>of</strong> 37


HPC-NNBOSL-U0-000-RES-000034 Version 2.0<br />

<strong>PSA</strong> <strong>of</strong> <strong>Accidents</strong> <strong>in</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong><br />

NOT PROTECTIVELY MARKED<br />

Depend<strong>in</strong>g on <strong>the</strong> reactor operational modes, <strong>the</strong> events are grouped as follows:<br />

Loss <strong>of</strong> <strong>the</strong> PTR [FPCS] l<strong>in</strong>e (states A to D) or two 2 PTR [FPCS] l<strong>in</strong>es <strong>in</strong>-service<br />

(REF) requir<strong>in</strong>g <strong>the</strong> start-up <strong>of</strong> ano<strong>the</strong>r PTR [FPCS] l<strong>in</strong>e.<br />

<br />

Loss <strong>of</strong> <strong>the</strong> PTR [FPCS] ma<strong>in</strong> tra<strong>in</strong> <strong>in</strong> service (states A to E/2) requir<strong>in</strong>g <strong>the</strong> start-up<br />

<strong>of</strong> ano<strong>the</strong>r PTR [FPCS] tra<strong>in</strong> or <strong>the</strong> loss <strong>of</strong> both ma<strong>in</strong> PTR [FPCS] tra<strong>in</strong>s <strong>in</strong>-service<br />

(REF).<br />

o Loss <strong>of</strong> Offsite Power (LOOP).<br />

o Loss <strong>of</strong> Electrical Supplies.<br />

o Loss <strong>of</strong> pond water cool<strong>in</strong>g (Loss Of Cool<strong>in</strong>g Cha<strong>in</strong>).<br />

o Loss <strong>of</strong> PTR [FPCS] header.<br />

4.3.2 Failures <strong>of</strong> <strong>the</strong> Third PTR [FPCS] Tra<strong>in</strong><br />

The unavailability <strong>of</strong> <strong>the</strong> cool<strong>in</strong>g channel dedicated to <strong>the</strong> emergency (third) tra<strong>in</strong> dur<strong>in</strong>g<br />

<strong>the</strong> repair time <strong>of</strong> a PTR [FPCS] ma<strong>in</strong> tra<strong>in</strong> is considered.<br />

4.4 Evaluation <strong>of</strong> Boil<strong>in</strong>g and <strong>Fuel</strong> Damage Risks<br />

4.4.1 Analysis Assumptions<br />

4.4.1.1 Decoupl<strong>in</strong>g Criterion<br />

Follow<strong>in</strong>g <strong>the</strong> loss <strong>of</strong> <strong>the</strong> PTR [FPCS], ei<strong>the</strong>r as a result <strong>of</strong> random failure or follow<strong>in</strong>g <strong>the</strong><br />

loss <strong>of</strong> a support system, heat s<strong>in</strong>k or power supply, <strong>the</strong> temperature <strong>of</strong> <strong>the</strong> fuel pool<br />

water rises to 100°C and <strong>the</strong> water <strong>the</strong>n boils. Without water makeup, <strong>the</strong> level <strong>of</strong> <strong>the</strong><br />

fuel pool drops, result<strong>in</strong>g <strong>in</strong> <strong>the</strong> uncover<strong>in</strong>g <strong>of</strong>, and possible damage to, <strong>the</strong> fuel<br />

assemblies.<br />

Never<strong>the</strong>less, because <strong>of</strong> <strong>the</strong> ability to restart <strong>the</strong> PTR [FPCS] at 100°C as discussed <strong>in</strong><br />

sub-section 4.4.1.2 <strong>of</strong> this sub-chapter, <strong>the</strong> follow<strong>in</strong>g decoupl<strong>in</strong>g criterion is used <strong>in</strong> <strong>the</strong><br />

analysis. “The beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> fuel uncover<strong>in</strong>g { CCI } a is assumed to mean that <strong>the</strong><br />

threshold <strong>of</strong> ‘Unacceptable Consequences’ (fuel damage or boil<strong>in</strong>g) as def<strong>in</strong>ed <strong>in</strong> Subchapter<br />

15.1 for <strong>the</strong> fuel assemblies has been reached” (AS-0011). Note that, even if<br />

<strong>the</strong> PTR [FPCS] suction degradation threshold is at { CCI } a , it will be possible to<br />

recover this level from { CCI } a , us<strong>in</strong>g <strong>the</strong> makeup means with sufficient flow capacity.<br />

4.4.1.2 Restart<strong>in</strong>g at 100°C<br />

The entire PTR [FPCS] system, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> third tra<strong>in</strong>, is designed to be capable <strong>of</strong><br />

restart at 100°C. In <strong>the</strong> event <strong>of</strong> total loss <strong>of</strong> cool<strong>in</strong>g <strong>of</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong> and <strong>of</strong><br />

restart<strong>in</strong>g <strong>the</strong> PTR [FPCS], <strong>the</strong> <strong>PSA</strong> uses <strong>the</strong> follow<strong>in</strong>g assumptions:<br />

Restart<strong>in</strong>g <strong>the</strong> PTR [FPCS] is possible without makeup if it is brought back <strong>in</strong>to<br />

service before reach<strong>in</strong>g a temperature <strong>of</strong> 97°C <strong>in</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong>. 3 (AS-0012)<br />

<br />

Beyond this threshold, restart<strong>in</strong>g <strong>of</strong> <strong>the</strong> PTR [FPCS] is only assumed to be possible if<br />

water makeup has been actuated and if <strong>the</strong> water level <strong>in</strong> <strong>the</strong> fuel pool rema<strong>in</strong>s<br />

above{ CCI } a , <strong>the</strong> level <strong>of</strong> <strong>the</strong> PTR [FPCS] suction ducts. (AS-0013)<br />

2 Dur<strong>in</strong>g refuell<strong>in</strong>g, <strong>the</strong> loss <strong>of</strong> both l<strong>in</strong>es <strong>in</strong> service is assumed as an <strong>in</strong>itiat<strong>in</strong>g event as it leads to more severe consequences than<br />

<strong>the</strong> loss <strong>of</strong> one l<strong>in</strong>e out <strong>of</strong> two <strong>in</strong> service (AS-0010).<br />

3<br />

A conservative assumption which elim<strong>in</strong>ates <strong>the</strong> risk <strong>of</strong> vaporisation <strong>in</strong> <strong>the</strong> PTR [FPCS] suction l<strong>in</strong>e [Ref. 3].<br />

UNCONTROLLED WHEN PRINTED<br />

NOT PROTECTIVELY MARKED<br />

Page 13 <strong>of</strong> 37


HPC-NNBOSL-U0-000-RES-000034 Version 2.0<br />

<strong>PSA</strong> <strong>of</strong> <strong>Accidents</strong> <strong>in</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong><br />

NOT PROTECTIVELY MARKED<br />

Makeup is possible as long as <strong>the</strong> level does not drop below <strong>the</strong> decoupl<strong>in</strong>g criterion<br />

{ CCI } a . (AS-0014)<br />

4.4.1.3 Calculation Assumptions<br />

To determ<strong>in</strong>e <strong>the</strong> accident k<strong>in</strong>etics, <strong>the</strong> follow<strong>in</strong>g general assumptions are used <strong>in</strong> <strong>the</strong><br />

analysis:<br />

<br />

<strong>Fuel</strong> management regime: MOX with 18-month cycle. (AS-0015)<br />

Volume <strong>in</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong>: 1486 m 3 [Ref. 2].<br />

Reduced volume <strong>in</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong> 4 : 1195 m 3 .<br />

15% marg<strong>in</strong> on decay heat. (AS-0016) The assumed decay heat is 6800 kW for<br />

beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> cycle, 2700 kW for end <strong>of</strong> cycle and 22300 kW dur<strong>in</strong>g refuell<strong>in</strong>g [Ref. 3].<br />

<br />

Initial temperature <strong>in</strong> <strong>the</strong> pool is related to <strong>the</strong> reactor state.<br />

The evaporation rate follow<strong>in</strong>g <strong>the</strong> total loss <strong>of</strong> <strong>the</strong> PTR [FPCS] is calculated on <strong>the</strong><br />

basis <strong>of</strong> <strong>the</strong> follow<strong>in</strong>g formula:<br />

Ve = v" x Q / r<br />

Where: Ve: vaporisation rate [m³/s]<br />

Q: decay heat [kW] or [kJ/s]<br />

r: specific heat <strong>of</strong> evaporation [kJ/kg]<br />

v":<br />

specific volume <strong>of</strong> water [m³/kg]<br />

The evaporation rates are listed <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g table (note: to obta<strong>in</strong> <strong>the</strong> value per hour<br />

<strong>the</strong> equation above needs to be multiplied by a factor <strong>of</strong> 3,600 to convert from seconds<br />

to hours):<br />

Vaporisation Rates <strong>in</strong> <strong>the</strong> <strong>Pool</strong> at T0 Correspond<strong>in</strong>g to <strong>the</strong> Case <strong>of</strong> Total Loss <strong>of</strong> PTR [FPCS]<br />

Vaporisation Rate<br />

(m 3 /h)<br />

Beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> cycle (BOC) 10.8<br />

End <strong>of</strong> cycle (EOC) 4.3<br />

Refuell<strong>in</strong>g (REF) 35.6<br />

4.4.1.4 Chronology <strong>of</strong> Events<br />

The follow<strong>in</strong>g table shows <strong>the</strong> time w<strong>in</strong>dows available to <strong>the</strong> operator that are important<br />

for <strong>the</strong> analysis, start<strong>in</strong>g from T0, <strong>the</strong> time <strong>of</strong> <strong>the</strong> <strong>in</strong>itiat<strong>in</strong>g event:<br />

<br />

<br />

The time follow<strong>in</strong>g <strong>the</strong> loss <strong>of</strong> <strong>the</strong> PTR [FPCS] before 97ºC is reached (T1).<br />

The time w<strong>in</strong>dow, <strong>in</strong> <strong>the</strong> absence <strong>of</strong> makeup, before <strong>the</strong> start <strong>of</strong> <strong>the</strong> uncover<strong>in</strong>g <strong>of</strong> <strong>the</strong><br />

fuel assemblies (T2).<br />

4<br />

A reduced spent fuel pool <strong>in</strong>ventory (1195 m 3 ) follow<strong>in</strong>g a loss <strong>of</strong> <strong>in</strong>ventory is taken <strong>in</strong>to account: this value corresponds to { CCI } a<br />

(level limited by siphon breaker) on <strong>the</strong> suction l<strong>in</strong>e [Ref. 3].<br />

UNCONTROLLED WHEN PRINTED<br />

NOT PROTECTIVELY MARKED<br />

Page 14 <strong>of</strong> 37


HPC-NNBOSL-U0-000-RES-000034 Version 2.0<br />

<strong>PSA</strong> <strong>of</strong> <strong>Accidents</strong> <strong>in</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong><br />

NOT PROTECTIVELY MARKED<br />

Chronology <strong>of</strong> Events and Correspond<strong>in</strong>g Time W<strong>in</strong>dows<br />

Time W<strong>in</strong>dow (hours)<br />

REF BOC EOC<br />

For normal volume <strong>in</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong> (1486 m 3 )<br />

Total loss <strong>of</strong> PTR [FPCS] T0 0 0 0<br />

97°C reached T1 4.0 13.6 35.3<br />

Level { CCI } a reached without makeup T2 5 33.0 107 272<br />

In case <strong>of</strong> reduced volume <strong>in</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong> (1195 m3) 6<br />

97°C reached T1 3.3 11.1 28.9<br />

Level { CCI } a reached without makeup T2 32.0 105.9 266<br />

4.4.1.5 Makeup Systems<br />

The ma<strong>in</strong> characteristics <strong>of</strong> <strong>the</strong> makeup systems for <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong> are<br />

summarised <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g table:<br />

Characteristics <strong>of</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong> Makeup Systems [Ref. 4]<br />

Intervention Makeup Rate Water<br />

Storage<br />

Comments<br />

REA [DWS +<br />

RBWMS]<br />

Control room > 40 m 3 /h 800 m 3 Unavailable <strong>in</strong> <strong>the</strong> event <strong>of</strong><br />

LOOP<br />

IRWST + FPPS (fuel<br />

pool purification<br />

system)<br />

Control room +<br />

local l<strong>in</strong>e<br />

90 m 3 /h 1895 m 3 Unavailable <strong>in</strong> <strong>the</strong> event <strong>of</strong><br />

LOOP<br />

JPI (fire fight<strong>in</strong>g<br />

system)<br />

Local l<strong>in</strong>e<br />

> evaporation<br />

rate<br />

~ 1000 m 3 Available <strong>in</strong> <strong>the</strong> event <strong>of</strong><br />

Station Blackout (SBO)<br />

PTR [FPCS] loss result<strong>in</strong>g<br />

from LOOP or LUHS<br />

SED [DWS] Direct Local l<strong>in</strong>e > 40 m 3 /h ~ 800 m 3 Unavailable <strong>in</strong> <strong>the</strong> event <strong>of</strong><br />

LOOP<br />

Note: Due to <strong>the</strong> functional dependencies between RBWMS and DWS makeup and <strong>the</strong> DWS direct<br />

makeup, <strong>the</strong> effectiveness <strong>of</strong> redundancy will be limited. For this reason, <strong>the</strong> availability <strong>of</strong> DWS<br />

direct makeup is not assumed <strong>in</strong> this analysis.<br />

4.4.1.6 I&C Functions<br />

In this k<strong>in</strong>d <strong>of</strong> event, with few self-actuated functions, <strong>the</strong> <strong>in</strong>formation available to <strong>the</strong><br />

operator <strong>in</strong> <strong>the</strong> control room is essential. Thus <strong>the</strong> I&C is <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> <strong>PSA</strong> model <strong>in</strong><br />

order to take <strong>in</strong>to account <strong>the</strong> generation <strong>of</strong> alarms.<br />

The signals that are <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> analysis, low PTR [FPCS] flow rate, low discharge<br />

pressure and high temperature <strong>of</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong> (two diversified signals <strong>in</strong> <strong>the</strong> Safety<br />

Automation System and <strong>the</strong> Non-Computerised Safety System), are those relevant for<br />

each group <strong>of</strong> <strong>in</strong>itiat<strong>in</strong>g events.<br />

5<br />

The time w<strong>in</strong>dow available before fuel uncover<strong>in</strong>g is assessed assum<strong>in</strong>g 1018 m 3 for <strong>the</strong> spent fuel pool, i.e. { CCI removed<br />

} a [Ref. 3].<br />

6<br />

The loss <strong>of</strong> PTR [FPCS] header assumes a reduced spent fuel pool <strong>in</strong>ventory (1195 m 3 ) follow<strong>in</strong>g <strong>the</strong> loss <strong>of</strong> <strong>in</strong>ventory due to <strong>the</strong><br />

leak <strong>in</strong> <strong>the</strong> header (only <strong>the</strong> water <strong>in</strong>ventory above { CCI } a is considered)<br />

UNCONTROLLED WHEN PRINTED<br />

NOT PROTECTIVELY MARKED<br />

Page 15 <strong>of</strong> 37


HPC-NNBOSL-U0-000-RES-000034 Version 2.0<br />

<strong>PSA</strong> <strong>of</strong> <strong>Accidents</strong> <strong>in</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong><br />

NOT PROTECTIVELY MARKED<br />

4.4.1.7 Analysis <strong>of</strong> Operator Actions<br />

In <strong>the</strong> event <strong>of</strong> activation <strong>of</strong> <strong>the</strong> alarms used to detect loss <strong>of</strong> fuel pool cool<strong>in</strong>g, <strong>the</strong><br />

operator must implement <strong>the</strong> appropriate emergency operat<strong>in</strong>g procedures to manage<br />

<strong>the</strong> accident.<br />

Never<strong>the</strong>less, <strong>the</strong> activation <strong>of</strong> <strong>the</strong> 'fuel pool low level MIN1' alarm is sufficient <strong>in</strong>dication<br />

for <strong>the</strong> operator to start a makeup device and prevent fuel damage.<br />

In all cases, fuel pool makeup is <strong>in</strong>itiated as soon as <strong>the</strong> 'fuel pool very low level MIN2'<br />

alarm is activated <strong>in</strong> <strong>the</strong> control room.<br />

Conservatively, <strong>the</strong>se <strong>in</strong>termediate makeup actions are not taken <strong>in</strong>to account; only <strong>the</strong><br />

time w<strong>in</strong>dow available before fuel uncover<strong>in</strong>g is assessed.<br />

In <strong>the</strong> event <strong>of</strong> failure <strong>of</strong> I&C <strong>in</strong>dications and failure <strong>of</strong> activation <strong>of</strong> <strong>the</strong> makeup<br />

countermeasures by <strong>the</strong> operator, <strong>the</strong> possibility <strong>of</strong> repair<strong>in</strong>g failed components is taken<br />

<strong>in</strong>to account for non refuell<strong>in</strong>g states where <strong>the</strong> time w<strong>in</strong>dow available is about 107<br />

hours. For <strong>the</strong> refuell<strong>in</strong>g phase, it is conservatively assumed that <strong>the</strong> failure <strong>of</strong> I&C<br />

followed by <strong>the</strong> failure <strong>of</strong> makeup actuation by <strong>the</strong> operator, would lead directly to fuel<br />

damage as <strong>the</strong> time w<strong>in</strong>dow available is about 30 hours.<br />

4.4.2 Analysis <strong>of</strong> <strong>the</strong> Accident<br />

The follow<strong>in</strong>g chronology relates to <strong>the</strong> most severe case that can be envisaged, namely<br />

<strong>the</strong> total loss <strong>of</strong> <strong>the</strong> fuel pool cool<strong>in</strong>g dur<strong>in</strong>g <strong>the</strong> refuell<strong>in</strong>g phase, when <strong>the</strong> decay heat is<br />

at its maximum.<br />

Follow<strong>in</strong>g <strong>the</strong> loss <strong>of</strong> cool<strong>in</strong>g, <strong>the</strong> fuel pool water reaches 97°C <strong>in</strong> 4.0 hours. The 'fuel<br />

pool very low level MIN2' setpo<strong>in</strong>t is reached less than one hour later. Therefore, it is<br />

necessary to <strong>in</strong>itiate <strong>the</strong> third tra<strong>in</strong>.<br />

Because <strong>of</strong> this, <strong>the</strong> start-up <strong>of</strong> a makeup device is conservatively assumed to be<br />

required about 30 hours follow<strong>in</strong>g <strong>the</strong> loss <strong>of</strong> cool<strong>in</strong>g by <strong>the</strong> PTR [FPCS]. The water<br />

makeup rate must be sufficient to compensate for <strong>the</strong> evaporation <strong>of</strong> <strong>the</strong> pool water.<br />

The various makeup means envisaged and, more specifically, <strong>the</strong> REA [RBWMS-DWS]<br />

system, are capable <strong>of</strong> provid<strong>in</strong>g this function. Stored water is likely to compensate for<br />

<strong>the</strong> evaporation <strong>of</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong> for several hours. This additional time may be<br />

used to carry out repairs on <strong>the</strong> PTR [FPCS] system or o<strong>the</strong>r faulty systems.<br />

If <strong>the</strong> PTR [FPCS] has not been restored dur<strong>in</strong>g <strong>the</strong> time period when makeup means<br />

are activated, o<strong>the</strong>r makeup systems must be used, e.g. <strong>the</strong> <strong>Fuel</strong> <strong>Pool</strong> Purification<br />

System-IRWST, JPI etc.<br />

If <strong>the</strong> repairs are unsuccessful and no pool makeup is implemented, i.e. normal and<br />

o<strong>the</strong>r makeup means, <strong>in</strong>clud<strong>in</strong>g ultimate means, fuel uncover<strong>in</strong>g starts and<br />

Unacceptable Consequences cannot be avoided.<br />

4.4.3 Quantification<br />

4.4.3.1 Classification <strong>of</strong> <strong>the</strong> Situations Involv<strong>in</strong>g Total Loss <strong>of</strong> PTR [FPCS]<br />

To analyse <strong>the</strong> consequences <strong>of</strong> <strong>the</strong> total loss <strong>of</strong> fuel pool cool<strong>in</strong>g, <strong>the</strong> various total loss<br />

<strong>of</strong> PTR [FPCS] situations are grouped accord<strong>in</strong>g to <strong>the</strong> follow<strong>in</strong>g representative criteria:<br />

<br />

Situations which lead or do not lead to <strong>the</strong> boil<strong>in</strong>g <strong>of</strong> <strong>the</strong> fuel pool i.e. situations where<br />

repair before <strong>the</strong> boil<strong>in</strong>g po<strong>in</strong>t is reached is successful or unsuccessful.<br />

UNCONTROLLED WHEN PRINTED<br />

NOT PROTECTIVELY MARKED<br />

Page 16 <strong>of</strong> 37


HPC-NNBOSL-U0-000-RES-000034 Version 2.0<br />

<strong>PSA</strong> <strong>of</strong> <strong>Accidents</strong> <strong>in</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong><br />

NOT PROTECTIVELY MARKED<br />

<br />

Situations which allow or do not allow recovery and/or repair.<br />

Situations <strong>in</strong>volv<strong>in</strong>g <strong>the</strong> availability <strong>of</strong> countermeasures, i.e. makeup systems.<br />

4.4.3.2 Quantification <strong>of</strong> Human Factors<br />

The operator has:<br />

Various means, alarms and o<strong>the</strong>r <strong>in</strong>dications <strong>in</strong> <strong>the</strong> ma<strong>in</strong> control room, to establish<br />

<strong>the</strong> diagnosis and <strong>the</strong> need for makeup.<br />

Between 4 hours, <strong>in</strong> <strong>the</strong> least favourable refuell<strong>in</strong>g state, and 35 hours, <strong>in</strong> <strong>the</strong> most<br />

favourable case at end <strong>of</strong> cycle, for activation <strong>of</strong> <strong>the</strong> necessary stand-by pump/tra<strong>in</strong><br />

(see sub-section 4.4.1.4 <strong>of</strong> this sub-chapter).<br />

Between about 32 hours, <strong>in</strong> <strong>the</strong> least favourable refuell<strong>in</strong>g state, and 260 hours, <strong>in</strong><br />

<strong>the</strong> most favourable case at end <strong>of</strong> cycle, (see sub-section 4.4.1.4 <strong>of</strong> this subchapter)<br />

for activation <strong>of</strong> <strong>the</strong> makeup countermeasures.<br />

The probability <strong>of</strong> failure to <strong>in</strong>itiate <strong>the</strong> stand-by pump/tra<strong>in</strong> and water makeup <strong>in</strong> <strong>the</strong> fuel<br />

pool is a function <strong>of</strong> <strong>the</strong> time w<strong>in</strong>dow available, and is estimated us<strong>in</strong>g <strong>the</strong> human<br />

reliability model presented <strong>in</strong> Sub-chapter 15.1.<br />

In <strong>the</strong> case <strong>of</strong> failure <strong>of</strong> <strong>the</strong> SPPA-T2000 platform, <strong>the</strong> <strong>in</strong>itiation <strong>of</strong> a stand-by pump<br />

and/or tra<strong>in</strong>s is performed locally. The reliability for this local action is conservatively<br />

decreased despite <strong>the</strong>re be<strong>in</strong>g a long grace period available.<br />

4.4.3.3 Quantification <strong>of</strong> <strong>the</strong> Makeup System Missions<br />

Failure to start and <strong>the</strong> failure rate <strong>in</strong> operation <strong>of</strong> <strong>the</strong> ma<strong>in</strong> makeup systems are<br />

assessed tak<strong>in</strong>g <strong>in</strong>to consideration <strong>the</strong> design <strong>of</strong> <strong>the</strong>se systems. The o<strong>the</strong>r means, e.g.<br />

<strong>Fuel</strong> <strong>Pool</strong> Purification System-IRWST, JPI etc. and ultimate means, <strong>of</strong> makeup are taken<br />

<strong>in</strong>to account assum<strong>in</strong>g a global failure rate derived by expert judgement.<br />

4.4.3.4 Quantification <strong>of</strong> Instrumentation and Control (I&C) Missions<br />

The model chosen for <strong>the</strong> I&C modell<strong>in</strong>g is presented <strong>in</strong> Sub-chapter 15.1.<br />

Due to <strong>the</strong> functional and component diversity <strong>of</strong> <strong>the</strong> various classifications <strong>of</strong><br />

<strong>in</strong>strumentation channels, failure <strong>of</strong> <strong>the</strong> <strong>in</strong>strumentation and control mission is ma<strong>in</strong>ly<br />

due to <strong>the</strong> failure <strong>of</strong> common logic. However, a local action to <strong>in</strong>itiate a stand-by PTR<br />

[FPCS] pump or tra<strong>in</strong> <strong>in</strong> case <strong>of</strong> failure <strong>of</strong> <strong>the</strong> common logic part is considered <strong>in</strong> <strong>the</strong><br />

<strong>PSA</strong>.<br />

Fur<strong>the</strong>rmore, it is assumed that when <strong>the</strong> time w<strong>in</strong>dow available to <strong>the</strong> operator is above<br />

30 hours, <strong>the</strong> makeup system can be actuated even if <strong>the</strong> <strong>in</strong>strumentation is faulty. In<br />

this period <strong>of</strong> time, monitor<strong>in</strong>g <strong>of</strong> <strong>the</strong> fuel pool can be performed by <strong>the</strong> operator and a<br />

makeup device can be actuated.<br />

Us<strong>in</strong>g a conservative approach, <strong>the</strong> study is based on <strong>the</strong> pr<strong>in</strong>ciple that <strong>the</strong> failure <strong>of</strong> <strong>the</strong><br />

<strong>in</strong>strumentation and control over occurs dur<strong>in</strong>g <strong>the</strong> whole mission period. In this event,<br />

recovery by <strong>the</strong> operator is possible <strong>in</strong> most cases.<br />

4.4.3.5 Evaluation <strong>of</strong> <strong>the</strong> EVU [CHRS]/PTR [FPCS] Comb<strong>in</strong>ation Risks<br />

The third PTR [FPCS] tra<strong>in</strong> and <strong>the</strong> EVU [CHRS] system are cooled by <strong>the</strong> same heat<br />

s<strong>in</strong>k. This cool<strong>in</strong>g channel is designed for <strong>the</strong> separate water requirements <strong>of</strong> <strong>the</strong> two<br />

systems. The probability <strong>of</strong> <strong>the</strong> simultaneous use <strong>of</strong> <strong>the</strong> third PTR [FPCS] tra<strong>in</strong> and <strong>the</strong><br />

EVU [CHRS] is <strong>the</strong>n evaluated to show <strong>the</strong> acceptability <strong>of</strong> <strong>the</strong> current design.<br />

UNCONTROLLED WHEN PRINTED<br />

NOT PROTECTIVELY MARKED<br />

Page 17 <strong>of</strong> 37


HPC-NNBOSL-U0-000-RES-000034 Version 2.0<br />

<strong>PSA</strong> <strong>of</strong> <strong>Accidents</strong> <strong>in</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong><br />

NOT PROTECTIVELY MARKED<br />

The probability that <strong>the</strong> third PTR [FPCS] tra<strong>in</strong> is required at <strong>the</strong> same time as <strong>the</strong> EVU<br />

[CHRS] dur<strong>in</strong>g accident situations must be taken <strong>in</strong>to account for <strong>the</strong> situations <strong>in</strong>volv<strong>in</strong>g<br />

a loss <strong>of</strong> PTR [FPCS].<br />

In <strong>the</strong> light <strong>of</strong> <strong>the</strong> particular characteristics <strong>of</strong> <strong>the</strong> comb<strong>in</strong>ed scenarios 7 , an evaluation <strong>of</strong><br />

<strong>the</strong> <strong>in</strong>crease <strong>in</strong> <strong>the</strong> risk <strong>of</strong> reach<strong>in</strong>g boil<strong>in</strong>g and Unacceptable Consequences <strong>in</strong> <strong>the</strong> pool<br />

is carried out, assum<strong>in</strong>g that priority is always given to <strong>the</strong> EVU [CHRS] and that <strong>the</strong><br />

third tra<strong>in</strong> is deliberately deprived <strong>of</strong> heat s<strong>in</strong>k <strong>in</strong> core accidents.<br />

This evaluation shows that <strong>the</strong> impact on <strong>the</strong> risk is not significant (AS-0017).<br />

4.4.4 Results<br />

4.4.4.1 Overall Boil<strong>in</strong>g and <strong>Fuel</strong> Damage Frequency<br />

Boil<strong>in</strong>g follow<strong>in</strong>g <strong>the</strong> loss <strong>of</strong> cool<strong>in</strong>g <strong>of</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong> may result from <strong>the</strong> follow<strong>in</strong>g<br />

<strong>in</strong>itiat<strong>in</strong>g events:<br />

Initiat<strong>in</strong>g Event<br />

Loss <strong>of</strong> PTR [FPCS] pump<br />

Loss <strong>of</strong> electrical supply<br />

Loss <strong>of</strong> Offsite Power (24h)<br />

Loss <strong>of</strong> PTR [FPCS] header<br />

Loss <strong>of</strong> Cool<strong>in</strong>g Cha<strong>in</strong><br />

Loss <strong>of</strong> Ultimate Heat S<strong>in</strong>k<br />

Boil<strong>in</strong>g<br />

/r.y<br />

7.23E-05<br />

8.48E-06<br />

1.17E-05<br />

2.20E-07<br />

1.96E-04<br />

9.45E-07<br />

Total (boil<strong>in</strong>g) 2.90 E-04<br />

The distribution <strong>of</strong> <strong>the</strong> risk <strong>of</strong> boil<strong>in</strong>g by <strong>in</strong>itiat<strong>in</strong>g event is shown below:<br />

7<br />

The IRWST cannot be used as a makeup device for <strong>the</strong> PTR [FPPS/FPCS] dur<strong>in</strong>g core accidents as <strong>the</strong> water is needed to manage<br />

<strong>the</strong> accident <strong>in</strong> <strong>the</strong> reactor build<strong>in</strong>g.<br />

UNCONTROLLED WHEN PRINTED<br />

NOT PROTECTIVELY MARKED<br />

Page 18 <strong>of</strong> 37


HPC-NNBOSL-U0-000-RES-000034 Version 2.0<br />

<strong>PSA</strong> <strong>of</strong> <strong>Accidents</strong> <strong>in</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong><br />

NOT PROTECTIVELY MARKED<br />

The overall frequency <strong>of</strong> boil<strong>in</strong>g is 2.90E-04/r.y.<br />

The two ma<strong>in</strong> contribut<strong>in</strong>g events are <strong>the</strong> LOCC and <strong>the</strong> loss <strong>of</strong> PTR [FPCS] pump.<br />

Compared to <strong>the</strong> GDA step 4 UK EPR <strong>PSA</strong> model, <strong>the</strong> most significant impact is due<br />

to <strong>the</strong> <strong>in</strong>crease <strong>in</strong> <strong>the</strong> frequency <strong>of</strong> <strong>the</strong> <strong>in</strong>itiat<strong>in</strong>g event Loss Of Offsite Power, which<br />

results <strong>in</strong> an <strong>in</strong>crease by 128% <strong>of</strong> <strong>the</strong> boil<strong>in</strong>g frequency associated with this group.<br />

However, <strong>the</strong> impact on <strong>the</strong> overall boil<strong>in</strong>g frequency is quite low, due to <strong>the</strong> fact that <strong>the</strong><br />

Loss Of Offsite Power contribution rema<strong>in</strong>s low. The overall boil<strong>in</strong>g frequency is<br />

<strong>in</strong>creased by only 2.8%.<br />

<strong>Fuel</strong> damage follow<strong>in</strong>g <strong>the</strong> loss <strong>of</strong> cool<strong>in</strong>g <strong>of</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong> may result from <strong>the</strong><br />

follow<strong>in</strong>g <strong>in</strong>itiat<strong>in</strong>g events:<br />

Initiat<strong>in</strong>g Event<br />

Loss <strong>of</strong> PTR [FPCS] pump<br />

Loss <strong>of</strong> electrical supply<br />

Loss <strong>of</strong> Offsite Power (24 hours)<br />

Loss <strong>of</strong> PTR [FPCS] header<br />

Loss <strong>of</strong> Cool<strong>in</strong>g Cha<strong>in</strong><br />

Loss <strong>of</strong> Ultimate Heat S<strong>in</strong>k<br />

<strong>Fuel</strong> Damage Frequency<br />

/r.y<br />

2.06E-11<br />

2.16E-12<br />

4.15E-10<br />

5.84E-14<br />

9.30E-11<br />

2.43E-13<br />

Total (fuel damage)<br />

5.31E-10<br />

The distribution <strong>of</strong> <strong>the</strong> risk <strong>of</strong> fuel damage result<strong>in</strong>g from <strong>the</strong> various <strong>in</strong>itiat<strong>in</strong>g events is<br />

shown below:<br />

The overall frequency <strong>of</strong> fuel damage is 5.31E-10/r.y. The two ma<strong>in</strong> contribut<strong>in</strong>g events<br />

are LOOP and LOCC.<br />

UNCONTROLLED WHEN PRINTED<br />

NOT PROTECTIVELY MARKED<br />

Page 19 <strong>of</strong> 37


HPC-NNBOSL-U0-000-RES-000034 Version 2.0<br />

<strong>PSA</strong> <strong>of</strong> <strong>Accidents</strong> <strong>in</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong><br />

NOT PROTECTIVELY MARKED<br />

Compared to <strong>the</strong> GDA step 4 UK EPR <strong>PSA</strong> model, <strong>the</strong> overall fuel damage frequency<br />

is <strong>in</strong>creased by 109.0%. This is due to <strong>the</strong> <strong>in</strong>crease by a factor <strong>of</strong> 5 <strong>of</strong> <strong>the</strong> long Loss Of<br />

Offsite Power <strong>in</strong>itiat<strong>in</strong>g event frequency.<br />

The fuel damage frequency associated with <strong>the</strong> <strong>in</strong>itiat<strong>in</strong>g event Loss Of Ultimate Heat<br />

S<strong>in</strong>k (previously not modelled <strong>in</strong> <strong>the</strong> GDA step 4 UK EPR <strong>PSA</strong>) is very low (


HPC-NNBOSL-U0-000-RES-000034 Version 2.0<br />

<strong>PSA</strong> <strong>of</strong> <strong>Accidents</strong> <strong>in</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong><br />

NOT PROTECTIVELY MARKED<br />

4.4.4.3 Loss <strong>of</strong> Electrical Supply<br />

LESUPPLY<br />

Frequency <strong>of</strong> <strong>Fuel</strong> Damage<br />

(/r.y)<br />

Frequency <strong>of</strong> Boil<strong>in</strong>g<br />

(/r.y)<br />

AB 2.11E-12 8.27E-06<br />

C 3.01E-14 1.20E-07<br />

D 9.48E-15 3.83E-08<br />

E/2 1.30E-14 5.27E-08<br />

REF 1.83E-15 1.23E-10<br />

OVERALL 2.16E-12 8.48E-06<br />

The frequency <strong>of</strong> boil<strong>in</strong>g is dom<strong>in</strong>ated by <strong>the</strong> contribution from <strong>the</strong> at-power state AB<br />

(98%). However, <strong>the</strong> contribution to <strong>the</strong> overall frequency <strong>in</strong> state AB is low (3%).<br />

The frequency <strong>of</strong> fuel damage is dom<strong>in</strong>ated by <strong>the</strong> contribution from <strong>the</strong> at-power state<br />

AB (98%). However, <strong>the</strong> absolute value is very low. Moreover, <strong>the</strong> contribution to <strong>the</strong><br />

overall frequency <strong>of</strong> fuel damage <strong>in</strong> state AB is low (1%).<br />

4.4.4.4 Loss <strong>of</strong> PTR [FPCS] Header<br />

LHEADER<br />

Frequency <strong>of</strong> <strong>Fuel</strong> Damage<br />

(/r.y)<br />

Frequency <strong>of</strong> Boil<strong>in</strong>g<br />

(/r.y)<br />

AB 5.71E-14 2.15E-07<br />

C 7.68E-16 3.10E-09<br />

D 2.36E-16 9.94E-10<br />

E/2 3.40E-16 1.37E-09<br />

REF 3.73E-18 2.10E-13<br />

OVERALL 5.84E-14 2.20E-07<br />

The frequency <strong>of</strong> boil<strong>in</strong>g is dom<strong>in</strong>ated by <strong>the</strong> contribution from <strong>the</strong> at-power state AB<br />

(98%). However, <strong>the</strong> contribution to <strong>the</strong> overall frequency <strong>in</strong> state AB is 0.1%.<br />

The frequency <strong>of</strong> fuel damage is dom<strong>in</strong>ated by <strong>the</strong> contribution from <strong>the</strong> at-power state<br />

AB (98%). However, <strong>the</strong> absolute value is very low. Moreover, <strong>the</strong> contribution for <strong>the</strong><br />

overall frequency <strong>of</strong> fuel damage <strong>in</strong> state AB is only 0.02%.<br />

4.4.4.5 Loss <strong>of</strong> Cool<strong>in</strong>g Cha<strong>in</strong><br />

LOCC<br />

Frequency <strong>of</strong> <strong>Fuel</strong> Damage<br />

(/r.y)<br />

Frequency <strong>of</strong> Boil<strong>in</strong>g<br />

(/r.y)<br />

AB 4.81E-11 1.88E-04<br />

C 7.56E-13 2.96E-06<br />

D 2.42E-13 9.51E-07<br />

E/2 3.71E-13 1.45E-06<br />

REF 4.35E-11 2.75E-06<br />

OVERALL 9.30E-11 1.96E-04<br />

UNCONTROLLED WHEN PRINTED<br />

NOT PROTECTIVELY MARKED<br />

Page 21 <strong>of</strong> 37


HPC-NNBOSL-U0-000-RES-000034 Version 2.0<br />

<strong>PSA</strong> <strong>of</strong> <strong>Accidents</strong> <strong>in</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong><br />

NOT PROTECTIVELY MARKED<br />

The frequency <strong>of</strong> boil<strong>in</strong>g is dom<strong>in</strong>ated by <strong>the</strong> contribution from at-power state AB (96%).<br />

In addition, <strong>the</strong> LOCC provides <strong>the</strong> majority contribution (67%) to <strong>the</strong> overall frequency <strong>in</strong><br />

state AB.<br />

The frequency <strong>of</strong> fuel damage is dom<strong>in</strong>ated by <strong>the</strong> contribution from at-power states AB<br />

(52%) and from <strong>the</strong> refuell<strong>in</strong>g state (47%). However, <strong>the</strong> absolute values rema<strong>in</strong> low.<br />

The contribution to <strong>the</strong> overall frequency <strong>in</strong> state AB is 17% and <strong>in</strong> <strong>the</strong> refuell<strong>in</strong>g state is<br />

18%.<br />

4.4.4.6 Loss <strong>of</strong> Offsite Power<br />

LOOP<br />

Frequency <strong>of</strong> <strong>Fuel</strong> Damage<br />

(/r.y)<br />

Frequency <strong>of</strong> Boil<strong>in</strong>g<br />

(/r.y)<br />

AB 2.14E-10 1.13E-05<br />

C 2.42E-12 1.28E-07<br />

D 7.76E-13 4.10E-08<br />

E/2 1.14E-12 6.00E-08<br />

REF 1.97E-10 1.69E-07<br />

OVERALL 4.15E-10 1.17E-05<br />

The frequency <strong>of</strong> boil<strong>in</strong>g is dom<strong>in</strong>ated by <strong>the</strong> contribution from <strong>the</strong> at-power state AB<br />

(97%). However, <strong>the</strong> contribution for <strong>the</strong> overall frequency <strong>in</strong> state AB is low (4%).<br />

The frequency <strong>of</strong> fuel damage is dom<strong>in</strong>ated by <strong>the</strong> contributions from <strong>the</strong> at-power state<br />

AB (52%) and <strong>the</strong> refuell<strong>in</strong>g state (47%). Moreover, <strong>the</strong> contribution to <strong>the</strong> overall<br />

frequency <strong>in</strong> state AB is 76% and <strong>the</strong> contribution to overall frequency <strong>in</strong> <strong>the</strong> refuell<strong>in</strong>g<br />

state is 74%.<br />

The contribution <strong>of</strong> <strong>the</strong> long Loss Of Offsite Power events to <strong>the</strong> frequency <strong>of</strong> fuel<br />

damage <strong>in</strong> <strong>the</strong> fuel pool has <strong>in</strong>creased by about 200%. This is ma<strong>in</strong>ly l<strong>in</strong>ked to <strong>the</strong><br />

<strong>in</strong>crease <strong>in</strong> <strong>in</strong>itiat<strong>in</strong>g event frequency for long LOOP, which has <strong>in</strong>creased from 1E-03/r.y<br />

to 5E-03/r.y [Ref. 8].<br />

4.4.4.7 Loss <strong>of</strong> Ultimate Heat S<strong>in</strong>k<br />

LUHS<br />

Frequency <strong>of</strong> <strong>Fuel</strong> Damage<br />

(/r.y)<br />

Frequency <strong>of</strong> Boil<strong>in</strong>g<br />

(/r.y)<br />

AB 2.38E-13 9.30E-07<br />

C 3.67E-15 1.45E-08<br />

D 3.16E-20 1.23E-13<br />

E/2 4.35E-20 1.70E-13<br />

REF 1.50E-15 1.58E-11<br />

OVERALL 2.43E-13 9.45E-07<br />

The frequency <strong>of</strong> boil<strong>in</strong>g is dom<strong>in</strong>ated by <strong>the</strong> contribution from at-power state AB (98%).<br />

However, <strong>the</strong> contribution for <strong>the</strong> overall frequency <strong>in</strong> state AB is low (0.3%).<br />

The frequency <strong>of</strong> fuel damage is dom<strong>in</strong>ated by <strong>the</strong> contribution from at-power state AB<br />

(98%). However, <strong>the</strong> contribution to <strong>the</strong> overall frequency <strong>in</strong> state AB is only 0.1%.<br />

UNCONTROLLED WHEN PRINTED<br />

NOT PROTECTIVELY MARKED<br />

Page 22 <strong>of</strong> 37


HPC-NNBOSL-U0-000-RES-000034 Version 2.0<br />

<strong>PSA</strong> <strong>of</strong> <strong>Accidents</strong> <strong>in</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong><br />

NOT PROTECTIVELY MARKED<br />

4.4.4.8 Dom<strong>in</strong>ant Accident Sequences<br />

4.4.4.8.1 Boil<strong>in</strong>g<br />

The follow<strong>in</strong>g table lists <strong>the</strong> ma<strong>in</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong> accident sequences lead<strong>in</strong>g to boil<strong>in</strong>g,<br />

<strong>in</strong> all reactor states. They represent around 87% <strong>of</strong> <strong>the</strong> overall risk <strong>of</strong> boil<strong>in</strong>g <strong>in</strong> <strong>the</strong> <strong>Spent</strong><br />

<strong>Fuel</strong> <strong>Pool</strong>.<br />

Initiat<strong>in</strong>g Event Description Freq.<br />

(/r.y)<br />

%<br />

Loss <strong>of</strong> Cool<strong>in</strong>g<br />

Cha<strong>in</strong> <strong>in</strong> state AB<br />

Loss <strong>of</strong> pump <strong>in</strong> state<br />

AB<br />

Loss <strong>of</strong> pump <strong>in</strong> state<br />

AB<br />

Loss <strong>of</strong> Cool<strong>in</strong>g<br />

Cha<strong>in</strong> <strong>in</strong> state AB<br />

Loss <strong>of</strong> Cool<strong>in</strong>g<br />

Cha<strong>in</strong> <strong>in</strong> state AB<br />

Failure <strong>of</strong> <strong>the</strong> SPPA-T2000 platform and <strong>the</strong> operator<br />

fails <strong>the</strong> local action to <strong>in</strong>itiate <strong>the</strong> stand-by pump before<br />

97°C.<br />

Failure <strong>of</strong> <strong>the</strong> SPPA-T2000 platform and <strong>the</strong> operator<br />

fails <strong>the</strong> local action to <strong>in</strong>itiate <strong>the</strong> stand-by pump before<br />

97°C.<br />

Failure <strong>of</strong> <strong>the</strong> operator to <strong>in</strong>itiate <strong>the</strong> stand-by pump<br />

before 97°C.<br />

Failure <strong>of</strong> <strong>the</strong> operator to <strong>in</strong>itiate <strong>the</strong> stand-by pump<br />

before 97°C.<br />

Failure <strong>of</strong> PTR [FPCS] tra<strong>in</strong> 2 due to a mechanical failure<br />

(<strong>in</strong>clud<strong>in</strong>g support systems) and preventative<br />

ma<strong>in</strong>tenance on tra<strong>in</strong> 3.<br />

1.6E-04 56.3<br />

5.7E-05 19.7<br />

1.1E-05 3.9<br />

9.6E-06 3.3<br />

9.1E-06 3.2<br />

The dom<strong>in</strong>ant cause <strong>of</strong> boil<strong>in</strong>g to <strong>the</strong> atmosphere with<strong>in</strong> <strong>the</strong> fuel build<strong>in</strong>g is <strong>the</strong> failure <strong>of</strong><br />

<strong>the</strong> operator to <strong>in</strong>itiate ano<strong>the</strong>r PTR [FPCS] pump or tra<strong>in</strong> from <strong>the</strong> ma<strong>in</strong> control room or<br />

locally. This action has to be performed locally <strong>in</strong> <strong>the</strong> case <strong>of</strong> failure <strong>of</strong> <strong>the</strong> SPPA-T2000<br />

platform. The overall boil<strong>in</strong>g frequency is judged conservative; <strong>the</strong> reliability allocated to<br />

<strong>the</strong> local action is underestimated consider<strong>in</strong>g <strong>the</strong> significant grace period before<br />

unacceptable consequences are reached.<br />

UNCONTROLLED WHEN PRINTED<br />

NOT PROTECTIVELY MARKED<br />

Page 23 <strong>of</strong> 37


HPC-NNBOSL-U0-000-RES-000034 Version 2.0<br />

<strong>PSA</strong> <strong>of</strong> <strong>Accidents</strong> <strong>in</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong><br />

NOT PROTECTIVELY MARKED<br />

4.4.4.8.2 <strong>Fuel</strong> Damage<br />

The follow<strong>in</strong>g table lists <strong>the</strong> ma<strong>in</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong> accident sequences due to accidents<br />

lead<strong>in</strong>g to fuel damage, <strong>in</strong> all reactor states. They represent around 75% <strong>of</strong> <strong>the</strong> overall<br />

risk <strong>of</strong> fuel damage <strong>in</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong> (for non dra<strong>in</strong><strong>in</strong>g events).<br />

Initiat<strong>in</strong>g Event Description Freq.<br />

(/r.y)<br />

%<br />

Long Loss <strong>of</strong> Offsite<br />

Power <strong>in</strong> state AB<br />

(<strong>in</strong>clud<strong>in</strong>g consequential<br />

LOOP)<br />

Loss <strong>of</strong> Offsite Power <strong>in</strong><br />

Refuell<strong>in</strong>g state<br />

Long Loss <strong>of</strong> Offsite<br />

Power <strong>in</strong> state AB<br />

(<strong>in</strong>clud<strong>in</strong>g consequential<br />

LOOP)<br />

Loss <strong>of</strong> Offsite Power <strong>in</strong><br />

Refuell<strong>in</strong>g state<br />

Loss <strong>of</strong> Cool<strong>in</strong>g Cha<strong>in</strong> <strong>in</strong><br />

state AB<br />

Loss <strong>of</strong> Cool<strong>in</strong>g Cha<strong>in</strong> <strong>in</strong><br />

Refuell<strong>in</strong>g state<br />

Loss <strong>of</strong> Offsite Power <strong>in</strong><br />

Refuell<strong>in</strong>g state<br />

Loss <strong>of</strong> PTR [FPCS]<br />

pump <strong>in</strong> state AB<br />

Loss <strong>of</strong> Cool<strong>in</strong>g Cha<strong>in</strong> <strong>in</strong><br />

state AB<br />

Failure <strong>of</strong> fuel pool cool<strong>in</strong>g due to failure <strong>of</strong><br />

emergency electrical supply and/or preventative<br />

ma<strong>in</strong>tenance and failure <strong>of</strong> makeup us<strong>in</strong>g backup<br />

equipment and failure to repair <strong>the</strong> failed<br />

components before 107h.<br />

Failure <strong>of</strong> <strong>the</strong> SPPA-T2000 platform and <strong>the</strong><br />

operator fails to carry out a local action to <strong>in</strong>itiate<br />

<strong>the</strong> stand-by pump before 97°C and failure <strong>of</strong><br />

makeup us<strong>in</strong>g backup equipment and failure to<br />

repair <strong>the</strong> failed components before 33 hours.<br />

Failure <strong>of</strong> <strong>the</strong> SPPA-T2000 platform and <strong>the</strong><br />

operator fails to carry out a local action to <strong>in</strong>itiate<br />

<strong>the</strong> stand-by pump before 97°C and failure <strong>of</strong><br />

makeup us<strong>in</strong>g backup equipment and failure to<br />

repair <strong>the</strong> failed components before 107 hours.<br />

Failure <strong>of</strong> fuel pool cool<strong>in</strong>g due to failure <strong>of</strong><br />

emergency electrical supply and/or preventative<br />

ma<strong>in</strong>tenance and failure <strong>of</strong> makeup us<strong>in</strong>g backup<br />

equipment and failure to repair <strong>the</strong> failed<br />

components before 33 hours.<br />

Failure <strong>of</strong> <strong>the</strong> SPPA-T2000 platform and <strong>the</strong><br />

operator fails to carry out a local action to <strong>in</strong>itiate<br />

<strong>the</strong> stand-by pump before 97°C and <strong>the</strong> operator<br />

fails to <strong>in</strong>itiate makeup <strong>of</strong> <strong>the</strong> fuel pool and failure<br />

to repair <strong>the</strong> failed components before 107 hours.<br />

Failure <strong>of</strong> <strong>the</strong> third PTR [FPCS] tra<strong>in</strong> (cool<strong>in</strong>g<br />

cha<strong>in</strong> or <strong>in</strong>tr<strong>in</strong>sic) and failure <strong>of</strong> <strong>the</strong> operator to<br />

<strong>in</strong>itiate <strong>the</strong> makeup equipment and failure to repair<br />

failed components before 33 hours.<br />

Failure <strong>of</strong> <strong>the</strong> operator to <strong>in</strong>itiate <strong>the</strong> stand-by<br />

pump before 97°C and failure <strong>of</strong> makeup us<strong>in</strong>g<br />

backup equipment and failure to repair <strong>the</strong> failed<br />

components before 33 hours.<br />

Failure <strong>of</strong> <strong>the</strong> SPPA-T2000 platform and <strong>the</strong><br />

operator fails to carry out a local action to <strong>in</strong>itiate<br />

<strong>the</strong> stand-by pump before 97°C and <strong>the</strong> operator<br />

fails to <strong>in</strong>itiate makeup <strong>of</strong> <strong>the</strong> fuel pool and failure<br />

to repair <strong>the</strong> failed components before 107 hours.<br />

Failure <strong>of</strong> <strong>the</strong> SPPA-T2000 platform and <strong>the</strong><br />

operator fails <strong>the</strong> local action to <strong>in</strong>itiate <strong>the</strong> standby<br />

pump before 97°C and failure <strong>of</strong> makeup <strong>of</strong><br />

<strong>the</strong> fuel pool due to failure <strong>of</strong> normal and backup<br />

equipment and failure to repair <strong>the</strong> failed<br />

components before 107 hours.<br />

1.00E-10 18.9<br />

9.66E-11 18.2<br />

5.62E-11 10.6<br />

5.22E-11 9.8<br />

3.06E-11 5.8<br />

2.15E-11 4.0<br />

1,93E-11 3.6<br />

1.07E-11 2.0<br />

9.2E-12 1.7<br />

UNCONTROLLED WHEN PRINTED<br />

NOT PROTECTIVELY MARKED<br />

Page 24 <strong>of</strong> 37


HPC-NNBOSL-U0-000-RES-000034 Version 2.0<br />

<strong>PSA</strong> <strong>of</strong> <strong>Accidents</strong> <strong>in</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong><br />

NOT PROTECTIVELY MARKED<br />

The dom<strong>in</strong>ant cause <strong>of</strong> fuel damage is <strong>the</strong> failure <strong>of</strong> <strong>the</strong> fuel pool cool<strong>in</strong>g due to failure <strong>of</strong><br />

<strong>the</strong> emergency electrical supply and <strong>the</strong> failure <strong>of</strong> <strong>the</strong> makeup <strong>of</strong> <strong>the</strong> fuel pool with backup<br />

equipment which rema<strong>in</strong> available <strong>in</strong> case <strong>of</strong> LOOP.<br />

The second most important cause <strong>of</strong> fuel damage is <strong>the</strong> failure <strong>of</strong> <strong>the</strong> operator to <strong>in</strong>itiate<br />

<strong>the</strong> makeup after <strong>the</strong> dom<strong>in</strong>ant boil<strong>in</strong>g sequences identified above.<br />

In addition, <strong>the</strong> need to repair <strong>the</strong> failed component and <strong>the</strong> third PTR [FPCS] tra<strong>in</strong>, both<br />

its components and <strong>the</strong> cool<strong>in</strong>g cha<strong>in</strong>, is significant.<br />

The <strong>in</strong>sights ga<strong>in</strong>ed from this analysis are discussed <strong>in</strong> Sub-chapter 15.7 [Ref.16], which<br />

reviews <strong>in</strong>sights from <strong>the</strong> overall <strong>PSA</strong>, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> contribution from <strong>the</strong> fuel pool.<br />

5 <strong>PSA</strong> FOR DRAINING EVENTS<br />

5.1 Introduction<br />

At this stage, this section only considers <strong>the</strong> frequency <strong>of</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong> rapid<br />

dra<strong>in</strong><strong>in</strong>g <strong>in</strong>itiat<strong>in</strong>g events and <strong>the</strong> associated risks <strong>of</strong> damage to fuel assemblies stored <strong>in</strong><br />

<strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong> or <strong>in</strong> handl<strong>in</strong>g operations (e.g. fuel transfer between <strong>the</strong> load<strong>in</strong>g pit<br />

and <strong>the</strong> fuel build<strong>in</strong>g transfer compartment).<br />

This quantification forms a basis for <strong>the</strong> rank<strong>in</strong>g <strong>of</strong> <strong>the</strong> Plant Condition Categories (PCC)<br />

<strong>of</strong> dra<strong>in</strong><strong>in</strong>g <strong>in</strong>itiat<strong>in</strong>g events and aims to confirm that <strong>the</strong>re is practically no risk <strong>of</strong> fuel<br />

damage <strong>in</strong> handl<strong>in</strong>g operations or while stored <strong>in</strong> <strong>the</strong> pool follow<strong>in</strong>g dra<strong>in</strong><strong>in</strong>g <strong>of</strong> <strong>the</strong> <strong>Spent</strong><br />

<strong>Fuel</strong> <strong>Pool</strong>.<br />

The follow<strong>in</strong>g are excluded:<br />

Dra<strong>in</strong><strong>in</strong>g scenarios which lead to leaks that can be made up by normal makeup<br />

means (


HPC-NNBOSL-U0-000-RES-000034 Version 2.0<br />

<strong>PSA</strong> <strong>of</strong> <strong>Accidents</strong> <strong>in</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong><br />

NOT PROTECTIVELY MARKED<br />

Nature and Position <strong>of</strong> Break Plant State Isolatable or<br />

Not<br />

Equivalent<br />

Diameter<br />

Area (cm 2 )<br />

RCP [RCS] E no - 1 to 5<br />

RIS/RRA <strong>in</strong>side isolatable conta<strong>in</strong>ment E yes - 20 to 125<br />

RIS/RRA <strong>in</strong>side isolatable conta<strong>in</strong>ment E yes - 125 to 830<br />

RIS/RRA outside isolatable<br />

conta<strong>in</strong>ment<br />

RIS/RRA outside isolatable<br />

conta<strong>in</strong>ment<br />

RIS/RRA outside isolatable<br />

conta<strong>in</strong>ment<br />

E yes - 1 to 5<br />

E yes - 5 to 20<br />

E yes - 125 to 830<br />

RIS/RRA relief valves (re-closable) E yes - 5 to 20<br />

RIS/RRA relief valves (blocked) E yes - 5 to 20<br />

Reactor build<strong>in</strong>g purification upstream<br />

<strong>of</strong> <strong>the</strong> pump<br />

E yes DN150 -<br />

Reactor build<strong>in</strong>g skimm<strong>in</strong>g E yes DN50 -<br />

Reactor build<strong>in</strong>g purification<br />

downstream <strong>of</strong> <strong>the</strong> pump<br />

E yes DN150 -<br />

5.2.2 Dra<strong>in</strong><strong>in</strong>g via a Break <strong>in</strong> <strong>the</strong> Pipes Connected to <strong>the</strong> <strong>Fuel</strong> Build<strong>in</strong>g<br />

<strong>Pool</strong>s<br />

The follow<strong>in</strong>g table presents <strong>the</strong> <strong>in</strong>itiat<strong>in</strong>g events <strong>of</strong> this group and <strong>the</strong> equivalent<br />

nom<strong>in</strong>al diameter (DN) <strong>of</strong> <strong>the</strong> break surface area. Depend<strong>in</strong>g on <strong>the</strong> nature and position<br />

<strong>of</strong> <strong>the</strong> break, it <strong>in</strong>dicates whe<strong>the</strong>r it is isolatable or not.<br />

Nature and Position <strong>of</strong> Break Plant State Isolatable or<br />

Not<br />

Equivalent<br />

Diameter<br />

Clean break on <strong>the</strong> suction <strong>of</strong> a ma<strong>in</strong> PTR<br />

[FPCS] tra<strong>in</strong><br />

A - D yes DN300<br />

E yes DN300<br />

F yes DN300<br />

Clean break on <strong>the</strong> discharge <strong>of</strong> a ma<strong>in</strong> PTR<br />

[FPCS] tra<strong>in</strong><br />

A - D yes DN300<br />

E yes DN300<br />

F yes DN300<br />

Clean break on <strong>the</strong> suction <strong>of</strong> fuel build<strong>in</strong>g<br />

purification<br />

A - D yes DN150<br />

E yes DN150<br />

F yes DN150<br />

Clean break on <strong>the</strong> discharge <strong>of</strong> fuel build<strong>in</strong>g<br />

purification<br />

A - D yes DN150<br />

E yes DN150<br />

F yes DN150<br />

UNCONTROLLED WHEN PRINTED<br />

NOT PROTECTIVELY MARKED<br />

Page 26 <strong>of</strong> 37


HPC-NNBOSL-U0-000-RES-000034 Version 2.0<br />

<strong>PSA</strong> <strong>of</strong> <strong>Accidents</strong> <strong>in</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong><br />

NOT PROTECTIVELY MARKED<br />

Nature and Position <strong>of</strong> Break Plant State Isolatable or<br />

Not<br />

Equivalent<br />

Diameter<br />

Clean break on <strong>the</strong> suction <strong>of</strong> <strong>the</strong> third PTR<br />

[FPCS] tra<strong>in</strong><br />

Clean break on <strong>the</strong> discharge <strong>of</strong> <strong>the</strong> third PTR<br />

[FPCS] tra<strong>in</strong><br />

Break on <strong>the</strong> dra<strong>in</strong><strong>in</strong>g pip<strong>in</strong>g <strong>of</strong> <strong>the</strong> fuel<br />

build<strong>in</strong>g transfer compartment towards<br />

IRWST<br />

A - D yes DN300<br />

A - D yes DN300<br />

A - D yes DN50<br />

5.2.3 Dra<strong>in</strong><strong>in</strong>g due to Alignment Error on <strong>the</strong> Pipes Connected to <strong>the</strong><br />

Reactor Build<strong>in</strong>g <strong>Pool</strong>s<br />

The follow<strong>in</strong>g table presents <strong>the</strong> <strong>in</strong>itiat<strong>in</strong>g events <strong>of</strong> this group and <strong>the</strong> associated<br />

dra<strong>in</strong><strong>in</strong>g flow rates <strong>in</strong> m 3 /h [Ref. 3]. These errors are only likely to lead to <strong>the</strong> dra<strong>in</strong><strong>in</strong>g <strong>of</strong><br />

<strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong> <strong>in</strong> state E (AS-0018).<br />

Description <strong>of</strong> Initiat<strong>in</strong>g Event Plant State Flow Rate<br />

(m 3 /h)<br />

Spurious open<strong>in</strong>g <strong>of</strong> a zero flow pressure l<strong>in</strong>e LHSI/RHR E 106<br />

Dra<strong>in</strong><strong>in</strong>g via <strong>the</strong> RCV [CVCS] dra<strong>in</strong><strong>in</strong>g l<strong>in</strong>e E < 72<br />

Deliberate dra<strong>in</strong><strong>in</strong>g <strong>of</strong> <strong>the</strong> reactor build<strong>in</strong>g pool, fuel build<strong>in</strong>g pool not<br />

isolated<br />

Spurious open<strong>in</strong>g <strong>of</strong> <strong>the</strong> dra<strong>in</strong><strong>in</strong>g valve for <strong>the</strong> reactor build<strong>in</strong>g<br />

compartments towards <strong>the</strong> IRWST<br />

E 180<br />

E < 880<br />

5.2.4 Dra<strong>in</strong><strong>in</strong>g due to Alignment Error on <strong>the</strong> Pipes Connected to <strong>the</strong><br />

<strong>Fuel</strong> Build<strong>in</strong>g <strong>Pool</strong>s<br />

The follow<strong>in</strong>g table presents <strong>the</strong> <strong>in</strong>itiat<strong>in</strong>g events <strong>of</strong> this group and <strong>the</strong> associated<br />

dra<strong>in</strong><strong>in</strong>g flow rates <strong>in</strong> m 3 /h [Ref. 3]. These errors are only likely to lead to <strong>the</strong> dra<strong>in</strong><strong>in</strong>g <strong>of</strong><br />

<strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong> <strong>in</strong> state A.<br />

Description <strong>of</strong> Initiat<strong>in</strong>g Event Plant State Flow Rate (m 3 /h)<br />

Inadequately prepared transfer between <strong>the</strong> load<strong>in</strong>g pit and <strong>the</strong> fuel<br />

build<strong>in</strong>g transfer compartment<br />

A 90<br />

5.3 Prelim<strong>in</strong>ary Evaluation <strong>of</strong> <strong>the</strong> Risk <strong>of</strong> Damage<br />

5.3.1 Study Assumptions<br />

5.3.1.1 Decoupl<strong>in</strong>g Criteria<br />

Two decoupl<strong>in</strong>g criteria are def<strong>in</strong>ed:<br />

Uncover<strong>in</strong>g <strong>of</strong> <strong>the</strong> fuel dur<strong>in</strong>g handl<strong>in</strong>g operations (state E): The level <strong>of</strong> <strong>the</strong> <strong>Spent</strong><br />

<strong>Fuel</strong> <strong>Pool</strong> reaches <strong>the</strong> top <strong>of</strong> <strong>the</strong> fuel dur<strong>in</strong>g handl<strong>in</strong>g due to <strong>the</strong> dra<strong>in</strong><strong>in</strong>g with a failure<br />

to place <strong>the</strong> fuel <strong>in</strong> a safe position and if <strong>the</strong> leak is not isolated beforehand.<br />

<br />

Uncover<strong>in</strong>g <strong>of</strong> <strong>the</strong> fuel <strong>in</strong> <strong>the</strong> pool: Cool<strong>in</strong>g is lost due to <strong>the</strong> lower<strong>in</strong>g <strong>of</strong> <strong>the</strong> pool level<br />

due to <strong>the</strong> dra<strong>in</strong><strong>in</strong>g. Loss <strong>of</strong> cool<strong>in</strong>g leads to boil<strong>in</strong>g, which leads to a fur<strong>the</strong>r drop <strong>in</strong><br />

UNCONTROLLED WHEN PRINTED<br />

NOT PROTECTIVELY MARKED<br />

Page 27 <strong>of</strong> 37


HPC-NNBOSL-U0-000-RES-000034 Version 2.0<br />

<strong>PSA</strong> <strong>of</strong> <strong>Accidents</strong> <strong>in</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong><br />

NOT PROTECTIVELY MARKED<br />

<strong>the</strong> level <strong>of</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong>. The assemblies stored <strong>in</strong> <strong>the</strong> pool are uncovered if<br />

makeup and <strong>the</strong> recovery <strong>of</strong> cool<strong>in</strong>g are not achieved before <strong>the</strong> water level reaches<br />

<strong>the</strong> top <strong>of</strong> <strong>the</strong> assemblies.<br />

When one <strong>of</strong> <strong>the</strong>se two criteria is reached, fuel damage is assumed to have occurred.<br />

5.3.1.2 Restart<strong>in</strong>g at 100°C<br />

The PTR [FPCS] cool<strong>in</strong>g system is designed to restart at 100°C. Never<strong>the</strong>less, <strong>the</strong> <strong>PSA</strong><br />

evaluation for dra<strong>in</strong><strong>in</strong>g is conservatively based on <strong>the</strong> follow<strong>in</strong>g assumptions:<br />

<br />

Start-up <strong>of</strong> <strong>the</strong> third PTR [FPCS] tra<strong>in</strong> is possible without makeup if <strong>the</strong> level rema<strong>in</strong>s<br />

above { CCI } a . (AS-0019)<br />

Recovery <strong>of</strong> cool<strong>in</strong>g requires makeup to be undertaken if boil<strong>in</strong>g conditions have<br />

been reached. (AS-0020)<br />

5.3.1.3 Calculation Assumptions<br />

The follow<strong>in</strong>g general assumptions are made <strong>in</strong> <strong>the</strong> transient analysis <strong>of</strong> <strong>the</strong> accident.<br />

5.3.1.3.1 Chronology <strong>of</strong> Events<br />

If <strong>the</strong>re is no makeup, <strong>the</strong> time w<strong>in</strong>dow available for operator <strong>in</strong>tervention prior to<br />

reach<strong>in</strong>g <strong>the</strong> various threshold levels <strong>in</strong> <strong>the</strong> pool is calculated <strong>in</strong> accordance with <strong>the</strong><br />

volume <strong>of</strong> <strong>the</strong> pool <strong>in</strong> <strong>the</strong> state <strong>in</strong> which <strong>the</strong> <strong>in</strong>itiat<strong>in</strong>g event occurs and <strong>the</strong> leak flow rate.<br />

The various threshold levels <strong>in</strong> <strong>the</strong> pool are:<br />

<br />

<br />

<br />

Tripp<strong>in</strong>g <strong>of</strong> <strong>the</strong> pumps <strong>of</strong> <strong>the</strong> ma<strong>in</strong> PTR [FPCS] tra<strong>in</strong>s.<br />

Tripp<strong>in</strong>g <strong>of</strong> <strong>the</strong> gamma radiation signal.<br />

Maximum elevation <strong>of</strong> a fuel assembly dur<strong>in</strong>g handl<strong>in</strong>g operations.<br />

Acceptable zone for <strong>the</strong> fuel stored <strong>in</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong>.<br />

5.3.1.3.2 Makeup Systems<br />

Conservatively, <strong>in</strong> this assessment only <strong>the</strong> makeup systems whose flow rates are<br />

compatible with a rapid return to a level, which allows cool<strong>in</strong>g to be restarted, are<br />

claimed (AS-0021). Their characteristics are listed below:<br />

Location <strong>of</strong> Intervention<br />

Makeup Flow<br />

Rate<br />

Water Storage<br />

Purification + IRWST Control room + local l<strong>in</strong>e 90m 3 /h 1895m 3 /h<br />

Nuclear Island Fire-Fight<strong>in</strong>g Water<br />

Protection and distribution<br />

Control room + local l<strong>in</strong>e<br />

~150m 3 /h (and<br />

by leg)<br />

~800m 3 +<br />

2600m 3<br />

5.3.1.3.3 Consideration <strong>of</strong> Uncerta<strong>in</strong>ties Related to Repair/Recovery<br />

Conservatively, <strong>the</strong> analysis <strong>of</strong> dra<strong>in</strong><strong>in</strong>g events does not claim that system repairs will be<br />

attempted with<strong>in</strong> <strong>the</strong> mission time (AS-0022).<br />

UNCONTROLLED WHEN PRINTED<br />

NOT PROTECTIVELY MARKED<br />

Page 28 <strong>of</strong> 37


HPC-NNBOSL-U0-000-RES-000034 Version 2.0<br />

<strong>PSA</strong> <strong>of</strong> <strong>Accidents</strong> <strong>in</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong><br />

NOT PROTECTIVELY MARKED<br />

5.3.2 Analysis <strong>of</strong> <strong>the</strong> Accident<br />

The water level starts to drop after <strong>the</strong> leak occurs.<br />

For very rapid falls <strong>in</strong> water level where <strong>the</strong> required response times are less than 15<br />

m<strong>in</strong>utes, <strong>the</strong> response is automated. A group <strong>of</strong> I&C channels or passive devices such<br />

as a siphon breaker, term<strong>in</strong>ate <strong>the</strong> dra<strong>in</strong><strong>in</strong>g prior to fuel uncover<strong>in</strong>g.<br />

For slower scenarios, isolation <strong>of</strong> <strong>the</strong> break is likely to depend on operator action, ei<strong>the</strong>r<br />

<strong>in</strong> <strong>the</strong> control room or locally.<br />

If <strong>the</strong> leak occurs dur<strong>in</strong>g fuel handl<strong>in</strong>g, <strong>the</strong> operator places <strong>the</strong> assemblies <strong>in</strong> a safe<br />

position. The time available to undertake this operation determ<strong>in</strong>es <strong>the</strong> probability <strong>of</strong><br />

failure to place <strong>the</strong> assemblies <strong>in</strong> a safe position.<br />

In <strong>the</strong> event <strong>of</strong> <strong>the</strong> dra<strong>in</strong><strong>in</strong>g hav<strong>in</strong>g been isolated follow<strong>in</strong>g <strong>the</strong> loss <strong>of</strong> cool<strong>in</strong>g, <strong>the</strong><br />

operator <strong>in</strong>itiates makeup to <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong> to allow recovery <strong>of</strong> cool<strong>in</strong>g by <strong>the</strong> PTR<br />

[FPCS]. Initiation <strong>of</strong> makeup must be carried out as quickly as possible to avoid<br />

situations <strong>in</strong> which cool<strong>in</strong>g is recovered after <strong>the</strong> start <strong>of</strong> boil<strong>in</strong>g.<br />

If cool<strong>in</strong>g is not recovered, boil<strong>in</strong>g <strong>in</strong>creases <strong>the</strong> rate <strong>of</strong> level drop <strong>in</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong><br />

until <strong>the</strong> fuel assemblies are uncovered.<br />

5.3.3 Risk <strong>of</strong> <strong>Fuel</strong> Damage follow<strong>in</strong>g a breach <strong>of</strong> Pipework Connected<br />

to <strong>the</strong> Reactor Build<strong>in</strong>g <strong>Pool</strong>s<br />

The follow<strong>in</strong>g table presents <strong>the</strong> risk <strong>of</strong> fuel damage due to <strong>in</strong>itiat<strong>in</strong>g events <strong>of</strong> this group<br />

[Ref. 4].<br />

Nature and Position <strong>of</strong> Break Surface Area (cm 2 )<br />

or DN<br />

Risk <strong>of</strong> <strong>Fuel</strong> Damage<br />

(/r.y)<br />

Reactor Coolant System 1 to 5 1.54E-11<br />

SIS/ RHR <strong>in</strong>side isolatable conta<strong>in</strong>ment 20 to 125 < 1E-12<br />

SIS/ RHR <strong>in</strong>side isolatable conta<strong>in</strong>ment 125 to 830 1.2E-12<br />

SIS/ RHR outside isolatable conta<strong>in</strong>ment 1 to 5 < 1E-12<br />

SIS/ RHR outside isolatable conta<strong>in</strong>ment 5 to 20 < 1E-12<br />

SIS/ RHR outside isolatable conta<strong>in</strong>ment 125 to 830 2.4E-12<br />

SIS/ RHR relief valves (re-closable) 5 to 20 < 1E-12<br />

SIS/ RHR relief valves (blocked) 5 to 20 < 1E-12<br />

Reactor build<strong>in</strong>g purification upstream <strong>of</strong> <strong>the</strong> pump DN150 < 1E-12<br />

Reactor build<strong>in</strong>g skimm<strong>in</strong>g DN50 < 1E-12<br />

Reactor build<strong>in</strong>g purification downstream <strong>of</strong> <strong>the</strong> pump DN150 < 1E-12<br />

UNCONTROLLED WHEN PRINTED<br />

NOT PROTECTIVELY MARKED<br />

Page 29 <strong>of</strong> 37


HPC-NNBOSL-U0-000-RES-000034 Version 2.0<br />

<strong>PSA</strong> <strong>of</strong> <strong>Accidents</strong> <strong>in</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong><br />

NOT PROTECTIVELY MARKED<br />

5.3.4 Risk <strong>of</strong> <strong>Fuel</strong> Damage follow<strong>in</strong>g a break <strong>of</strong> Pipework Connected<br />

to <strong>the</strong> <strong>Fuel</strong> Build<strong>in</strong>g <strong>Pool</strong>s<br />

The follow<strong>in</strong>g table presents <strong>the</strong> risk <strong>of</strong> fuel damage due to <strong>the</strong>se <strong>in</strong>itiat<strong>in</strong>g events <strong>in</strong> this<br />

group.<br />

Nature and Position <strong>of</strong> Break Plant State Equivalent<br />

Diameter<br />

Risk <strong>of</strong> <strong>Fuel</strong><br />

Damage (/r.y)<br />

Guillot<strong>in</strong>e break on <strong>the</strong> suction <strong>of</strong> a ma<strong>in</strong> PTR<br />

[FPCS] tra<strong>in</strong><br />

A - D DN300 1.64E-10<br />

E DN300 1.26E-11<br />

F DN300 2.23E-11<br />

Guillot<strong>in</strong>e break on <strong>the</strong> discharge <strong>of</strong> a ma<strong>in</strong><br />

PTR [FPCS] tra<strong>in</strong><br />

A - D DN300 2.12E-10<br />

E DN300 1.68E-11<br />

F DN300 3.11E-11<br />

Guillot<strong>in</strong>e break on <strong>the</strong> suction <strong>of</strong> fuel build<strong>in</strong>g<br />

purification<br />

A - D DN150 0<br />

E DN150 < 1E-12<br />

F DN150 0<br />

Guillot<strong>in</strong>e break on <strong>the</strong> discharge <strong>of</strong> fuel<br />

build<strong>in</strong>g purification<br />

A - D DN150 0<br />

E DN150 < 1E-12<br />

F DN150 0<br />

Guillot<strong>in</strong>e break on <strong>the</strong> suction <strong>of</strong> <strong>the</strong> third<br />

PTR [FPCS] tra<strong>in</strong><br />

Guillot<strong>in</strong>e break on <strong>the</strong> discharge <strong>of</strong> <strong>the</strong> third<br />

PTR [FPCS] tra<strong>in</strong><br />

Break on <strong>the</strong> dra<strong>in</strong><strong>in</strong>g pip<strong>in</strong>g <strong>of</strong> <strong>the</strong> fuel<br />

build<strong>in</strong>g transfer compartment to <strong>the</strong> IRWST<br />

A - D DN300 7.52E-10<br />

A - D DN300 1.06E-09<br />

A - D DN50 < 1E-12<br />

5.3.5 Risk <strong>of</strong> <strong>Fuel</strong> damage follow<strong>in</strong>g an Alignment Error on Pipework<br />

Connected to <strong>the</strong> Reactor Build<strong>in</strong>g <strong>Pool</strong>s<br />

The follow<strong>in</strong>g table presents <strong>the</strong> risk <strong>of</strong> fuel damage due to <strong>the</strong> <strong>in</strong>itiat<strong>in</strong>g events <strong>of</strong> this<br />

group.<br />

Description <strong>of</strong> Initiat<strong>in</strong>g Event Flow Rate ( m 3 /h) Risk <strong>of</strong> <strong>Fuel</strong><br />

Damage (/r.y)<br />

Spurious open<strong>in</strong>g <strong>of</strong> a zero flow pressure l<strong>in</strong>e LHSI/RHR 106 < 1E-12<br />

Dra<strong>in</strong><strong>in</strong>g via <strong>the</strong> unload<strong>in</strong>g l<strong>in</strong>e RCV [CVCS] < 72 < 1E-12<br />

Voluntary dra<strong>in</strong><strong>in</strong>g <strong>of</strong> <strong>the</strong> reactor build<strong>in</strong>g pool, <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong><br />

not isolated<br />

Spurious open<strong>in</strong>g <strong>of</strong> <strong>the</strong> dra<strong>in</strong><strong>in</strong>g valve <strong>of</strong> <strong>the</strong> reactor build<strong>in</strong>g<br />

compartments to <strong>the</strong> IRWST<br />

180 < 1E-12<br />

< 880 < 1E-12<br />

UNCONTROLLED WHEN PRINTED<br />

NOT PROTECTIVELY MARKED<br />

Page 30 <strong>of</strong> 37


HPC-NNBOSL-U0-000-RES-000034 Version 2.0<br />

<strong>PSA</strong> <strong>of</strong> <strong>Accidents</strong> <strong>in</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong><br />

NOT PROTECTIVELY MARKED<br />

5.3.6 Risk <strong>of</strong> <strong>Fuel</strong> damage follow<strong>in</strong>g an Alignment Error on <strong>the</strong><br />

Pipework Connected to <strong>the</strong> <strong>Fuel</strong> Build<strong>in</strong>g<br />

The follow<strong>in</strong>g table presents <strong>the</strong> risk <strong>of</strong> fuel damage result<strong>in</strong>g from <strong>the</strong> <strong>in</strong>itiat<strong>in</strong>g events <strong>of</strong><br />

this family.<br />

Description <strong>of</strong> Initiat<strong>in</strong>g Event Flow Rate (m 3 /h) Risk <strong>of</strong> <strong>Fuel</strong><br />

Damage (/r.y)<br />

Inadequately prepared transfer between <strong>the</strong> load<strong>in</strong>g pit and <strong>the</strong><br />

fuel build<strong>in</strong>g transfer compartment<br />

90 < 1E-12<br />

5.4 Summary <strong>of</strong> Results<br />

This evaluation confirms that <strong>the</strong>re is negligible risk <strong>of</strong> fuel damage <strong>in</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong><br />

<strong>Pool</strong> or dur<strong>in</strong>g handl<strong>in</strong>g as a result <strong>of</strong> dra<strong>in</strong><strong>in</strong>g <strong>in</strong>itiat<strong>in</strong>g events. The total risk <strong>of</strong> fuel<br />

damage from all <strong>the</strong> rapid dra<strong>in</strong><strong>in</strong>g <strong>in</strong>itiat<strong>in</strong>g events is calculated to be 2.3E-09/r.y.<br />

These results reveal <strong>the</strong> effectiveness <strong>of</strong> <strong>the</strong> means for mitigat<strong>in</strong>g <strong>the</strong> <strong>in</strong>itiat<strong>in</strong>g events<br />

and, <strong>in</strong> particular, <strong>the</strong> effectiveness <strong>of</strong> <strong>the</strong> automatic isolation <strong>of</strong> <strong>the</strong> leak paths. These<br />

are highly reliable due to <strong>the</strong>ir redundancy, diversity and, <strong>in</strong> some <strong>in</strong>stances, <strong>the</strong>ir<br />

classification. These means will also enable <strong>the</strong> risk <strong>of</strong> boil<strong>in</strong>g to be severely restricted <strong>in</strong><br />

<strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong>, <strong>in</strong> compliance with <strong>the</strong> technical directives.<br />

6 CONCLUSION<br />

The evaluation <strong>of</strong> consequences <strong>in</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong> <strong>in</strong> <strong>the</strong> event <strong>of</strong> non-dra<strong>in</strong><strong>in</strong>g<br />

events (loss <strong>of</strong> cool<strong>in</strong>g cha<strong>in</strong>) or <strong>in</strong> <strong>the</strong> event <strong>of</strong> dra<strong>in</strong><strong>in</strong>g confirms that <strong>the</strong>re is a<br />

negligible risk <strong>of</strong> fuel damage <strong>in</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong>. The global risk <strong>of</strong> fuel damage is<br />

calculated to be 2.8E-09/r.y, for which <strong>the</strong> dra<strong>in</strong><strong>in</strong>g events are <strong>the</strong> ma<strong>in</strong> contributors<br />

(81%).<br />

Follow<strong>in</strong>g <strong>the</strong> loss <strong>of</strong> cool<strong>in</strong>g <strong>of</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong> and before <strong>the</strong> occurrence <strong>of</strong> fuel<br />

damage due to uncover<strong>in</strong>g <strong>of</strong> <strong>the</strong> fuel assemblies, <strong>the</strong> analysis takes <strong>in</strong>to account boil<strong>in</strong>g<br />

and hence loss <strong>of</strong> <strong>the</strong> water when 100°C is reached <strong>in</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong>. The overall<br />

frequency <strong>of</strong> boil<strong>in</strong>g <strong>in</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong> is 2.9E-04/r.y, dom<strong>in</strong>ated by <strong>the</strong> at-power<br />

state, and ma<strong>in</strong>ly caused by <strong>the</strong> LOCC and <strong>the</strong> loss <strong>of</strong> PTR [FPCS] pump.<br />

In all accident sequences, I&C signal effectiveness enables accurate automatic and<br />

manual actions to be performed <strong>in</strong> <strong>the</strong> time w<strong>in</strong>dow before unacceptable consequences.<br />

In addition, <strong>the</strong> importance <strong>of</strong> <strong>the</strong> third tra<strong>in</strong> <strong>of</strong> <strong>the</strong> PTR [FPCS] (both its specific<br />

components and its cool<strong>in</strong>g cha<strong>in</strong>) has been highlighted.<br />

The <strong>in</strong>sights ga<strong>in</strong>ed from this analysis are discussed <strong>in</strong> Sub-chapter 15.7 [Ref. 16] which<br />

reviews <strong>in</strong>sights from <strong>the</strong> overall <strong>PSA</strong>, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> contribution from <strong>the</strong> fuel pool.<br />

UNCONTROLLED WHEN PRINTED<br />

NOT PROTECTIVELY MARKED<br />

Page 31 <strong>of</strong> 37


HPC-NNBOSL-U0-000-RES-000034 Version 2.0<br />

<strong>PSA</strong> <strong>of</strong> <strong>Accidents</strong> <strong>in</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong><br />

NOT PROTECTIVELY MARKED<br />

7 REFERENCES AND ABBREVIATIONS<br />

7.1 References<br />

1. System Design Manual <strong>Fuel</strong> <strong>Pool</strong> Purification and Cool<strong>in</strong>g Systems (PTR<br />

[FPPS/FPCS]) Part 5 – Instrumentation and Control, SFL–EFMF 2006.751<br />

Revision F1, November 2009, S<strong>of</strong><strong>in</strong>el.<br />

SFL–EFMF 2006.751 Revision F1 is <strong>the</strong> English translation <strong>of</strong> SFL–EFMF<br />

2006.751 Revision F.<br />

2. System Design Manual - <strong>Fuel</strong> <strong>Pool</strong> Cool<strong>in</strong>g System (PTR [FPPS/FPCS]) - Part 2<br />

System Operation, SFL–EF-MF 2006-712 Revision G1, August 2009, S<strong>of</strong><strong>in</strong>el.<br />

SFL–EF-MF 2006-712 Revision G1 is <strong>the</strong> English Translation <strong>of</strong> SFL–EF-MF<br />

2006-712 Revision G.<br />

3. Loss <strong>of</strong> cool<strong>in</strong>g and pool dra<strong>in</strong>age PCCs: functional report, ECEF080499<br />

Revision A1 (TR08/536), December 2008, <strong>EDF</strong>.<br />

ECEF080499 Revision A1 is <strong>the</strong> English translation <strong>of</strong> ECEF080499 Revision A.<br />

4. <strong>EDF</strong> FA3 EPR - Prelim<strong>in</strong>ary Safety Analysis Report, Chapter 18.3.2, “<strong>Accidents</strong> <strong>in</strong><br />

<strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong>”. 2006.<br />

5. Not Used.<br />

6. Summary <strong>of</strong> <strong>the</strong> <strong>in</strong>put data for <strong>the</strong> UK EPR Probabilistic Safety Assessment.<br />

NEPS-F DC 565 Revision A., May 2010, AREVA.<br />

7. G W Hannaman et al. Some Developments <strong>in</strong> Human Reliability Analysis<br />

Approach and Tools, Reliability Eng<strong>in</strong>eer<strong>in</strong>g and Tools, Reliability Eng<strong>in</strong>eer<strong>in</strong>g and<br />

Systems Safety 1988, Vol. 22, 235-256.<br />

8. { PI removed } Site Specific Probabilistic Safety Analysis for a UK EPR TM at<br />

H<strong>in</strong>kley Po<strong>in</strong>t. PEPS-F DC 108 C, May 2012, AREVA.<br />

9. HPC PCSR <strong>PSA</strong> Assumptions Log, HPC-NNBOSL-U0-000-REG-000011, To be<br />

issued, NNB.<br />

10. EPR UK; Human Reliability Analysis Notebook <strong>of</strong> <strong>the</strong> UK EPR Probabilistic<br />

Safety. NEPS-F DC 191 A, January 2010, AREVA.<br />

11. { PI removed } Frequency <strong>of</strong> loss <strong>of</strong> <strong>of</strong>f-site power (LOOP) for use <strong>in</strong> HPC PCSR<br />

<strong>PSA</strong> EPR, ENFCFI110004 Revision A, December 2011, <strong>EDF</strong>/SEPTEN.<br />

12. H<strong>in</strong>kley Po<strong>in</strong>t PCSR2, Sub-chapter 15.1. Level 1 <strong>PSA</strong>,<br />

HPC-NNBOSL-U0-000-RES-000033, August 2012, NNB GenCo.<br />

13. H<strong>in</strong>kley Po<strong>in</strong>t PCSR2, Sub-chapter 2.1. Site data used <strong>in</strong> <strong>the</strong> Safety Analyses.<br />

HPC-NNBOSL-U0-000-RET-000004. January 2012.<br />

14. UK EPR. Probabilistic Safety Analysis Level 1 Detailed Documentation.<br />

NEPS-F DC 355 Revision C FIN, June 2010, AREVA.<br />

15. H<strong>in</strong>kley Po<strong>in</strong>t PCSR2. Sub-chapter 15.2. <strong>PSA</strong> for Internal and external hazards.<br />

HPC-NNBOSL-U0-00-RES-000072. June 2012, NNB GenCo.<br />

16. H<strong>in</strong>kley Po<strong>in</strong>t PCSR2. Sub-chapter 15.7. <strong>PSA</strong> discussion and conclusions.<br />

HPC-NNBOSL-U0-00-RES-000036. July 2012, NNB GenCo.<br />

UNCONTROLLED WHEN PRINTED<br />

NOT PROTECTIVELY MARKED<br />

Page 32 <strong>of</strong> 37


HPC-NNBOSL-U0-000-RES-000034 Version 2.0<br />

<strong>PSA</strong> <strong>of</strong> <strong>Accidents</strong> <strong>in</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong><br />

NOT PROTECTIVELY MARKED<br />

7.2 Abbreviations<br />

Term / Abbreviation<br />

Def<strong>in</strong>ition<br />

BOC<br />

CCF<br />

DN<br />

EOC<br />

EPR<br />

EVU<br />

FPPS<br />

GDA<br />

HCR<br />

IRWST<br />

JPI<br />

LHSI/RHR<br />

LOCC<br />

LOOP<br />

LUHS<br />

MTTR<br />

PCC<br />

<strong>PSA</strong><br />

PTR<br />

RBWMS<br />

RCV<br />

REA<br />

REF<br />

RRI<br />

SED<br />

SEC<br />

SFP<br />

SRU<br />

Beg<strong>in</strong>n<strong>in</strong>g Of Cycle<br />

Common Cause Failure<br />

Nom<strong>in</strong>al Diameter<br />

End <strong>of</strong> Cycle<br />

European Pressurised-water Reactor<br />

Conta<strong>in</strong>ment (Emergency) Heat Removal System (also known as CHRS)<br />

<strong>Fuel</strong> <strong>Pool</strong> Purification System (also known as part <strong>of</strong> PTR)<br />

Generic Design Assessment<br />

Human Cognitive Reliability<br />

In-conta<strong>in</strong>ment Refuell<strong>in</strong>g Water Storage Tank<br />

Protection and distribution <strong>of</strong> nuclear island fight<strong>in</strong>g system<br />

LHSI Tra<strong>in</strong> <strong>in</strong> Residual Heat Removal Mode<br />

Loss Of Cool<strong>in</strong>g Cha<strong>in</strong><br />

Loss Of Off-site Power<br />

Loss <strong>of</strong> Ultimate Heat S<strong>in</strong>k<br />

Mean Time To Repair<br />

Plant Condition Categories<br />

Probabilistic Safety Assessment<br />

<strong>Fuel</strong> <strong>Pool</strong> Cool<strong>in</strong>g System (also known as FPCS and FPPS)<br />

Reactor Boron and Water Make-Up System (also known as REA)<br />

Chemical and Volume Control System (also known as CVCS)<br />

Reactor Boron and Water Make-Up System (also known as RBWMS)<br />

Refuell<strong>in</strong>g<br />

Component Cool<strong>in</strong>g Water System (also known as CCWS)<br />

Dem<strong>in</strong>eralised Water System (also known as DWS)<br />

Essential Services Water System (also known as ESWS)<br />

<strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong><br />

Ultimate Cool<strong>in</strong>g Water System (also known as UCWS)<br />

UNCONTROLLED WHEN PRINTED<br />

NOT PROTECTIVELY MARKED<br />

Page 33 <strong>of</strong> 37


HPC-NNBOSL-U0-000-RES-000034 Version 2.0<br />

<strong>PSA</strong> <strong>of</strong> <strong>Accidents</strong> <strong>in</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong><br />

NOT PROTECTIVELY MARKED<br />

8 TABLES<br />

{<br />

Sub-chapter 15.3 - Table 1: Frequency <strong>of</strong> <strong>the</strong> Non-Dra<strong>in</strong><strong>in</strong>g Initiat<strong>in</strong>g Events<br />

considered <strong>in</strong> <strong>the</strong> Probabilistic Assessment<br />

CCI removed<br />

} a<br />

UNCONTROLLED WHEN PRINTED<br />

NOT PROTECTIVELY MARKED<br />

Page 34 <strong>of</strong> 37


HPC-NNBOSL-U0-000-RES-000034 Version 2.0<br />

<strong>PSA</strong> <strong>of</strong> <strong>Accidents</strong> <strong>in</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong><br />

NOT PROTECTIVELY MARKED<br />

Sub-chapter 15.3 - Table 2: Frequency <strong>of</strong> <strong>the</strong> Dra<strong>in</strong><strong>in</strong>g Initiat<strong>in</strong>g Events<br />

considered <strong>in</strong> <strong>the</strong> Probabilistic Assessment [Ref. 4]<br />

Risk <strong>of</strong> <strong>Fuel</strong> Damage and Frequency follow<strong>in</strong>g a break on Pipes connected to <strong>the</strong> Reactor Build<strong>in</strong>g <strong>Pool</strong>s<br />

Nature and Position <strong>of</strong> Break<br />

Risk <strong>of</strong> <strong>Fuel</strong> Damage<br />

(/r.y)<br />

Frequency (/r.y)<br />

Reactor Coolant System 1.54E-11 { CCI } a<br />

SIS/ RHR <strong>in</strong>side isolatable conta<strong>in</strong>ment < 1E-12 { CCI } a<br />

SIS/ RHR <strong>in</strong>side isolatable conta<strong>in</strong>ment 1.2E-12 { CCI } a<br />

SIS/ RHR outside isolatable conta<strong>in</strong>ment < 1E-12 { CCI } a<br />

SIS/ RHR outside isolatable conta<strong>in</strong>ment < 1E-12 { CCI } a<br />

SIS/ RHR outside isolatable conta<strong>in</strong>ment 2.4E-12 { CCI } a<br />

SIS/ RHR relief valves (re-closable) < 1E-12 { CCI } a<br />

SIS/ RHR relief valves (blocked) < 1E-12 { CCI } a<br />

Reactor build<strong>in</strong>g purification upstream <strong>of</strong> <strong>the</strong> pump < 1E-12 { CCI } a<br />

Reactor build<strong>in</strong>g skimm<strong>in</strong>g < 1E-12 { CCI } a<br />

Reactor build<strong>in</strong>g purification downstream <strong>of</strong> <strong>the</strong> pump < 1E-12 { CCI } a<br />

UNCONTROLLED WHEN PRINTED<br />

NOT PROTECTIVELY MARKED<br />

Page 35 <strong>of</strong> 37


HPC-NNBOSL-U0-000-RES-000034 Version 2.0<br />

<strong>PSA</strong> <strong>of</strong> <strong>Accidents</strong> <strong>in</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong><br />

NOT PROTECTIVELY MARKED<br />

Frequency <strong>of</strong> a Break <strong>of</strong> pipes connected to <strong>the</strong> <strong>Fuel</strong> Build<strong>in</strong>g <strong>Pool</strong>s and consequent Risk <strong>of</strong> <strong>Fuel</strong> Damage<br />

Nature and Position <strong>of</strong> Break Plant State Risk <strong>of</strong> <strong>Fuel</strong><br />

Damage (/r.y)<br />

Frequency (/r.y)<br />

Guillot<strong>in</strong>e break on <strong>the</strong> suction <strong>of</strong> a ma<strong>in</strong><br />

PTR [FPCS] tra<strong>in</strong><br />

Guillot<strong>in</strong>e break on <strong>the</strong> discharge <strong>of</strong> a<br />

ma<strong>in</strong> PTR [FPCS] tra<strong>in</strong><br />

Guillot<strong>in</strong>e break on <strong>the</strong> suction <strong>of</strong> fuel<br />

build<strong>in</strong>g purification<br />

Guillot<strong>in</strong>e break on <strong>the</strong> discharge <strong>of</strong> fuel<br />

build<strong>in</strong>g purification<br />

Guillot<strong>in</strong>e break on <strong>the</strong> suction <strong>of</strong> <strong>the</strong><br />

third PTR [FPCS] tra<strong>in</strong><br />

Guillot<strong>in</strong>e break on <strong>the</strong> discharge <strong>of</strong> <strong>the</strong><br />

third PTR [FPCS] tra<strong>in</strong><br />

Break on <strong>the</strong> dra<strong>in</strong><strong>in</strong>g pip<strong>in</strong>g <strong>of</strong> <strong>the</strong> fuel<br />

build<strong>in</strong>g transfer compartment to <strong>the</strong><br />

IRWST<br />

A - D 1.64E-10 { CCI } a<br />

E 1.26E-11 { CCI } a<br />

F 2.23E-11 { CCI } a<br />

A - D 2.12E-10 { CCI } a<br />

E 1.68E-11 { CCI } a<br />

F 3.11E-11 { CCI } a<br />

A - D 0 { CCI } a<br />

E < 1E-12 { CCI } a<br />

F 0 { CCI } a<br />

A - D 0 { CCI } a<br />

E < 1E-12 { CCI } a<br />

F 0 { CCI } a<br />

A - D 7.52E-10 { CCI } a<br />

A - D 1.06E-09 { CCI } a<br />

A - D < 1E-12 { CCI } a<br />

Frequency <strong>of</strong> an Alignment Error on Pipework connected to <strong>the</strong> Build<strong>in</strong>g <strong>Pool</strong>s and consequent Risk <strong>of</strong> <strong>Fuel</strong><br />

Damage<br />

Description <strong>of</strong> Initiat<strong>in</strong>g Event<br />

Risk <strong>of</strong> <strong>Fuel</strong><br />

Damage<br />

(/r.y)<br />

Frequency<br />

(/r.y)<br />

Pipework connected to <strong>the</strong> Reactor Build<strong>in</strong>g<br />

Spurious open<strong>in</strong>g <strong>of</strong> a zero flow pressure l<strong>in</strong>e LHSI/RHR < 1E-12 { CCI } a<br />

Dra<strong>in</strong><strong>in</strong>g via <strong>the</strong> unload<strong>in</strong>g l<strong>in</strong>e RCV [CVCS] < 1E-12 { CCI } a<br />

Intentional dra<strong>in</strong><strong>in</strong>g <strong>of</strong> <strong>the</strong> reactor build<strong>in</strong>g pool, <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong> not<br />

isolated<br />

Spurious open<strong>in</strong>g <strong>of</strong> <strong>the</strong> dra<strong>in</strong><strong>in</strong>g valve <strong>of</strong> <strong>the</strong> reactor build<strong>in</strong>g<br />

compartments to <strong>the</strong> IRWST<br />

< 1E-12 { CCI } a<br />

< 1E-12 { CCI } a<br />

Pipework connected to <strong>the</strong> <strong>Fuel</strong> Build<strong>in</strong>g<br />

Inadequately prepared transfer between <strong>the</strong> load<strong>in</strong>g pit and <strong>the</strong> fuel<br />

build<strong>in</strong>g transfer compartment<br />

< 1E-12 { CCI } a<br />

UNCONTROLLED WHEN PRINTED<br />

NOT PROTECTIVELY MARKED<br />

Page 36 <strong>of</strong> 37


HPC-NNBOSL-U0-000-RES-000034 Version 2.0<br />

<strong>PSA</strong> <strong>of</strong> <strong>Accidents</strong> <strong>in</strong> <strong>the</strong> <strong>Spent</strong> <strong>Fuel</strong> <strong>Pool</strong><br />

NOT PROTECTIVELY MARKED<br />

9 FIGURES<br />

Sub-chapter 15.3 - Figure 1: Simplified Diagram <strong>of</strong> PTR [RPCS]<br />

DN300<br />

PTR1111VB<br />

PTR1131PO<br />

DN300<br />

PTR1113VB<br />

PTR1301EX<br />

PTR1108VB<br />

DN300<br />

DN300<br />

DN300<br />

1st TRAIN<br />

PTR1121VB<br />

PTR1123VB<br />

FUEL<br />

POOL<br />

DN300<br />

PTR1211VB<br />

DN300<br />

PTR1231PO<br />

PTR1212VB<br />

PTR1401EX<br />

PTR1208VB<br />

DN300<br />

FUEL<br />

POOL<br />

DN300<br />

2 nd TRAIN<br />

DN300<br />

DN300<br />

PTR1221VB<br />

PTR1223VB<br />

PTR3251EX<br />

PTR3153VB<br />

DN300<br />

DN300<br />

PTR3110VB<br />

3rd TRAIN<br />

UNCONTROLLED WHEN PRINTED<br />

NOT PROTECTIVELY MARKED<br />

Page 37 <strong>of</strong> 37

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!