12.01.2015 Views

[MI 019-100] Universal Instruction Manual I/A Series Mass Flow ...

[MI 019-100] Universal Instruction Manual I/A Series Mass Flow ...

[MI 019-100] Universal Instruction Manual I/A Series Mass Flow ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Instruction</strong><br />

<strong>MI</strong> <strong>019</strong>-<strong>100</strong><br />

December 2003<br />

<strong>Universal</strong> <strong>Instruction</strong> <strong>Manual</strong><br />

I/A <strong>Series</strong>® <strong>Mass</strong> <strong>Flow</strong> Products<br />

Models CFS10 and CFS20 <strong>Flow</strong>tubes<br />

and CFT50 Transmitters<br />

Installation and Startup<br />

For safety information in English, refer to the web site listed below.<br />

(Note: A similar sentence in other languages follows)<br />

Se webstedet anført nedenfor for at få sikkerhedsoplysninger på dansk.<br />

Ga naar het website-adres hieronder voor veiligheidsinformatie in het Nederlands.<br />

Suomenkielisiä turvallisuustietoja on seuraavassa WWW-sivustossa.<br />

Pour des informations de sécurité en français, consultez le site Web ci-dessous.<br />

Sicherheitshinweise in deutscher Sprache finden Sie auf der unten angegebenen Website.<br />

Για πληροφορίες ασφαλείας στα Ελληνικά, ανατρέξτε στο δικτυακό τόπο που<br />

αναγράφεται παρακάτω.<br />

Per informazioni riguardanti la sicurezza in italiano, fare riferimento all'indirizzo<br />

Web indicato sotto.<br />

For sikkerhetsinformasjon på norsk, se nettstedet angitt nedenfor.<br />

Para obter informações sobre segurança em Português, consulte o Web site listado em baixo.<br />

Visite nuestro sitio Web si desea obtener más información de seguridad en español.<br />

För säkerhetsinformation på svenska tittar du på vår webbsida på adress enligt nedan.<br />

www.foxboro.com/instrumentation/tools/safety/flow


<strong>MI</strong> <strong>019</strong>-<strong>100</strong> – December 2003


Contents<br />

Figures.....................................................................................................................................<br />

Tables....................................................................................................................................<br />

Preface....................................................................................................................................<br />

Reference Documents ..............................................................................................................<br />

v<br />

vii<br />

ix<br />

ix<br />

1. Safety Information ............................................................................................................ 1<br />

General Warnings ..................................................................................................................... 1<br />

Local Code Warning ............................................................................................................ 1<br />

ATEX Warning .................................................................................................................... 1<br />

Intrinsically Safe Warning .................................................................................................... 1<br />

Process Fluid Warning ......................................................................................................... 1<br />

Abrasive Fluid Warning ........................................................................................................ 2<br />

Loss of <strong>Flow</strong> Signal Warning ................................................................................................ 2<br />

Parts Replacement Warning ................................................................................................. 2<br />

CFS10 and CFS20 <strong>Mass</strong> <strong>Flow</strong>tube ............................................................................................ 3<br />

<strong>Flow</strong>tube Identification ........................................................................................................ 3<br />

Electrical Certification Rating .............................................................................................. 3<br />

Origin Code ......................................................................................................................... 5<br />

Process Wetted Parts ............................................................................................................ 5<br />

PED Certification ................................................................................................................ 6<br />

Maximum Working Pressure ................................................................................................ 6<br />

CFT50 <strong>Mass</strong> <strong>Flow</strong> Transmitters ................................................................................................ 8<br />

Transmitter Identification .................................................................................................... 8<br />

Electrical Certification Rating .............................................................................................. 8<br />

Origin Code ......................................................................................................................... 9<br />

Operating Temperature Limits ............................................................................................. 9<br />

Safety Grounding ................................................................................................................. 9<br />

Unused Conduit Entries ..................................................................................................... 10<br />

2. Installation ...................................................................................................................... 11<br />

Introduction ............................................................................................................................ 11<br />

CFS10 or CFS20 <strong>Flow</strong>tube Installation .................................................................................. 11<br />

Site Selection ...................................................................................................................... 11<br />

Mounting CFS10 or CFS20 <strong>Flow</strong>tubes .............................................................................. 11<br />

Threaded End Connections ........................................................................................... 13<br />

Flanged End Connections ............................................................................................. 13<br />

Sanitary Tri-Clamp Quick Disconnect End Connections .............................................. 13<br />

Sanitary DIN Coupling End Connections ..................................................................... 14<br />

Wiring Remote Transmitter to <strong>Flow</strong>tube ........................................................................... 14<br />

Style A <strong>Flow</strong>tubes .......................................................................................................... 14<br />

Style B <strong>Flow</strong>tubes .......................................................................................................... 14<br />

iii


<strong>MI</strong> <strong>019</strong>-<strong>100</strong> – December 2003 Contents<br />

Signal Cable Preparation ............................................................................................... 16<br />

CFT50 Transmitter Installation .............................................................................................. 16<br />

Mounting ........................................................................................................................... 16<br />

Positioning the Housing ..................................................................................................... 17<br />

Wiring ................................................................................................................................ 17<br />

Field Wiring .................................................................................................................. 17<br />

Power Wiring ................................................................................................................ 18<br />

Input/Output Wiring .................................................................................................... 18<br />

HART Multidrop Communication ............................................................................... 22<br />

<strong>Flow</strong>tube Wiring Connections ........................................................................................... 23<br />

3. Start Up........................................................................................................................... 25<br />

CFT50/CFS10 or CFT50/CFS20 <strong>Flow</strong>meters ........................................................................ 25<br />

When to Use Quick Start Mode .............................................................................................. 25<br />

Steps Required ........................................................................................................................ 25<br />

Procedure Using Keypad/Display ............................................................................................ 26<br />

Procedure Using the HART Communicator ........................................................................... 28<br />

Index .................................................................................................................................... 29<br />

iv


Figures<br />

1 Sample CFS10 or CFS20 <strong>Mass</strong> <strong>Flow</strong>tube Identification ............................................... 3<br />

2 Sample CFT50 <strong>Series</strong> <strong>Mass</strong> <strong>Flow</strong>tube Identification .................................................... 8<br />

3 <strong>Flow</strong>tube Mounting Under Normal Conditions ......................................................... 12<br />

4 <strong>Flow</strong>tube Mounting in Severe Vibration Conditions .................................................... 12<br />

5 Recommended Types of Pipe Supports ........................................................................ 13<br />

6 CFS10 or CFS20 (Style B) Junction Box ..................................................................... 15<br />

7 Transmitter Mounting ................................................................................................. 17<br />

8 Accessing Field Terminals ............................................................................................ 18<br />

9 Field Wiring Terminal Board ....................................................................................... 18<br />

10 Current Output ........................................................................................................... 19<br />

11 Supply Voltage and Output Load ................................................................................. 20<br />

12 Contact Input .............................................................................................................. 20<br />

13 Contact Output ........................................................................................................... 21<br />

14 Pulse Output ................................................................................................................ 21<br />

15 Pulse Wiring with Divider Network ............................................................................. 22<br />

16 Typical Wiring Diagram (Output Signal Code 1) ........................................................ 22<br />

17 Typical Multidrop Network ......................................................................................... 23<br />

18 Junction Box Wiring .................................................................................................... 24<br />

19 Keypad/Display Quick Start Menu .............................................................................. 27<br />

20 HART Communicator Quick Start Menu ................................................................... 28<br />

v


<strong>MI</strong> <strong>019</strong>-<strong>100</strong> – December 2003 Figures<br />

vi


Tables<br />

1 Electrical Safety Specification ....................................................................................... 4<br />

2 Process Temperature Range in Accordance<br />

with <strong>Flow</strong>tube Size and Electrical Certification Code 5<br />

3 End Connection Process Temperature/Pressure Limits (a) ........................................... 6<br />

4 <strong>Flow</strong>tube Process Temperature/Pressure Limits<br />

Threaded End Connections (a) 7<br />

5 Electrical Safety Specification ....................................................................................... 8<br />

6 JCFS10 or CFS20 (Style B) Junction Box Wiring ........................................................ 15<br />

7 Input/Output Wiring Connections .............................................................................. 19<br />

8 Junction Box Wiring .................................................................................................... 24<br />

9 Operation of Function Keys ......................................................................................... 26<br />

vii


<strong>MI</strong> <strong>019</strong>-<strong>100</strong> – December 2003 Tables<br />

viii


Preface<br />

Standard documentation shipped with every I/A <strong>Series</strong> <strong>Mass</strong> <strong>Flow</strong>meter or <strong>Mass</strong> <strong>Flow</strong><br />

Transmitter is:<br />

♦ This <strong>Universal</strong> <strong>Instruction</strong> <strong>Manual</strong><br />

♦ A CD-ROM that contains the complete documentation set.<br />

The <strong>Universal</strong> <strong>Instruction</strong> <strong>Manual</strong> is designed to provide the user with a single, concise, easy-touse<br />

manual that covers the key points needed for installation and startup of I/A <strong>Series</strong> <strong>Mass</strong><br />

<strong>Flow</strong>meters.<br />

For additional detailed information about each model, including dimensional prints, parts lists,<br />

and more detailed instructions, please refer to the CD-ROM.<br />

The CD-ROM contains many documents on various products. Those particularly applicable to<br />

current mass flow products are listed in the following table:<br />

Reference Documents<br />

Document Number<br />

Dimensional Prints<br />

DP <strong>019</strong>-182<br />

DP <strong>019</strong>-183<br />

DP <strong>019</strong>-366<br />

DP <strong>019</strong>-375<br />

<strong>Instruction</strong>s<br />

<strong>MI</strong> <strong>019</strong>-120<br />

<strong>MI</strong> <strong>019</strong>-132<br />

<strong>MI</strong> <strong>019</strong>-133<br />

Parts Lists<br />

PL 008-704<br />

PL 008-733<br />

PL 008-735<br />

Document Description<br />

CFS10 Style B <strong>Flow</strong>tube Dimensions (1/4 through 2 inch)<br />

CFS20 Style B <strong>Flow</strong>tube Dimensions (1-1/2 and 3 inch)<br />

CFS10 Style B <strong>Flow</strong>tube Dimensions (1/8 inch)<br />

CFT50 Transmitter Dimensions<br />

CFS10 and CFS20 <strong>Mass</strong> <strong>Flow</strong>tubes Installation, Startup,<br />

Troubleshooting, and Maintenance<br />

CFT50 Transmitter Installation, Startup, Configuration, and<br />

Maintenance<br />

CFT50 Transmitter Safety Connection Diagrams (FM, CSA)<br />

CFT50 Transmitter Parts List<br />

CFS10 Style B <strong>Flow</strong>tubes, Sanitary/General, Parts List<br />

CFS20 Style B <strong>Flow</strong>tubes, Sanitary/General, Parts List<br />

NOTE<br />

1. In addition to the documents on the CD-ROM, <strong>MI</strong> <strong>019</strong>-179, <strong>Flow</strong> Products<br />

Safety Information, is available on the website listed on the title page of this<br />

document.<br />

2. Newly released products may be shipped with paper documentation until the<br />

information pertaining to them is included on the CD-ROM.<br />

ix


<strong>MI</strong> <strong>019</strong>-<strong>100</strong> – December 2003 Preface<br />

x


1. Safety Information<br />

General Warnings<br />

Local Code Warning<br />

! WARNING<br />

These products must be installed to meet all applicable local installation regulations,<br />

such as hazardous location requirements, electrical wiring codes, and mechanical<br />

piping codes. Persons involved in the installation must be trained in these code<br />

requirements to ensure that the installation takes maximum advantage of the safety<br />

features designed into these products.<br />

ATEX Warning<br />

! WARNING<br />

Apparatus marked as Category 1 equipment and used in hazardous areas requiring<br />

this category must be installed in such a way that, even in the event of rare incidents,<br />

the versions with an aluminum alloy enclosure can not be an ignition source due to<br />

impact and friction.<br />

Intrinsically Safe Warning<br />

! WARNING<br />

Since Invensys Foxboro does not specify live maintenance, to prevent ignition of<br />

flammable atmospheres, disconnect power before servicing unless the area is certified<br />

to be nonhazardous.<br />

Process Fluid Warning<br />

! WARNING<br />

If process containing parts are to be disassembled:<br />

1. Make sure that process fluid is not under pressure or at high temperature.<br />

2. Take proper precautions concerning leakage or spillage of any toxic or otherwise<br />

dangerous fluid. Follow any Material Safety Data Sheet (MSDS) recommendations.<br />

! WARNING<br />

These flowmeters are built using materials that are corrosion resistant to a wide variety<br />

of fluids. However, with aggressive fluids, a potential exists for corrosive failure.<br />

Therefore, verify the material compatibility with the NACE guidelines and/or user<br />

knowledge of the flowmeter material compatibility with the process fluid at operating<br />

conditions.<br />

1


<strong>MI</strong> <strong>019</strong>-<strong>100</strong> – December 2003<br />

1. Safety Information<br />

Abrasive Fluid Warning<br />

! WARNING<br />

Fluids containing abrasive particles and flowing at high rates can cause significant<br />

wear to pipes. If these conditions exist, check the flowmeter periodically for wear.<br />

Loss of <strong>Flow</strong> Signal Warning<br />

! WARNING<br />

If the flowrate signal appears to have a calibration shift, check the flowmeter for<br />

corrosion or wear.<br />

Parts Replacement Warning<br />

! WARNING<br />

If replacing parts, do not use parts made of other materials or that in any other way<br />

change the product as described on the data plate.<br />

2


1. Safety Information <strong>MI</strong> <strong>019</strong>-<strong>100</strong> – December 2003<br />

CFS10 and CFS20 <strong>Mass</strong> <strong>Flow</strong>tube<br />

<strong>Flow</strong>tube Identification<br />

A typical data plate is shown in Figure 1.<br />

AGENCY PLATE<br />

DATA PLATE<br />

FLOW<br />

DIRECTION<br />

MAXIMUM<br />

PRESSURE<br />

MAXIMUM<br />

TEMPERATURE<br />

DATA PLATE<br />

AGENCY PLATE<br />

Figure 1. Sample CFS10 or CFS20 <strong>Mass</strong> <strong>Flow</strong>tube Identification<br />

Refer to the data plate to determine the maximum pressure and temperature limits.<br />

Electrical Certification Rating<br />

Electrical certification information is printed on the agency plate (located above the data plate).<br />

The electrical design safety code is also printed on the data plate as part of the model number. The<br />

location of the code within the model number is shown below. See Table 1 for additional<br />

information.<br />

CFS10-05SCMMM<br />

ELECTRICAL SAFETY DESIGN CODE<br />

3


<strong>MI</strong> <strong>019</strong>-<strong>100</strong> – December 2003<br />

1. Safety Information<br />

Table 1. Electrical Safety Specification<br />

Testing Laboratory,<br />

Type of Protection,<br />

and Area Classification<br />

CSA for use in general purpose<br />

(ordinary) locations.<br />

CSA as nonincendive for use in<br />

Class I, Division 2, Groups A, B,<br />

C, and D, hazardous locations.<br />

FM intrinsically safe apparatus<br />

for Class I, Division 1, Groups C<br />

and D, hazardous locations.<br />

FM nonincendive for use in<br />

Class I, Division 2, Groups A, B,<br />

C, and D hazardous locations.<br />

KEMA (ATEX) Intrinsically safe<br />

II 2 G EEx ib IIB; Zone 1.<br />

KEMA (ATEX) Nonsparking<br />

II 3 G EEx nA II; Zone 2.<br />

CENELEC Intrinsically safe<br />

EEX ib, IIB, Zone 1<br />

Application Conditions<br />

Connect to Model CFT50 <strong>Mass</strong> <strong>Flow</strong> Transmitter.<br />

See Table 2.<br />

Connect to Model CFT50-......L, P, or S <strong>Mass</strong> <strong>Flow</strong><br />

Transmitter per <strong>MI</strong> <strong>019</strong>-133. Temperature Class in<br />

accordance with process temperature. See Table 2.<br />

Connect to Model CFT50-......K or N <strong>Mass</strong> <strong>Flow</strong><br />

Transmitter per <strong>MI</strong> <strong>019</strong>-133. Temperature Class in<br />

accordance with process temperature. See Table 2.<br />

Connect to Model CFT50-......K, N, or R <strong>Mass</strong><br />

<strong>Flow</strong> Transmitter per <strong>MI</strong> <strong>019</strong>-133. Temperature<br />

Class in accordance with process temperature. See<br />

Table 2.<br />

Connect to Model CFT50-......M or Q <strong>Mass</strong> <strong>Flow</strong><br />

Transmitter. Temperature Class T2 - T6 in<br />

accordance with process temperature. See Table 2.<br />

Connect to Model CFT50-......T <strong>Mass</strong> <strong>Flow</strong><br />

Transmitter. Temperature Class T3 - T6 in<br />

accordance with process temperature. See Table 2.<br />

Connect to Model CFT10-....EGB/ENB or<br />

CFT15-....EGB/ENB <strong>Mass</strong> <strong>Flow</strong> Transmitter.<br />

Temperature Class in accordance with process<br />

temperature. See Table 2.<br />

Electrical<br />

Safety Design<br />

Code<br />

CGZ<br />

CNN<br />

FBB<br />

FNN<br />

MMM<br />

LLL<br />

EBB<br />

NOTE<br />

These flowtubes have been designed to meet the electrical safety descriptions listed<br />

in the table above. For detailed information, or status of testing laboratory<br />

approvals/certifications, contact Invensys Foxboro.<br />

4


1. Safety Information <strong>MI</strong> <strong>019</strong>-<strong>100</strong> – December 2003<br />

<strong>Flow</strong>tube<br />

Model<br />

mm<br />

Origin Code<br />

The origin code identifies the year and week of manufacture. It is the first four characters of the<br />

Reference Number (REF. NO.). See Figure 1. In the example 0313, 03 identifies the year of manufacture<br />

as 2003, and 13, the week of manufacture in that year.<br />

Process Wetted Parts<br />

Table 2. Process Temperature Range in Accordance<br />

with <strong>Flow</strong>tube Size and Electrical Certification Code<br />

<strong>Flow</strong>tube<br />

Size<br />

CFS10 3 1/8 –130 to +180°C<br />

(–202 to +356°F)<br />

6 1/4 –200 to +180°C<br />

(–328 to +356°F)<br />

15 1/2 –200 to +180°C<br />

(–328 to +356°F)<br />

20 3/4 –200 to +180°C<br />

(–328 to +356°F)<br />

25 1 –200 to +180°C<br />

(–328 to +356°F)<br />

40 1-1/2 –200 to +180°C<br />

(–328 to +356°F)<br />

50 2 –200 to +180°C<br />

(–328 to +356°F)<br />

CFS20 40 1-1/2 –200 to +180°C<br />

(–328 to +356°F)<br />

80 3 –200 to +180°C<br />

(-328 to +356°F)<br />

in<br />

Process Medium Temperature Range<br />

for Electrical Certification Code<br />

CGZ, CNN, FNN,<br />

and LLL EBB and FBB MMM<br />

–130 to +180°C<br />

(–202 to +356°F)<br />

–150 to +180°C<br />

(–238 to +356°F)<br />

–200 to +180°C<br />

(–328 to +356°F)<br />

–200 to +180°C<br />

(–328 to +356°F)<br />

–50 to +180°C<br />

(–58 to +356°F)<br />

–50 to +140°C<br />

(–58 to +284°F)<br />

–50 to +140°C<br />

(–58 to +284°F)<br />

–50 to +140°C<br />

(–58 to +284°F)<br />

–50 to +140°C<br />

(–58 to +284°F)<br />

–130 to +180°C<br />

(–202 to +356°F)<br />

–200 to +180°C<br />

(–328 to +356°F)<br />

–200 to +180°C<br />

(–328 to +356°F)<br />

–200 to +180°C<br />

(–328 to +356°F)<br />

–55 to +165°C<br />

(–67 to +329°F)<br />

–55 to +165°C<br />

(–67 to +329°F)<br />

–55 to +165°C<br />

(–67 to +329°F)<br />

–55 to +165°C<br />

(–67 to +329°F)<br />

–55 to +165°C<br />

(–67 to +329°F)<br />

The flowtube wetted material is found within the model number on the data label as follows:<br />

CFS10-02SAMMM<br />

FLOWTUBE WETTED MATERIAL<br />

Code<br />

Wetted Material<br />

S 316L Stainless Steel<br />

H Hastelloy ® C-22<br />

C 316L Stainless Steel (as prepared for Sanitary<br />

Applications, 3A Authorization No. 224<br />

5


<strong>MI</strong> <strong>019</strong>-<strong>100</strong> – December 2003<br />

1. Safety Information<br />

PED Certification<br />

Flanged mass flowmeters 1 1/2 in (40 mm) or larger meet PED (Harmonized Pressure Equipment<br />

Directive for the European Community) and have the PED notified body number (0575) marked<br />

close to the CE logo on the data plate. <strong>Flow</strong>meters 1 in (25 mm) and smaller fall below the PED<br />

category limits and are classified as SEP and therefore do not carry a PED notified body number.<br />

Maximum Working Pressure<br />

Maximum process pressure is dependent on the process temperature, flowtube size, and end<br />

connections used. The following tables specify the maximum process pressure for either the the<br />

type of end connection (Table 3) or process temperature (Table 4). Interpolation is required for<br />

process temperatures between those listed. Use the lesser of the pressures determined from these<br />

tables.<br />

Table 3. End Connection Process Temperature/Pressure Limits (a)<br />

Process<br />

End Connection Type Temp.<br />

ANSI ® Class 150 Flange <strong>100</strong>°F<br />

200°F<br />

300°F<br />

356°F<br />

ANSI Class 300 Flange <strong>100</strong>°F<br />

200°F<br />

300°F<br />

356°F<br />

ANSI Class 600 Flange <strong>100</strong>°F<br />

200°F<br />

300°F<br />

BS 4504 (DIN) PN 10/16<br />

PN 25/40<br />

Flange<br />

Flange to Mate with BS 4504<br />

(DIN), PN <strong>100</strong>/2<br />

356°F<br />

40°C<br />

<strong>100</strong>°C<br />

150°C<br />

180°C<br />

40°C<br />

<strong>100</strong>°C<br />

150°C<br />

180°C<br />

MWP (b)<br />

316/316L ss Hastelloy C-22<br />

275 psig<br />

240 psig<br />

215 psig<br />

208 psig<br />

720 psig<br />

620 psig<br />

560 psig<br />

540 psig<br />

1440 psig<br />

1240 psig<br />

1120 psig<br />

1080 psig<br />

40.0 bar(c)<br />

34.2 bar(c)<br />

30.8 bar(c)<br />

29.3 bar(c)<br />

96 bar (c)<br />

82 bar (c)<br />

75 bar (c)<br />

72 bar (c)<br />

290 psig<br />

260 psig<br />

230 psig<br />

217 psig<br />

750 psig<br />

750 psig<br />

730 psig<br />

719 psig<br />

1500 psig<br />

1500 psig<br />

1455 psig<br />

1435 psig<br />

41.7 bar(c)<br />

37.1 bar(c)<br />

32.9 bar(c)<br />

30.6 bar(c)<br />

103 bar (c)<br />

103 bar (c)<br />

<strong>100</strong> bar (c)<br />

98 bar (c)<br />

Threaded, NPT, ANSI B2.1 MWP limited by threaded end connection limits per<br />

Table 4.<br />

Sanitary (Tri-Clamp ® Ferrule Maximum working pressure is 10 bar at 25°C<br />

and DIN 11851) (d) (145 psig at 77°F).<br />

(a)Linear interpolation is acceptable.<br />

(b)See Model Codes for flowtube configurations available with 316 ss, 316L ss, and Hastelloy C-<br />

22 end connections.<br />

(c)To obtain MPa values, divide bar value by 10.<br />

To obtain kPa values, multiply bar value by <strong>100</strong>.<br />

(d)If higher MWPs are required, contact Invensys Foxboro.<br />

6


1. Safety Information <strong>MI</strong> <strong>019</strong>-<strong>100</strong> – December 2003<br />

Table 4. <strong>Flow</strong>tube Process Temperature/Pressure Limits<br />

Threaded End Connections (a)<br />

Nominal<br />

<strong>Flow</strong>tube Size<br />

Process<br />

Temperature<br />

Maximum Working Pressure (MWP)<br />

316/316L ss Hastelloy C-22<br />

mm in °C °F bar (b) psig bar (b) psig<br />

3<br />

and<br />

6<br />

1/8<br />

and<br />

1/4<br />

40<br />

<strong>100</strong><br />

150<br />

180<br />

<strong>100</strong><br />

200<br />

300<br />

356<br />

207<br />

174<br />

156<br />

148<br />

3000<br />

2530<br />

2270<br />

2144<br />

217<br />

217<br />

213<br />

207<br />

3150<br />

3150<br />

3050<br />

3010<br />

15<br />

and<br />

20<br />

1/2<br />

and<br />

3/4<br />

40<br />

<strong>100</strong><br />

150<br />

180<br />

<strong>100</strong><br />

200<br />

300<br />

356<br />

<strong>100</strong><br />

85<br />

78<br />

75<br />

1440<br />

1240<br />

1120<br />

1080<br />

103<br />

103<br />

<strong>100</strong><br />

98<br />

1500<br />

1500<br />

1455<br />

1435<br />

(a) Linear interpolation is acceptable.<br />

(b)To obtain MPa value, divide bar value by 10.<br />

To obtain kPa value, multiply bar value by <strong>100</strong>.<br />

7


<strong>MI</strong> <strong>019</strong>-<strong>100</strong> – December 2003<br />

1. Safety Information<br />

CFT50 <strong>Mass</strong> <strong>Flow</strong> Transmitters<br />

Transmitter Identification<br />

A typical data plate is shown in Figure 2.<br />

B1EA1BT<br />

2A0313<br />

Figure 2. Sample CFT50 <strong>Series</strong> <strong>Mass</strong> <strong>Flow</strong>tube Identification<br />

Refer to the data plate to determine the electrical certification rating, origin code, input supply<br />

voltage, input power, and ambient temperature limit.<br />

Electrical Certification Rating<br />

Electrical safety design code is printed on the data plate as part of the model number. The location<br />

of the code within the model number is shown below. See Table 5 for additional information.<br />

CFT50-B1EA1A1T<br />

ELECTRICAL DESIGN SAFETY CODE<br />

Table 5. Electrical Safety Specification<br />

Testing Laboratory,<br />

Type of Protection,<br />

and Area Classification<br />

Application Conditions<br />

CSA nonincendive (NI) with nonincendive Temperature Class T4.<br />

flowtube connections for Class I, Division 2,<br />

Groups A, B, C, and D.<br />

FM nonincendive (NI) with intrinsically safe Temperature Class T4.<br />

flowtube connections for Class I, Division 2,<br />

Groups A, B, C, and D.<br />

Electrical<br />

Safety Design<br />

Code<br />

S<br />

K<br />

8


1. Safety Information <strong>MI</strong> <strong>019</strong>-<strong>100</strong> – December 2003<br />

Table 5. Electrical Safety Specification (Continued)<br />

Testing Laboratory,<br />

Type of Protection,<br />

and Area Classification<br />

Application Conditions<br />

FM nonincendive (NI) with nonincendive<br />

flowtube connections for Class I, Division 2,<br />

Groups A, B, C, and D.<br />

FM explosionproof (XP) with intrinsically<br />

safe flowtube connections for Class I,<br />

Division 1, Groups C and D.<br />

KEMA (ATEX) nonsparking with<br />

nonsparking flowtube and I/O connections;<br />

II 3 G EEx nA [L] IIC; Zone 2.<br />

KEMA (ATEX) nonsparking with<br />

intrinsically safe flowtube connections;<br />

II 3(2) EEx nA [L][ib] IIB; Zone 2.<br />

KEMA (ATEX) flameproof with intrinsically<br />

safe flowtube connections;<br />

II 2 G EEx de [ib] IIB; Zone 1.<br />

Temperature Class T4.<br />

Temperature Class T6.<br />

Connect to nonsparking flowtube<br />

and inputs/outputs. Temperature<br />

Class T4.<br />

Connect to intrinsically safe flowtube<br />

and nonsparking inputs/outputs.<br />

Temperature Class T4.<br />

Connect to intrinsically safe<br />

flowtube. Temperature Class T6.<br />

Electrical<br />

Safety Design<br />

Code<br />

R<br />

N<br />

T<br />

M<br />

Q<br />

NOTE<br />

These transmitters have been designed to meet the electrical safety descriptions<br />

listed in the table above. For detailed information, or status of testing laboratory<br />

approvals/certifications, contact Invensys Foxboro.<br />

Origin Code<br />

The origin code identifies the area of manufacture and the year and week of manufacture. See<br />

Figure 2. In the example 2A0313, 2A means the product was manufactured in the Measurement<br />

and Instrument Division, 01 identifies the year of manufacture as 20031, and 13, the week of<br />

manufacture in that year.<br />

Operating Temperature Limits<br />

The operating temperature limits of the electronics are -20 and +60°C (-4 and +140°F). Ensure<br />

that the transmitter is operated within this range.<br />

Safety Grounding<br />

Ground connection of the transmitter enclosure must be connected to the potential equalizer<br />

system within the hazardous area per national installation standard.<br />

9


<strong>MI</strong> <strong>019</strong>-<strong>100</strong> – December 2003<br />

1. Safety Information<br />

Unused Conduit Entries<br />

On Type CFT50-B1....M. the cable entry devices, conduit entries, and the closing elements of<br />

unused apertures shall provide a degree of ingress protection of at least IP54 according to<br />

EN 60529 and shall be correctly installed.<br />

On Type CFT50-B1....Q. the cable entry devices and the closing elements of unused apertures<br />

shall be of a certified flameproof type, suitable for the conditions of use and correctly installed.<br />

10


2. Installation<br />

Introduction<br />

An Invensys Foxboro mass flowmeter consists of a transmitter and a flowtube. The CFT50<br />

Transmitter is designed for use with the CFS10 or CFS20 <strong>Flow</strong>tube.<br />

CFS10 or CFS20 <strong>Flow</strong>tube Installation<br />

Site Selection<br />

The best method of mount your flowtube is to provide a solid common support structure that is<br />

free of vibration for all pipe supports. Examples of such a structure are a cement pad or I-beam.<br />

NOTE<br />

Soil or dirt surface is not a common support structure if environmental conditions<br />

can affect the supports.<br />

Mounting on a floor grating (even if a common floor) is not recommended because it is not free<br />

from the effects of vibration made by movement of people or from vibration inducing devices.<br />

If ceiling mounting is used, ensure that the overhead structure is rigid (not wood) and the<br />

structure is common to all pipe supports.<br />

If wall mounting is used, ensure that no other vibration inducing devices are mounted on or near<br />

the wall. Secure the piping (not the flowtube) to the wall.<br />

The flowtube should be isolated from large capacity pumps (especially positive displacement<br />

pumps) and not share the same floor structure as the pumps.<br />

The flowtube can be mounted horizontally, upward sloping, or vertically. However, if mounted<br />

vertically (as in self-draining applications), the direction of flow must be upward to minimize the<br />

incidence of trapped air.<br />

Mounting CFS10 or CFS20 <strong>Flow</strong>tubes<br />

It is important that you support your flowtube properly. To do this:<br />

♦ Place pipe supports as close to the process connection as possible [


<strong>MI</strong> <strong>019</strong>-<strong>100</strong> – December 2003<br />

2. Installation<br />

♦<br />

♦<br />

♦<br />

provide a minimum of 25 mm (1 in) of axial length of surface contact. “Rest type”<br />

supports should not be used with sanitary end connections.<br />

If your application has excessive vibration that could be transferred to the flowtube<br />

sensor, install isolation supports such as those manufactured by Stauff or Behringer.<br />

Position valves outside the pipe supports described above.<br />

For severe vibration conditions, install two supports on each side of flowtube as<br />

shown in Figure 4.<br />

FLANGED END CONNECTIONS<br />

FLOWTUBE<br />


2. Installation <strong>MI</strong> <strong>019</strong>-<strong>100</strong> – December 2003<br />

Figure 5. Recommended Types of Pipe Supports<br />

Before installing your flowtube, make sure that<br />

♦ Piping is properly aligned and that the piping ends are parallel with the flowtube ends.<br />

♦ The arrow on the flowtube is pointing in the direction of flow.<br />

♦ The flowtube fits between the connecting piping with 2 to 3 mm (1/8 inch) to spare.<br />

It should not be necessary to force the pipes apart to fit the flowtube in place.<br />

Then install your flowtube as described below.<br />

Threaded End Connections<br />

1. Apply a process compatible thread sealant to the threaded flowtube end connections.<br />

2. Secure the threaded pipe adapters to the flowtube threaded end connections.<br />

3. Secure the pipeline end of the adapters to the pipeline.<br />

Flanged End Connections<br />

1. Insert the lower mounting bolts (two for 4-hole flanges, four for 8-hole flanges).<br />

2. Position the gasket between the flanges.<br />

3. Insert the remaining mounting bolts.<br />

4. Add the washers and nuts to all bolts. Hand tighten.<br />

5. Secure the flowtube by tightening the nuts in uniform steps, working from nut to<br />

opposite nut.<br />

Sanitary Tri-Clamp Quick Disconnect End Connections<br />

1. Insert the seal into the flowtube end connection.<br />

2. Make full face contact between the flowtube end connection and the pipeline end<br />

connection.<br />

3. Position the clamp over the mating surfaces of the flowtube end connection and the<br />

pipeline end connection and press the clamp closed.<br />

13


<strong>MI</strong> <strong>019</strong>-<strong>100</strong> – December 2003<br />

2. Installation<br />

Sanitary DIN Coupling End Connections<br />

1. Insert the seal into the flowtube end connection.<br />

2. Make full face contact between the flowtube end connection and the pipeline end<br />

connection.<br />

3. Tighten the nut on the pipeline end connection securely.<br />

Wiring Remote Transmitter to <strong>Flow</strong>tube<br />

The wiring of your flowtube must conform to local code requirements.<br />

! CAUTION<br />

Do not route signal cable close to power cables or equipment that can produce a large<br />

magnetic field.<br />

If conduit is to be used, install a watertight conduit connector and drip loop at the junction box<br />

(Style B) or cable entrance (Style A) to prevent collection of condensate. If conduit is not used, a<br />

watertight cable grip is required. Teflon® thread sealant on the connector threads is<br />

recommended to reduce the risk of galvanic corrosion.<br />

If rigid conduit is used, the length extending from the conduit fitting must not exceed 0.3 m<br />

(12 in). This conduit must not be subjected to additional mechanical loading or attachment. If<br />

additional protection is required, flexible armored sheathing is recommended.<br />

Style A <strong>Flow</strong>tubes<br />

The flowtube comes with a wide temperature range FEP insulated and jacketed 5 m (16 ft) pigtail<br />

signal cable connected to the flowtube. The cable can be used in temperatures up to 150°C<br />

(302°F). If the process temperature is below -60°C (-76°F), the cable must be enclosed. If an<br />

extension cable is to be connected to a Style A flowtube classified intrinsically safe, a junction box<br />

constructed to conform to intrinsically safe requirements, including a separation between<br />

conductors of at least 6 mm (0.236 in), must be used. Additionally, for European applications,<br />

the junction box must also have a mechanical degree of protection of at least IP54 for outdoor<br />

application or IP20 for indoor applications.<br />

Extension cable wiring supplied by Invensys Foxboro (and the optional Belden #8778 cable) is<br />

color coded for easy pair identification. To facilitate wire identification, ensure that the proper<br />

wire pairs remain twisted as the black wires are not common. Carefully match the wire pairs of<br />

each cable by color. Connect the two common shield wires. Ensure that all connections provide<br />

both electrical and mechanical integrity. Refer to <strong>MI</strong> <strong>019</strong>-132 for CFT50 wiring instructions.<br />

Style B <strong>Flow</strong>tubes<br />

Mounted on each Style B flowtube is an electrical junction box and cover meeting NEMA ® 4X<br />

and IEC IP54 requirements, fitted with a 3/4 NPT female cable entrance. Contained within the<br />

junction box are a pair of 6-position feedthrough type screw terminal blocks (properly spaced for<br />

intrinsic safety) which are prewired to the flowtube.<br />

Signal cable is not supplied with Style B flowtubes, but must be purchased separately. Invensys<br />

Foxboro PVC cable (Model KFS1) can be used for most applications within an ambient<br />

14


2. Installation <strong>MI</strong> <strong>019</strong>-<strong>100</strong> – December 2003<br />

temperature range of -20 to 80°C (-4 to 176°F). Invensys Foxboro FEP cable (Model KFS2) is<br />

suitable for ambient temperatures from -40 to 85°C (-40 to 185°F). If cable other than that<br />

supplied by Invensys Foxboro is installed, the use of individually shielded six twisted pair signal<br />

cable of 22 AWG or larger (Belden #8778) is recommended. The total cable length from<br />

transmitter to flowtube must not exceed 300 m (<strong>100</strong>0 ft).<br />

Connect the cable to the flowtube junction box per Figure 6 and Table 6. Route the paired wires<br />

to the proper terminal block, leaving the wire pairs twisted to facilitate wire identification.<br />

The normal clearance between the rear of the junction box and the flowtube case is 12.7 mm (0.5<br />

inch). This distance can be increased to accommodate a steam jacket or case insulation. For<br />

details see <strong>MI</strong> <strong>019</strong>-120 on your CD-ROM.<br />

BK<br />

BU<br />

BK<br />

BU<br />

WH<br />

BK<br />

WH<br />

BK<br />

WIRE PAIRS<br />

TO TRANS<strong>MI</strong>TTER<br />

BK<br />

GN<br />

BK<br />

GN<br />

BN<br />

BK<br />

BN<br />

BK<br />

WIRE PAIRS<br />

TO TRANS<strong>MI</strong>TTER<br />

RD<br />

BK<br />

RD<br />

BK<br />

YE<br />

BK<br />

YE<br />

BK<br />

WIRE PAIRS<br />

FROM FLOWTUBE<br />

Figure 6. CFS10 or CFS20 (Style B) Junction Box<br />

Table 6. JCFS10 or CFS20 (Style B) Junction Box Wiring<br />

Wire Color<br />

Black<br />

Blue<br />

RTD<br />

Signal<br />

15


<strong>MI</strong> <strong>019</strong>-<strong>100</strong> – December 2003<br />

2. Installation<br />

Table 6. JCFS10 or CFS20 (Style B) Junction Box Wiring<br />

Wire Color<br />

Black<br />

Green<br />

Red<br />

Black<br />

Black, Shield<br />

Yellow<br />

Black<br />

Brown<br />

Black<br />

White<br />

Signal<br />

RTD<br />

Sensor B<br />

Sensor A<br />

Driver 2<br />

Driver 1<br />

Signal Cable Preparation<br />

If conduit is to be used, run the unprepared end of the cable through the conduit from the<br />

transmitter.<br />

<strong>Flow</strong>tube End<br />

1. Cut the flowtube end of the cable to length and strip back the jacket approximately<br />

127 mm (4 in).<br />

2. Separate the twisted pair conductors from their wrappers, shields, and drain wires.<br />

The wire pairs should remain twisted for ease of identification.<br />

3. Trim the shields, wrappers, and drain wires back to the jacket interface.<br />

4. Strip the ends of the conductors 6 mm (1/4 in).<br />

Transmitter End (Customer Supplied Cable)<br />

Follow Steps 1, 2, and 4 above. Trim shields and wrappers back to the jacket interface. Tightly<br />

twist together (2 to 4 turns) the six individual twisted pair drain wires at a point close to the jacket<br />

interface. Trim all but one drain wire close to the twist. Solder the twisted wire area, creating a<br />

single drain wire. Appropriately insulate the drain wire and soldered connection to prevent<br />

shorting. Refer to <strong>MI</strong> <strong>019</strong>-132 for CFT50 wiring instructions.<br />

CFT50 Transmitter Installation<br />

Mounting<br />

The CFT50 Transmitter remotely mounted housing is supported by a mounting bracket which<br />

can be attached to a surface or nominal DN 80 or 3-in vertical pipe. Mount the bracket to a<br />

surface using four (user supplied) 0.375 inch or M10 bolts or to a pipe using the two U-bolts<br />

(included). See Figure 7.<br />

16


2. Installation <strong>MI</strong> <strong>019</strong>-<strong>100</strong> – December 2003<br />

HOUSING<br />

BRACKET BOLT SCREWS (4)<br />

CONNECTOR<br />

MOUNTING BRACKET<br />

SURFACE MOUNTING<br />

PIPE MOUNTING<br />

Positioning the Housing<br />

Figure 7. Transmitter Mounting<br />

The housing can be positioned at almost any angle in a horizontal plane by using one or both of<br />

two procedures. First, the housing can be rotated up to 270° in either direction in 90° increments<br />

by removing the four screws securing the housing to the connector. Second, the housing can be<br />

rotated by loosening the bracket bolt and turning the housing with respect to the mounting<br />

bracket. See Figure 7.<br />

Wiring<br />

Field Wiring<br />

To access the transmitter field terminals, remove the field terminal compartment cover by turning<br />

it counter-clockwise using the cover tool provided. The field terminal compartment cover is the<br />

one closest to the conduit openings. When replacing the cover, tighten until the cover meets the<br />

housing metal-to-metal.<br />

17


<strong>MI</strong> <strong>019</strong>-<strong>100</strong> – December 2003<br />

2. Installation<br />

COVER TOOL<br />

CONDUIT OPENINGS<br />

FIELD TER<strong>MI</strong>NAL<br />

COMPARTMENT COVER<br />

Figure 8. Accessing Field Terminals<br />

Wire entrance is per two PG20 conduit openings as shown in Figure 8. The top entrance is for<br />

power; the bottom, for inputs and outputs. Optional 1/2 NPT and 3/4 NPT cable glands are<br />

available for use with these conduit openings.<br />

The field wiring terminal board is shown in Figure 9.<br />

LINE POWER<br />

NEUTRAL POWER<br />

POWER<br />

SIGNALS<br />

12<br />

11<br />

4.2<br />

4.1<br />

4<br />

6<br />

5<br />

GROUND<br />

Power Wiring<br />

Figure 9. Field Wiring Terminal Board<br />

The field wiring terminal board is shown in Figure 9. Connect the line power wire to<br />

Terminal 12, the neutral power wire to Terminal 11, and the ground wire to the separate ground<br />

terminal.<br />

Input/Output Wiring<br />

The maximum length of signal wires for HART ® communication is 3050 m (10,000 ft). It is<br />

1525 m (5000 ft) in multidrop mode.<br />

Input/Output connections depend on the output signals that were specified for your particular<br />

transmitter. The output signals available for your transmitter can be determined from the model<br />

number on your transmitter data plate as follows:<br />

CFT50-1EA#BK<br />

Output Signal Code<br />

18


2. Installation <strong>MI</strong> <strong>019</strong>-<strong>100</strong> – December 2003<br />

Output<br />

Signal<br />

Code<br />

Terminal<br />

5<br />

Table 7. Input/Output Wiring Connections<br />

Terminal<br />

6<br />

Terminal<br />

4<br />

Terminal<br />

4.1<br />

Terminal<br />

4.2<br />

1<br />

Contact Input Pulse Output Contact Output<br />

2 Contact Input Current Output 2 Contact Output<br />

C<br />

Current<br />

Current Output 2 Contact Input Pulse Output<br />

Common Output<br />

D<br />

1<br />

Current Output 2 Current Output 3 Pulse Output<br />

E<br />

Current Output 2 Current Output 3 Contact Input<br />

F<br />

Current Output 2 Current Output 3 Contact Output<br />

NOTE<br />

The CFT50 Transmitter output circuits are externally powered. The most common<br />

power supply voltage is 24 V dc.<br />

Current Outputs<br />

A wiring diagram for a Current Output is shown in Figure 10.<br />

POSITIVE POWER INPUT<br />

TER<strong>MI</strong>NAL (5)<br />

+ –<br />

24 V DC<br />

CURRENT OUTPUT<br />

TER<strong>MI</strong>NAL (6, 4, OR 4.1)<br />

LOOP<br />

+<br />

LOAD* –<br />

*FOR EXAMPLE, AI MODULE<br />

Figure 10. Current Output<br />

The loop load vs voltage relationship is:<br />

R MAX = (V-10)/0.0205.<br />

A minimum of 10 V must be maintained across the transmitter terminals for proper operation.<br />

To determine the maximum loop load resistance, add the series resistance of each component in<br />

the loop, excluding the transmitter.<br />

Figure 11 shows the output load vs voltage relationship from 10 to 24 volts.<br />

19


<strong>MI</strong> <strong>019</strong>-<strong>100</strong> – December 2003<br />

2. Installation<br />

<strong>MI</strong>N. LOAD<br />

WITH HART<br />

COMMUNICATOR<br />

LOOP LOAD RESISTANCE<br />

(ohms)<br />

683<br />

400<br />

250<br />

0<br />

0 5 10 15 20- 24<br />

SUPPLY VOLTAGE (V dc)<br />

NOTE<br />

1. CURRENT OUTPUT 1 MUST HAVE A<br />

<strong>MI</strong>NIMUM LOAD OF 250 Ω WHEN A<br />

HART COMMUNICATOR IS USED.<br />

2. MAX. LOAD = (V-10)/0.0205<br />

Figure 11. Supply Voltage and Output Load<br />

Example<br />

For a supply voltage of 24 V dc, the loop load resistance can be any value from 250 to<br />

683 Ω (0 to 683 Ω without a HART Communicator).<br />

Contact Input<br />

A wiring diagram for a Contact Input is shown in Figure 12.<br />

POSITIVE POWER INPUT<br />

TER<strong>MI</strong>NAL (5)<br />

+ –<br />

24 V dc<br />

CONTACT INPUT<br />

TER<strong>MI</strong>NAL (4, 4.1, or 4.2)<br />

+<br />

CONTACT*<br />

–<br />

*For example, DO Module<br />

Figure 12. Contact Input<br />

The voltage requirement for a contact input is 24 V dc ±10%. The maximum current is 15 mA.<br />

Contact Output<br />

The voltage requirement for contact output is 24 V dc ±10%. The load requirement is governed<br />

by producing a maximum current of <strong>100</strong> mA.<br />

20


2. Installation <strong>MI</strong> <strong>019</strong>-<strong>100</strong> – December 2003<br />

A wiring diagram for a Contact Output is shown in Figure 13.<br />

POSITIVE POWER INPUT<br />

TER<strong>MI</strong>NAL (5)<br />

+ –<br />

24 V dc<br />

CONTACT OUTPUT<br />

TER<strong>MI</strong>NAL (4.2)<br />

+<br />

LOAD*<br />

–<br />

*For example, lamp, relay, coil<br />

Figure 13. Contact Output<br />

The voltage requirement for contact output is 24 V dc ±10%. The load requirement is governed<br />

by producing a maximum current of <strong>100</strong> mA.<br />

Pulse Output<br />

A wiring diagram for a Pulse Output is shown in Figure 14.<br />

POSITIVE POWER INPUT<br />

TER<strong>MI</strong>NAL (5)<br />

+ –<br />

24 V dc<br />

PULSE OUTPUT<br />

TER<strong>MI</strong>NAL (4.1 OR 4.2)<br />

+ –<br />

RECEIVER*<br />

*For example, Model 75 Totalizer<br />

300 Ω<br />

Figure 14. Pulse Output<br />

The maximum pulse current is 80 mA. This requires a minimum 300 Ω pulse load resistor. In<br />

connecting your pulse loop, always place the pulse load resistor at the receiver.<br />

Higher pulse output frequencies require a minimum load.<br />

Sometimes a resistor divider is required because of the bias current of the receiver input. Refer to<br />

Figure 15. In such cases, the bias current times R2 must be less than the maximum low input<br />

threshold of the receiver.<br />

21


<strong>MI</strong> <strong>019</strong>-<strong>100</strong> – December 2003<br />

2. Installation<br />

POSITIVE POWER INPUT<br />

TER<strong>MI</strong>NAL (5)<br />

PULSE OUTPUT<br />

TER<strong>MI</strong>NAL (4.1 OR 4.2)<br />

R1<br />

200 Ω<br />

2 W<br />

R2<br />

<strong>100</strong> Ω<br />

2 W<br />

+ –<br />

24 V dc<br />

3 kΩ<br />

12 V<br />

I Bias<br />

RECEIVER<br />

Figure 15. Pulse Wiring with Divider Network<br />

For example:<br />

For a receiver with V (high) = 8 - 24 Volts,<br />

V (low) = 1 Volt Maximum, and<br />

Impedance = 3 kΩ to 12 V<br />

Vin (low) with single resistor of 300 Ω = (12)(300/3300) = 1.09 V which is too high<br />

Vin (low) with divider network = (12)(<strong>100</strong>/3<strong>100</strong>) = 0.39 V which is acceptable.<br />

Combination of Outputs<br />

A typical wiring diagram for Output Signal Code 1, which contains all of the above, is shown in<br />

Figure 16.<br />

CONTACT OUTPUT<br />

PULSE OUTPUT<br />

4.2<br />

4.1<br />

LOAD<br />

LOAD<br />

CONTACT INPUT<br />

CURRENT OUTPUT<br />

4<br />

6<br />

LOAD<br />

COMMON<br />

Figure 16. Typical Wiring Diagram (Output Signal Code 1)<br />

The power supply voltage is limited to the most restrictive requirements of the outputs used.<br />

HART Multidrop Communication<br />

5<br />

+ –<br />

24 V dc<br />

“Multidropping” refers to the connection of several transmitters to a single communications<br />

transmission line. Communications between the host computer and the transmitters takes place<br />

digitally with the analog output of the transmitter deactivated. With the HART communications<br />

22


2. Installation <strong>MI</strong> <strong>019</strong>-<strong>100</strong> – December 2003<br />

protocol, up to 15 transmitters can be connected on a single twisted pair of wires or over leased<br />

telephone lines.<br />

The application of a multidrop installation requires consideration of the update rate necessary<br />

from each transmitter, the combination of transmitter models, and the length of the transmission<br />

line. Multidrop installations are not recommended where Intrinsic Safety is a requirement.<br />

Communication with the transmitters can be accomplished with any HART compatible modem<br />

and a host implementing the HART protocol. Each transmitter is identified by a unique address<br />

(1-15) and responds to the commands defined in the HART protocol.<br />

Figure 17 shows a typical multidrop network. Do not use this figure as an installation diagram.<br />

Contact the HART Communications Foundation, (512) 794-0369, with specific requirements<br />

for multidrop applications.<br />

HOST<br />

MODEM<br />

LOAD<br />

POWER<br />

SUPPLY<br />

CFT50<br />

CFT50<br />

CFT50<br />

Figure 17. Typical Multidrop Network<br />

The HART Communicator can operate, configure, and calibrate your transmitters with HART<br />

communication protocol in the same way as it can in a standard point-to-point installation.<br />

NOTE<br />

CFT50 transmitters with HART communication protocol are set to poll address 0<br />

at the factory, allowing them to operate in the standard point-to-point manner with<br />

a 4 to 20 mA output signal. To activate multidrop communication, the transmitter<br />

address must be changed to a number from 1 to 15. Each transmitter must be<br />

assigned a unique number on each multidrop network. This change deactivates the<br />

4 to 20 mA analog output.<br />

<strong>Flow</strong>tube Wiring Connections<br />

<strong>Flow</strong>tube wiring connections at the transmitter junction box are shown in Figure 18 and Table 8.<br />

The distance between the flowtube and the transmitter can be up to 305 m (<strong>100</strong>0 ft).<br />

Invensys Foxboro cable (Model KFS1 for PVC insulated cable or Model KFS2 for FEP insulated<br />

cable) from the flowtube is dressed and ready for connection to the transmitter. However, to<br />

facilitate wire identification, ensure that the proper wire pairs remain twisted as the black wires are<br />

not common.<br />

23


<strong>MI</strong> <strong>019</strong>-<strong>100</strong> – December 2003<br />

2. Installation<br />

1 2 3 4 5 6 7 8 9 10 1112<br />

Figure 18. Junction Box Wiring<br />

Table 8. Junction Box Wiring<br />

Terminal Wire Color Signal<br />

1 Black<br />

RTD<br />

2 Blue<br />

3 Black RTD<br />

4 Green<br />

5 Red<br />

Sensor B<br />

6 Black<br />

7 Black, Shield<br />

Sensor A<br />

8 Yellow<br />

9 Black<br />

Driver 2<br />

10 Brown<br />

Driver 1<br />

11 Black<br />

12 White<br />

24


3. Start Up<br />

CFT50/CFS10 or CFT50/CFS20 <strong>Flow</strong>meters<br />

The CFT50 Transmitter can be configured with a HART Communicator or with the<br />

keypad/display option. With either option, two configuration menus exist, Quick Start and<br />

Setup. Most basic applications can be configured in Quick Start mode.<br />

When to Use Quick Start Mode<br />

Quick Start mode can be used for applications requiring only:<br />

♦<br />

♦<br />

<strong>Mass</strong> flow measurements (in lb/m)<br />

Current output<br />

♦ Positive flow direction.<br />

Use Setup mode that is fully described in <strong>MI</strong> <strong>019</strong>-132, for applications involving:<br />

♦<br />

♦<br />

♦<br />

♦<br />

♦<br />

Volume flow or density measurements<br />

<strong>Mass</strong> flow units other than lb/m<br />

Pulse or Contact Output<br />

Alarm or Totalizer functions<br />

Reverse or bidirectional flow.<br />

Steps Required<br />

1. Obtain the flowtube constants from the flowtube data label (or calibration sheet<br />

shipped with your flowtube).<br />

2. Mount the flowtube and transmitter (see “Mounting” on page 16).<br />

3. Install wiring: power to transmitter, flowtube to transmitter, transmitter input/output<br />

wiring (see “Wiring” on page 17).<br />

4. Enter flow and density constants into the transmitter using the Quick Start menu.<br />

5. Apply flow for 5 to 10 minutes.<br />

6. Create zero flow by closing block valves to ensure no fluid movement.<br />

7. Zero the flowmeter using the Quick Start menu.<br />

8. Enter upper and lower range values into the transmitter using the Quick Start menu.<br />

9. <strong>Flow</strong>meter is up and running.<br />

25


<strong>MI</strong> <strong>019</strong>-<strong>100</strong> – December 2003<br />

3. Start Up<br />

Procedure Using Keypad/Display<br />

Operation is accomplished via four multi-function keys. They operate as shown in Table 9.<br />

Key<br />

Left Arrow (ESC)<br />

Right Arrow (ENTER)<br />

Up Arrow (BACK)<br />

Down Arrow (NEXT)<br />

Table 9. Operation of Function Keys<br />

Function<br />

Moves left in the menu structure.<br />

Moves the cursor to the left in a data entry field.<br />

Escapes from changes in a picklist menu or data entry.*<br />

Answers No.<br />

Moves right in the menu structure.<br />

Used to access the data entry edit mode of a parameter.<br />

Moves the cursor to the right in a data entry field.<br />

Enters and saves the changed menu picklist choices or data entry.*<br />

Answers Yes.<br />

Moves upward in the menu structure or a picklist menu.<br />

Moves downward in the menu structure or a picklist menu.<br />

*On data entry, repeatedly press the key until the cursor reaches the end of the display.<br />

The Keypad/Display Quick Start menu is shown in Figure 19.<br />

1. Press the Left arrow key until the display reads 1 MEASURE and follow the menu<br />

using the keys as explained in Table 9.<br />

2. Go to 3 FC1, press the Enter key to access edit mode, and enter your first flow<br />

constant. Then enter the others.<br />

3. Go to 3 DC1, press the Enter key to access edit mode, and enter your first density<br />

constant. Then enter the others.<br />

4. Apply flow to your flowmeter for 5 to 10 minutes.<br />

5. Create zero flow by closing block valves to ensure no fluid movement.<br />

6. Go to 3SETZERO. Press the Enter key to start the zeroing process. The display reads<br />

BUSY until the process is finished and then reads DONE. Press the Down arrow key<br />

to display the new zero value (3 VALUE). You can then change that value using the<br />

Left/Right and Up/Down arrow keys as explained in Table 9. Alternatively, you can<br />

press the Down arrow key to display RESTORE. Pressing the Enter key at this point<br />

restores the factory default zero value.<br />

7. Go to 2 MA URV and enter your upper range value.<br />

8. Go to 2 MA LRV and enter your lower range value.<br />

9. Go to 2 FLOWCON. Press the Left arrow key to go to ONLINE. Pressing the Enter<br />

key to answer Yes takes you to 1 QSTART. Press the Up arrow key to go to<br />

1 MEASURE and the Left arrow key to return to Measure mode.<br />

26


3. Start Up <strong>MI</strong> <strong>019</strong>-<strong>100</strong> – December 2003<br />

1MEASURE<br />

1 QSTART PASSWORD OFFLINE<br />

2 FLOWCON 3 FC1<br />

ONLINE<br />

3 FC2<br />

3 FC3<br />

3 NOMCAP<br />

2 DENSCON 3 DC1<br />

3 DC2<br />

3 DC3<br />

3 DC4<br />

2 FLOWZER 3 SETZERO<br />

3 VALUE<br />

2 MA1 URV<br />

3 RESTORE<br />

2 MA1 LRV<br />

Figure 19. Keypad/Display Quick Start Menu<br />

27


<strong>MI</strong> <strong>019</strong>-<strong>100</strong> – December 2003<br />

3. Start Up<br />

Procedure Using the HART Communicator<br />

The HART Communicator Quick Start Menu is shown in Figure 20.<br />

1. Go to 2 Online.<br />

2. Go to 2 Quick Start.<br />

3. Go to 1 <strong>Flow</strong> Constants and enter your flow constants.<br />

4. Go to 2 Density Constants and enter your density constants.<br />

5. Apply flow to your flowmeter for 5 to 10 minutes.<br />

6. Create zero flow by closing block valves to ensure no fluid movement.<br />

7. Go to 3 <strong>Flow</strong> Zero and zero your flowmeter.<br />

8. Go to 4 URV and enter your upper range value.<br />

9. Go to 5 LRV and enter your lower range value.<br />

2 Online<br />

1 Measure<br />

2 Quick Start 1 <strong>Flow</strong> Constants<br />

2 Density Constants<br />

3 <strong>Flow</strong> Zero<br />

4 URV<br />

5 LRV<br />

Figure 20. HART Communicator Quick Start Menu<br />

28


Index<br />

C<br />

CFS10 or CFS20 <strong>Flow</strong>tubes<br />

Mounting 11<br />

Site Selection 11<br />

Wiring Remote Transmitter to <strong>Flow</strong>tube 14<br />

CFT50 Transmitter<br />

Field Wiring 17<br />

Input/Output Wiring 18<br />

Mounting 16<br />

Positioning the Housing 17<br />

Power Wiring 18<br />

I<br />

Installation 11<br />

CFS10 or CFS20 <strong>Flow</strong>tube 11<br />

CFT50 Transmitter 16<br />

M<br />

Mounting<br />

CFS10 or CFS20 <strong>Flow</strong>tubes 11<br />

CFT50 Transmitter 16<br />

S<br />

Safety Information 1<br />

W<br />

Warnings 1<br />

Wiring<br />

CFS10 or CFS20 <strong>Flow</strong>tubes 14<br />

CFT50 Transmitter 17<br />

29


<strong>MI</strong> <strong>019</strong>-<strong>100</strong> – December 2003 Index<br />

33 Commercial Street<br />

Foxboro, MA 02035-2099<br />

United States of America<br />

www.foxboro.com<br />

Inside U.S.: 1-866-746-6477<br />

Outside U.S.: 1-508-549-2424<br />

or contact your local Foxboro<br />

representative.<br />

Facsimile: 1-508-549-4999<br />

Invensys, Foxboro, and I/A <strong>Series</strong> are trademarks of Invensys plc, its subsidiaries, and affiliates.<br />

All other brand names may be trademarks of their respective owners.<br />

Copyright 2003 Invensys Systems, Inc.<br />

All rights reserved<br />

MB <strong>100</strong> Printed in U.S.A. 1203

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!