18.01.2015 Views

Orthobiologics in Shoulder Surgery - ShoulderDoc.co.uk

Orthobiologics in Shoulder Surgery - ShoulderDoc.co.uk

Orthobiologics in Shoulder Surgery - ShoulderDoc.co.uk

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Orthobiologics</strong><br />

<strong>in</strong><br />

<strong>Shoulder</strong> <strong>Surgery</strong><br />

Carl J. Basamania, MD, FACS<br />

The PolyCl<strong>in</strong>ic and Swedish<br />

Orthopaedic Institute<br />

Seattle, Wash<strong>in</strong>gton


“The future a<strong>in</strong>’t what it used to be”<br />

“You've got to be very careful if<br />

you don't know where you're go<strong>in</strong>g,<br />

because you might not get there.”<br />

Yogi Berra


What’s so special about<br />

shoulder surgery<br />

• Often work<strong>in</strong>g with chronic, degenerative<br />

<strong>co</strong>nditions<br />

• Rotator cuff tears are very <strong>co</strong>mmon<br />

– If you live long enough, you probably will have<br />

a cuff tear<br />

• Re-tear rates after traditional surgery is<br />

much higher than previously appreciated<br />

– 40-95% retear rate!<br />

• Annual f<strong>in</strong>ancial burden of $3 billion on the<br />

US e<strong>co</strong>nomy


My Introduction to <strong>Orthobiologics</strong><br />

• What is it<br />

– “highly <strong>in</strong>ductive,<br />

scaffold<strong>in</strong>g material”<br />

» Steve Arnockzy<br />

• How does it work<br />

– “I haven’t the slightest<br />

idea”<br />

» Steve Arnockzy


Realities of the “Orthopaedic<br />

Marketplace”<br />

• Most surgeons know noth<strong>in</strong>g about<br />

“orthobiologics”<br />

• Many surgeons know noth<strong>in</strong>g about soft<br />

tissue heal<strong>in</strong>g<br />

• Many surgeons are desperate for anyth<strong>in</strong>g<br />

to give them better results<br />

• Some surgeons will try anyth<strong>in</strong>g to get a<br />

“<strong>co</strong>mpetitive edge” over other surgeons


Biologics <strong>in</strong> <strong>Shoulder</strong> <strong>Surgery</strong><br />

• Soft tissue substitutes<br />

– Biologic<br />

– Structural<br />

• Hard tissue substitutes<br />

– Graft extenders<br />

– Graft substitutes<br />

• Heal<strong>in</strong>g “enhancers”


<strong>Orthobiologics</strong> <strong>in</strong> Orthopaedic <strong>Surgery</strong><br />

• Alternatives:<br />

– Bone Substitutes<br />

• Tricalcium phosphate<br />

• Amorphous Calcium Phosphate<br />

• Dicalcium Phosphate Dihydrate Precursors<br />

• Dem<strong>in</strong>eralized bone matrix<br />

–Soft tissue scaffolds<br />

• ECM grafts<br />

– Cell based heal<strong>in</strong>g response<br />

• Platelet Rich Plasma<br />

– Factor based heal<strong>in</strong>g


Bone Graft Substitutes<br />

Class Description Examples<br />

Allograft based<br />

Factor based<br />

Cell based<br />

Ceramic based<br />

Polymer based<br />

Allograft bone used alone or <strong>in</strong><br />

<strong>co</strong>mb<strong>in</strong>ation with other<br />

materials<br />

Natural and re<strong>co</strong>mb<strong>in</strong>ant<br />

growth factors used alone or <strong>in</strong><br />

<strong>co</strong>mb<strong>in</strong>ation with other<br />

materials<br />

Cells used to generate new<br />

tissue alone or seeded onto a<br />

support matrix<br />

Includes calcium phosphate,<br />

calcium sulfate, and bioglass<br />

used alone or <strong>in</strong> <strong>co</strong>mb<strong>in</strong>ation<br />

Both degradable and<br />

nondegradable polymers used<br />

alone and <strong>in</strong> <strong>co</strong>mb<strong>in</strong>ation with<br />

other materials<br />

Allogro, Othroblast, Opteform,<br />

Grafton<br />

TGF-beta, PDGF, FGF, BMP<br />

Mesenchymal stem cells,<br />

Cellect<br />

Osteograf, Norian SRS,<br />

ProOsteon, Osteoset, Conduit<br />

Cortoss, OPLA, Immix


Bone Graft Substitutes<br />

• 1998 - >300K bone grafts, 1999 ~500K<br />

• Total <strong>co</strong>st ~ $2.5 billion/year<br />

• However:<br />

– Relatively high <strong>co</strong>mplication rate ~20-30%<br />

– Donor site pa<strong>in</strong><br />

– Increased operative times<br />

– Increased operative <strong>co</strong>sts (supplies, OR time,<br />

etc)<br />

– Limited supply/availability


Bone Morphogenetic Prote<strong>in</strong><br />

• Also known as BMP<br />

– Synthetics: INFUSE ® and OP-1 ®<br />

• Signal<strong>in</strong>g prote<strong>in</strong> that tells mesenchymal<br />

stem cells what to be<strong>co</strong>me (i.e. bone,<br />

muscle or <strong>co</strong>nnective tissue)<br />

• 30 known human BMPs<br />

• “Key” that fits <strong>in</strong>to one keyhole on the<br />

surface of the MSC


Problems with BMP<br />

• Needs MSC’s<br />

• Expensive<br />

• Non-reimbursable<br />

• Questions of us<strong>in</strong>g<br />

factor <strong>in</strong> far greater<br />

than normal quantities


Problems with Factor Based<br />

Heal<strong>in</strong>g<br />

• Not only are the factors important<br />

– Relationship of the <strong>co</strong>mb<strong>in</strong>ation of factors<br />

– Quantity of factors<br />

– 3 dimensional presentation of factors<br />

– Host status


Platelet Rich Plasma & Fibr<strong>in</strong> Glue<br />

• Most important wound heal<strong>in</strong>g tissue<br />

factors are platelet derived<br />

– PDGF – platelet derived growth factor<br />

– VEGF – vascular/endothelial growth factor<br />

– TGFβ – transform<strong>in</strong>g growth factor<br />

– IFG-I – <strong>in</strong>sul<strong>in</strong> like growth factor<br />

• Can we enhance heal<strong>in</strong>g by application of<br />

a platelet <strong>co</strong>ncentrate at the time of<br />

surgery<br />

• Various systems available to <strong>co</strong>ncentrate<br />

autologous plate


Background<br />

• Multiple studies have shown enhanced<br />

wound heal<strong>in</strong>g, improved hemostasis and<br />

improved bone formation with application<br />

of PRP and PPP<br />

• However, other studies have shown no<br />

benefit and even decreased bone<br />

formation with PRP


PRP Causes Migration of MSCs<br />

250<br />

Cell number/chamber<br />

200<br />

150<br />

100<br />

50<br />

0<br />

SF 10% PPP 10% PRP<br />

Chemotactic Test Solution


PRP Causes Proliferation of MSCs<br />

900<br />

Cell Number X 1000<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

*<br />

*<br />

*<br />

*<br />

100<br />

0<br />

Serum Free<br />

Medium<br />

Growth<br />

Medium<br />

Peripheral<br />

Blood<br />

PPP<br />

0.625x 1.25x 2.5x 5x<br />

Fold Increase of Platelet Releasate<br />

*P


PRP and Implant Coat<strong>in</strong>g<br />

• Most studies are <strong>in</strong> dental, ENT and<br />

maxillofacial areas<br />

• Fontana, et al (2004) found greater<br />

volume of peri-implant bone on implants<br />

treated with PRP


• Gardner MJ, Demetrakopoulos D, Klepchick PR, et al.<br />

The efficacy of autologous platelet gel <strong>in</strong> pa<strong>in</strong> <strong>co</strong>ntrol and<br />

blood loss <strong>in</strong> total knee arthroplasty. An analysis of the<br />

haemoglob<strong>in</strong>, nar<strong>co</strong>tic requirement and range of motion.<br />

Int Orthop. 2007;31:309–313.<br />

• Siebrecht MA, De Rooij PP, Arm DM, et al. Platelet<br />

<strong>co</strong>ncentrate <strong>in</strong>creases bone <strong>in</strong>growth <strong>in</strong>to porous<br />

hydroxyapatite. Orthopedics. 2002;25:169–172.


PRP <strong>in</strong> My Practice


Observations<br />

• No longer need dra<strong>in</strong> post-op<br />

• Less swell<strong>in</strong>g and ecchymosis<br />

• Better/earlier range of motion and function<br />

• Incisions “mature” sooner<br />

• *Patients have been us<strong>in</strong>g significantly<br />

less post-op nar<strong>co</strong>tics


Humeral Nonunion 68yo female heavy smoker 1<br />

year s/p failed ORIF<br />

3 mos s/p Revision with PRP and TCP


Humeral Osteotomy Nonunion <strong>in</strong> 28 yo<br />

male now 1 month s/p revision with PRP<br />

and TCP


Revision shoulder arthroplasty<br />

PRP + TCP


PRP plus DBM/Cancellous Bone


72 yo home O 2 dependent, EF 25%<br />

3 weeks s/p revsion ORIF c/ PRP, 15cc IC Graft


Soft Tissue Scaffolds<br />

• CuffPatch (Arthrotek)<br />

– Porc<strong>in</strong>e SIS<br />

• Graftjacket (Wright<br />

Medical)<br />

– Human dermal tissue<br />

• Graftjacket Xpress<br />

(Wright Medical)<br />

– Flowable Soft Tissue<br />

Scaffold<br />

– micronized human<br />

dermal tissue<br />

• AlloPatch (MTF)<br />

– Human fascia lata,<br />

• Perma<strong>co</strong>l (Tissue<br />

Science Lab/Zimmer)<br />

– Porc<strong>in</strong>e dermal tissue<br />

• Restore (DePuy Ortho)<br />

– Porc<strong>in</strong>e SIS<br />

• TissueMend (Stryker<br />

Howmedica)<br />

– Bov<strong>in</strong>e fetal dermal<br />

tissue<br />

• OrthADAPT (Pegasus<br />

Biologics)<br />

– Equ<strong>in</strong>e Pericardium


Uses of the Restore® Graft<br />

• *FDA approved for:<br />

– Rotator cuff repair<br />

• 1 and 2 tendon repairs<br />

• NOT TO BE USED WITH MORE THAN MILD<br />

FATTY DEGENERATION<br />

– Re<strong>in</strong>forcement of soft tissue where<br />

weakness exists<br />

• Replacement of torn/ruptured ligaments<br />

• Replacement of torn/ruptured tendons


• 6 years post-op<br />

revision left rotator<br />

cuff repair<br />

• Patient rates left<br />

shoulder as<br />

“normal”<br />

• MRI at 1, 3 and 6<br />

year f/u show<br />

<strong>in</strong>tact left cuff<br />

• Patient has reruptured<br />

right RC<br />

repair done<br />

without Restore<br />

– Revised 10/2004<br />

with Restore


6 year postop MRI & CT


5 weeks postop Right revision


Lateral Ret<strong>in</strong>acular Defect <strong>in</strong> 36yo w/HIV –<br />

failed 2 prior attempts at primary repair<br />

Pre-op<br />

6 mos post-op


Re<strong>in</strong>forcement of Triceps Rupture<br />

“Overlay Technique”


Levator Scapulae Avulsion Repair


Post-acromioplasty deltoid avulsion


Subscapularis Re<strong>in</strong>forcement<br />

The “Ta<strong>co</strong>” Technique


Subscapularis<br />

re<strong>in</strong>forcement


Pectoralis Rupture


History<br />

• Cook and Arnoczky:<br />

– SIS appears to <strong>in</strong>duce regeneration of<br />

meniscal-like tissue <strong>in</strong> large, avascular<br />

meniscal defects <strong>in</strong> dogs<br />

– Control dogs had significantly more articular<br />

cartilage damage than grafted dogs<br />

– Tissue Eng 2001 Jun;7(3):321-34


History<br />

• Fox and Arnoczky:<br />

– SIS disks underwent cellular and extracellular<br />

matrix modification result<strong>in</strong>g <strong>in</strong> fibrocartilagelike<br />

tissue when placed free <strong>in</strong> dog jo<strong>in</strong>ts<br />

– Suggested that SIS scaffolds can support cell<br />

attachment and <strong>in</strong>growth <strong>in</strong> a diarthroadial<br />

jo<strong>in</strong>t<br />

– Tissue Eng 2004 Jan;10(1-2):129-37


Glenoid Resurfac<strong>in</strong>g Arthroplasty<br />

Not FDA approved for this application


Glenoid Resurfac<strong>in</strong>g Arthroplasty<br />

Not FDA approved for this application


Dog Glenoid Resurfac<strong>in</strong>g Study


Dog Glenoid Resurfac<strong>in</strong>g Results<br />

• There was significantly less surface<br />

erosion (12% VS. 39%, p>0.05%) <strong>in</strong> the<br />

group with SIS resurfac<strong>in</strong>g by 6 months<br />

• Good remodel<strong>in</strong>g on histopathology<br />

assessment was also seen <strong>in</strong> the SIS<br />

group at both 3 and 6 months.<br />

• There were no differences <strong>in</strong> lameness at<br />

3 and 6 months and no difference <strong>in</strong><br />

surface erosions at 3 months.


3 months<br />

Control<br />

SIS


6 months<br />

Control (2x)<br />

SIS (10x)


Necropsy photos obta<strong>in</strong>ed at 6 months<br />

Control<br />

SIS


Where Are We Go<strong>in</strong>g With Soft<br />

Tissue Grafts


Concerns:<br />

• Only 1 <strong>co</strong>ntrolled study<br />

– Questionable patient selection<br />

• Difficult to prove effectiveness <strong>in</strong> humans<br />

– Especially difficult <strong>in</strong> rotator cuff tears<br />

• No good studies show<strong>in</strong>g long-term effectiveness <strong>in</strong><br />

cuff repairs<br />

– What is a success<br />

• No pa<strong>in</strong><br />

• Good function<br />

• Intact cuff on<br />

re-imag<strong>in</strong>g


ECM’s <strong>in</strong> Rotator Cuff <strong>Surgery</strong><br />

• 2-year follow-up of 12 patients<br />

• Arthros<strong>co</strong>pic repair of massive chronic rotator cuff tears<br />

• Restore SIS as an augmentation device.<br />

• MRI scans showed significant thicken<strong>in</strong>g of the cuff tendon<br />

with the <strong>in</strong><strong>co</strong>rporation of the SIS graft <strong>in</strong> 11 patients<br />

• Cl<strong>in</strong>ical failure was observed with<strong>in</strong> 12 weeks with <strong>co</strong>mplete<br />

resorption of the graft <strong>in</strong> 1 patient<br />

• No evidence of local or systemic rejection or <strong>in</strong>fection <strong>in</strong> any<br />

patient<br />

• Mean postoperative UCLA s<strong>co</strong>re was 19.9 (out of 35)<br />

– Preoperative 9.9 (P.01)<br />

• Functional improvement <strong>in</strong> all patients based on Simple<br />

<strong>Shoulder</strong> Test<br />

• Metcalf, Savioe, Kellum. Oper Tech Orthop, 2002;12:204-8.


2 year Canadian Multicenter Study<br />

• Chronic one and two tendon tears<br />

• With<strong>in</strong> FDA clearance for use<br />

– No more than mild fatty <strong>in</strong>filtration<br />

– No significant retraction<br />

• One year data:<br />

– Restore patch decreased re-tear rate by at<br />

least 25%<br />

– No significant rejection or hyper-immune<br />

responses


ECM’s <strong>in</strong> Rotator Cuff <strong>Surgery</strong><br />

• Sclamberg et al evaluated the use of<br />

Restore as an augmentation device <strong>in</strong> a<br />

<strong>co</strong>hort of 11 patients undergo<strong>in</strong>g open<br />

repair of large or massive rotator cuff tears<br />

• At 6 months postoperatively, MRI scans<br />

revealed that 10 of 11 Restore augmented<br />

repairs had failed<br />

Sclamberg SG, Tibone JE, Itamura JM, Kasraeian S. Six-month<br />

magnetic resonance imag<strong>in</strong>g follow-up of large and massive<br />

rotator cuff repairs re<strong>in</strong>forced with porc<strong>in</strong>e small <strong>in</strong>test<strong>in</strong>al submu<strong>co</strong>sa.<br />

J <strong>Shoulder</strong> Elbow Surg 2004;13:538-41.


Use of Restore Orthobiologic Implant for<br />

Agumentation of Chronic Two Tendon<br />

Rotator Cuff Tears: A Controlled<br />

Randomized Study<br />

Joseph P. Iannotti MD, PhD, Jim Cic<strong>co</strong>ne CRNA,<br />

Michael Codsi MD,Young Kwon MD, PhD,<br />

Kathe Derw<strong>in</strong> PhD, John Brems MD<br />

JBJS, 2006


Results<br />

• Prospective, randomized, <strong>co</strong>ntrolled trial of 30<br />

patients with repairable, large 2-tendon cuff<br />

tears<br />

• The unaugmented group was 7% more likely to<br />

heal than the Restore augmented group<br />

• The postoperative PENN s<strong>co</strong>res <strong>in</strong> the<br />

unaugmented group (91 po<strong>in</strong>ts) were also<br />

significantly higher than those <strong>in</strong> the augmented<br />

group (83 po<strong>in</strong>ts) (P .007)


“Larger Sized Tear”<br />

Moderate to Severe Atrophy:<br />

Group II


Problem with these studies<br />

• Restore patch was used <strong>in</strong> cl<strong>in</strong>ical sett<strong>in</strong>g<br />

<strong>co</strong>ntra<strong>in</strong>dicated by the FDA clearance<br />

– Massive cuff tears with fatty degeneration and<br />

retraction<br />

• Is it reasonable to use a graft material <strong>in</strong> a<br />

non-<strong>in</strong>dicated sett<strong>in</strong>g and then question it’s<br />

value


Cellular Hysteria<br />

• Cellular elements<br />

• Zheng MH, Chen J, Kirilak Y, Willers C, Xu J, Wood D. Porc<strong>in</strong>e<br />

small <strong>in</strong>test<strong>in</strong>e submu<strong>co</strong>sa (SIS) is not an acellular <strong>co</strong>llagenous<br />

matrix and <strong>co</strong>nta<strong>in</strong>s porc<strong>in</strong>e DNA: possible implications <strong>in</strong> human<br />

implantation. J Biomed Mater Res B Appl Biomater 2005;73:61-7.<br />

• Is this functional DNA<br />

• What are the chances of cross – species DNA disease<br />

transmission versus species specific


What I Have Learned:<br />

• There is a great deal is misunderstand<strong>in</strong>g<br />

about the heal<strong>in</strong>g of rotator cuff<br />

– What is the goal of surgery<br />

• A functional muscle unit<br />

• There is great deal of misunderstand<strong>in</strong>g<br />

about ECMs<br />

• There has been a great deal of “sp<strong>in</strong>” by<br />

the manufacturers


“…there is no such th<strong>in</strong>g as an<br />

irreparable cuff…”


Native nerve<br />

orientation<br />

Suprascapular nerve<br />

Scapular notch<br />

First motor branch to<br />

suprasp<strong>in</strong>atus<br />

An Anatomical Study of the Effects on the Suprascapular Nerve Se<strong>co</strong>ndary to Retraction of the Suprasp<strong>in</strong>atus Muscle after a Rotator Cuff Tear,<br />

JSES, 2003


3cm retraction<br />

Suprascapular nerve<br />

Scapular notch<br />

First motor branch to<br />

suprasp<strong>in</strong>atus<br />

An Anatomical Study of the Effects on the Suprascapular Nerve Se<strong>co</strong>ndary to Retraction of the Suprasp<strong>in</strong>atus Muscle after a Rotator Cuff<br />

Tear,<br />

JSES, 2003


Biology of a Cuff Tear<br />

• Cytok<strong>in</strong>e-mRNAs <strong>in</strong> the shoulder synovium<br />

expressed more significantly <strong>in</strong> full-thickness<br />

tears<br />

• Significant <strong>in</strong>crease <strong>in</strong> <strong>co</strong>llagenase-3 (MMP-<br />

13) mRNA levels<br />

• Decrease <strong>in</strong> stromelys<strong>in</strong>-1 (MMP-3) mRNA<br />

levels<br />

• Decrease <strong>in</strong> tissue <strong>in</strong>hibitor of<br />

metalloprote<strong>in</strong>ase-2, -3, and -4 mRNA levels<br />

• Increase <strong>in</strong> the active form of <strong>co</strong>llagenase-3<br />

(MMP-13) <strong>in</strong> rotator cuff tendon tears.


Can We Change the Biology<br />

• In theory, <strong>in</strong>hibition of <strong>co</strong>llagenases and<br />

cytok<strong>in</strong>es should promote heal<strong>in</strong>g<br />

• If so, why do nonsteriodal anti<strong>in</strong>flammatory<br />

drugs decrease heal<strong>in</strong>g


What’s The Po<strong>in</strong>t of No Return<br />

• There are numerous adaptive and<br />

“maladaptive” responses to a cuff tear<br />

• These <strong>in</strong>clude biological, mechanical and<br />

neurological changes<br />

• Some of these make any attempt repair<br />

futile<br />

• Repair of these tears need to <strong>co</strong>nsider not<br />

only the mechanics of the repair but also<br />

the biology of the repair


Thank You


Comparative study of Soft Tissue<br />

Scaffolds<br />

• Badylak studied 5 different extracellular<br />

soft tissue scaffolds and <strong>co</strong>mpared them<br />

with an autologous tissue graft<br />

– GraftJacket – Wright Medical<br />

– Restore – DePuy<br />

– TissueMend – TEI Biosciences<br />

– Perma<strong>co</strong>l – Tissue Sciences<br />

– CuffPatch – Arthrotek<br />

• Critical abdom<strong>in</strong>al wall defect model


Results – Autologous Graft<br />

• Replaced with poorly<br />

organized <strong>co</strong>llagen<br />

<strong>co</strong>nsistent with scar<br />

A = 1 week<br />

C = 16 weeks


Results – Restore Graft<br />

• Rapidly <strong>in</strong>flitratred<br />

with dense<br />

mononuclear cells<br />

• Followed by<br />

progressive<br />

organization <strong>in</strong>to a<br />

mixture of skeletal<br />

muscle and organized<br />

<strong>co</strong>nnective tissue<br />

A = 1 week<br />

C = 16 weeks


Results – CuffPatch<br />

• Prolonged <strong>in</strong>filtration<br />

by mononuclear cells<br />

AND foreign body<br />

giant cells<br />

• Followed by partial<br />

scaffold remodel<strong>in</strong>g<br />

<strong>in</strong>to organized<br />

<strong>co</strong>nnective tissue<br />

A = 1 week<br />

C = 16 weeks


Results – GraftJacket<br />

• Intense cellular<br />

<strong>in</strong>filtrate<br />

• Eventual replacement<br />

by partially organized,<br />

dense <strong>co</strong>nnective<br />

tissue<br />

A = 1 week<br />

C = 16 weeks


Results – TissueMend<br />

• Little cellular<br />

<strong>in</strong>filtration<br />

• Eventually<br />

surrounded by fibrous<br />

<strong>co</strong>nnective tissue and<br />

adipose tissue<br />

A = 1 week<br />

C = 16 weeks


Results – Perma<strong>co</strong>l<br />

• Rema<strong>in</strong>ed <strong>in</strong>tact with<br />

virtually no cellular<br />

<strong>in</strong>filtration<br />

• Eventually enveloped<br />

by a dense fibrous<br />

capsule<br />

A = 1 week<br />

C = 16 weeks


Conculsion<br />

• Host response to different soft tissue<br />

scaffolds will vary based on their<br />

<strong>co</strong>mposition and process<strong>in</strong>g<br />

• Stronger with less <strong>in</strong>flammation is not<br />

necessarily better

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!