21.01.2015 Views

Chapter 11 Chemical Bonds: The Formation of Compounds from ...

Chapter 11 Chemical Bonds: The Formation of Compounds from ...

Chapter 11 Chemical Bonds: The Formation of Compounds from ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Chapter</strong> <strong>11</strong><br />

<strong>Chemical</strong> <strong>Bonds</strong>:<br />

<strong>The</strong> <strong>Formation</strong> <strong>of</strong><br />

<strong>Compounds</strong> <strong>from</strong> Atoms<br />

1


<strong>11</strong>.1 Periodic Trends in atomic properties<br />

<strong>11</strong>.1 Periodic Trends in atomic properties<br />

design <strong>of</strong> periodic table is based on observing<br />

properties <strong>of</strong> the elements<br />

periodic trends allow us to use the periodic table to<br />

predict properties and reactions <strong>of</strong> a wide variety <strong>of</strong><br />

substances<br />

1. metals and nonmetals<br />

• metals are usually lustrous, malleable and good<br />

conductors <strong>of</strong> heat and electricity<br />

• nonmetals are nonlustrous, brittle and poor<br />

conductors<br />

• metals tend to lose electrons and form cations<br />

• nonmetals tend to gain electrons and form<br />

anions<br />

a metal reacts with a nonmetal, electrons are<br />

<strong>of</strong>ten transferred <strong>from</strong> the metal to the nonmetal<br />

• hydrogen is a unique element<br />

2


2. atomic radius<br />

• the increase in radius down a group<br />

for each step down a group, an additional<br />

energy level is added to the atom<br />

• decrease in atomic radius across a period<br />

electrons are added the same energy level<br />

each time an electron is added, a proton is<br />

added to the nucleus and increase in positive<br />

charge that pulls the electrons closer to the<br />

nucleus<br />

3


3. ionization energy – the energy required to<br />

remove an electron <strong>from</strong> the (gaseous) atom<br />

Na + ionization energy Na + + e -<br />

first ionization energy for the elements in the<br />

first four periods<br />

• ionization energy in Group A elements decreases<br />

<strong>from</strong> top to bottom<br />

• ionization energy gradually increases <strong>from</strong> left 4<br />

to right across a period


<strong>11</strong>.2 Lewis structures <strong>of</strong> atoms<br />

metals tend to form cations and nonmetals tend to<br />

form anions in order to attain a stable valence<br />

electron structure which contains 8 electrons<br />

this rearrangements are accomplished by losing,<br />

gaining or sharing electrons with other atoms<br />

Lewis structure – using the symbol for element<br />

and dots for valence electrons<br />

paired dots represent paired electrons<br />

unpaired dots represent unpaired electrons<br />

ex. · unpaired electron<br />

:B<br />

paired electron symbol for element<br />

Lewis structures for the first 20 elements<br />

5


<strong>11</strong>.3 <strong>The</strong> ionic bond: transfer <strong>of</strong> electrons<br />

<strong>from</strong> one atom to another<br />

the chemistry <strong>of</strong> many elements is to attain an<br />

outer electron structure like that <strong>of</strong> noble gases<br />

ex. Na atom loses 3s electron to form Na +<br />

this process requires energy<br />

Cl atom gains an electron to form Cl -<br />

this process releases energy<br />

6


consider Na and Cl atoms react with each other<br />

Na + and Cl - strongly are attracted to each other<br />

by their opposite electrostatic charges<br />

Lewis representation:<br />

. . . .<br />

Na· + ·Cl: [Na] + [:Cl:] -<br />

·· ··<br />

NaCl is made up <strong>of</strong> cubic crystals<br />

each Na + is surrounded by 6 Cl - , each Cl - is<br />

surrounded by 6 Na +<br />

7


elative sizes <strong>of</strong> Na and Cl atoms with those <strong>of</strong><br />

their ions<br />

Na + is smaller than Na atom<br />

Cl - is larger than Cl atom<br />

ionic bond – the attraction between oppositely<br />

charged ions<br />

8


ex. <strong>11</strong>.2 how Mg and Cl combine to form MgCl 2<br />

ex. <strong>11</strong>.3 formation <strong>of</strong> NaF <strong>from</strong> its elements<br />

ex. <strong>11</strong>.5 formation <strong>of</strong> MgO <strong>from</strong> its elements<br />

9


<strong>11</strong>.4 Predicting formulas <strong>of</strong> ionic<br />

compounds<br />

the concept forms the basis for our understanding<br />

<strong>of</strong> chemical bonding:<br />

in almost all stable chemical compounds <strong>of</strong><br />

representative elements, each atom attains a noble<br />

gas electron configuration<br />

predicting the formulas <strong>of</strong> ionic compounds<br />

ex. Compound formed between Ba and S<br />

Ba [Xe]6s 2<br />

S [Ne]3s 2 3p 4<br />

loses 2 electrons to achieve<br />

Xe configuration Ba 2+<br />

gains 2 electrons to achieve<br />

Ar configuration S 2-<br />

BaS<br />

ex. <strong>11</strong>.8 predict formulas for<br />

(a) magnesium sulfide Mg 2+ S 2- MgS<br />

(b) potassium phosphide K + P 3- K10<br />

3 P<br />

(c) magnesium selenide Mg 2+ Se 2- MgSe


<strong>11</strong>.5 <strong>The</strong> covalent bond: sharing<br />

electrons<br />

electron transfer between atoms does not occur in<br />

molecular compounds in which a chemical bond<br />

formed by sharing pairs <strong>of</strong> electrons between<br />

atoms<br />

1916 G. N. Lewis introduced<br />

covalent bond consists <strong>of</strong> a pair <strong>of</strong> electrons<br />

shared between two atoms<br />

examples <strong>of</strong> molecular compounds:<br />

H 2 , Cl 2 , H 2 O, HCl, CO 2 , sugar<br />

ionic<br />

compound<br />

formation <strong>of</strong> hydrogen molecule (H 2 ) involves<br />

overlapping and pairing <strong>of</strong> 1s electron orbitals<br />

<strong>from</strong> two H atoms<br />

<strong>11</strong>


formation <strong>of</strong> chlorine molecule (Cl 2 ) involves<br />

overlapping <strong>of</strong> unpaired 3p electron orbitals<br />

<strong>from</strong> two Cl atoms<br />

other examples<br />

. . . . . . . . . . . .<br />

:F : F: : I : I : :O :: O: :N ::: N:<br />

·· ·· ·· ··<br />

fluorine iodine oxygen nitrogen<br />

using a dash — replace the pair <strong>of</strong> dots<br />

. . . . . . . . . . . .<br />

:F—F: : I—I : :O = O: :N≣N:<br />

·· ·· ·· ··<br />

ionic bond and covalent bond represent two<br />

extremes<br />

between two extremes<br />

polar covalent bond – unequal sharing <strong>of</strong><br />

electrons between two atoms<br />

. .<br />

ex. H:Cl: :C:::O:<br />

12<br />

··


<strong>11</strong>.6 Electronegativity<br />

the bond formed between two different kinds <strong>of</strong><br />

atoms which exert unequal attraction for the pair<br />

<strong>of</strong> electron<br />

one atom assume a partial positive charge, the<br />

other a partial negative charge<br />

the attractive force that an element has for<br />

shared electrons in a molecule or polyatomic ion<br />

is known as its electronegativity<br />

ex. hydrogen chloride HCl<br />

Pauling scale assign electronegativity <strong>of</strong> F 4.0<br />

increase<br />

decrease<br />

13


• the highest electronegativity is 4.0 for F<br />

the lowest electronegativity is 0.7 for Cs and Fr<br />

• the higher the electronegativity, the stronger an<br />

atom attracts electrons<br />

the polarity <strong>of</strong> a bond is determined by the<br />

difference in electronegativity values <strong>of</strong> the atoms<br />

forming the bond<br />

nonpolar covalent bond<br />

polar covalent bond dipole + -<br />

H Cl H Br I Cl O<br />

H H<br />

if the electronegativity difference between two<br />

bonded atoms is greater than 1.7~1.9, the bond<br />

will be more ionic than covalent<br />

0 0.9 2.1<br />

14


carbon dioxide CO 2 is nonpolar<br />

O = C = O<br />

CCl 4 is nonpolar<br />

H 2 O is a polar molecule<br />

O<br />

H H<br />

15


<strong>11</strong>.7 Lewis structures <strong>of</strong> compounds<br />

the procedure helps to write the Lewis structure<br />

ex. <strong>11</strong>.9 how man valence electrons in each <strong>of</strong><br />

the following atoms:<br />

Cl H C O N S P I<br />

7 1 4 6 5 6 5 7<br />

16


ex. <strong>11</strong>.10 write the Lewis structure for H 2 O<br />

step 1 total valence electrons = 2 × 1 + 6 = 8<br />

step 2 the skeleton structure<br />

H O H : O· ·<br />

H<br />

H<br />

step 3 subtract 4 electrons <strong>from</strong> 8<br />

8 – 4 = 4<br />

step 4 distribute 4 electrons around O atom<br />

·· ··<br />

H : O : H—O :<br />

·· |<br />

H<br />

H<br />

ex.<strong>11</strong>.<strong>11</strong> write the Lewis structure for CH 4<br />

step 1 total valence electrons = 4 × 1 + 4 = 8<br />

step 2 H H· ·<br />

H C H H : C : H<br />

··<br />

H<br />

H<br />

step 3 8 – 8 = 0<br />

H<br />

|<br />

H—C—H<br />

|<br />

H<br />

17


ex.<strong>11</strong>.<strong>11</strong> write the Lewis structure for CO 2<br />

step 1 total valence electrons = 4 + 2 × 6 = 16<br />

step 2<br />

O C O O : C : O<br />

step 3 16 – 4 = 12<br />

step 4 . . . . . . . . . . . . . . . .<br />

: O : C : O : : O : C : O : : O : C : O :<br />

·· ·· ·· ··<br />

I II III<br />

step 5 : O :: C :: O : : O = C = O:<br />

18


<strong>11</strong>.8 Complex Lewis structures<br />

for some molecules or polyatomic ions, no single<br />

Lewis structure consistent with all characteristics<br />

and bonding information can be written<br />

ex. nitrate ion NO<br />

-<br />

3<br />

step 1 total valence electrons<br />

= 5 + 3 × 6 + 1 = 24<br />

step 2 O O· ·<br />

O N O O : N : O<br />

step 3 24 - 6 = 18<br />

step 4 · ·<br />

: O electron deficient<br />

·· ·· ··<br />

: O : N : O :<br />

·· ·· ··<br />

step 5 · · - · · - · · -<br />

: O : O : : O :<br />

·· || ·· ·· ·· ·· ·· ·· ··<br />

: O : N : O : : O =N : O : : O : N= O :<br />

·· ·· ·· ··<br />

there are three possible Lewis structures<br />

a molecule or ion that has multiple correct<br />

Lewis structures shows resonance<br />

each <strong>of</strong> these Lewis structures is called a<br />

resonance structure<br />

19


ex. <strong>11</strong>.14 write the Lewis structure for<br />

CO 3<br />

2-<br />

step 1 total valence electrons<br />

= 4 + 3 × 6 + 2 = 24<br />

step 2 O O· ·<br />

O C O O : C : O<br />

step 3 24 - 6 = 18<br />

step 4 · ·<br />

: O :<br />

·· ·· ··<br />

: O : C : O :<br />

·· ··<br />

C atom is electron deficient<br />

step 5<br />

·· 2- ·· 2- ·· 2-<br />

: O : O : : O :<br />

·· || ·· ·· ·· ·· ·· ·· ··<br />

: O : C : O : : O =C : O : : O : C= O :<br />

·· ·· ·· ··<br />

20


<strong>11</strong>.9 <strong>Compounds</strong> containing polyatomic<br />

ions<br />

sodium carbonate Na 2 CO 3 has both ionic and<br />

covalent bonds<br />

ionic bonds exist between Na + and CO 3<br />

2-<br />

covalent bonds present between C and O atoms<br />

an important difference between ionic and<br />

covalent bonds can be demonstrated by<br />

dissolving Na 2 CO 3 in water:<br />

Na 2 CO 3 (s)<br />

water<br />

2 Na + (aq) + CO 3<br />

2-<br />

(aq)<br />

21


<strong>11</strong>.10 Molecular shape<br />

Lewis structures do not indicate anything regarding<br />

the geometric shape <strong>of</strong> a molecule<br />

geometric shapes for several common examples<br />

how do we predict the geometric shape <strong>of</strong> a<br />

molecule <br />

22


<strong>11</strong>.<strong>11</strong> <strong>The</strong> valence shell electron pair<br />

repulsion (VSEPR) model<br />

VSEPR model is based on the idea that electron<br />

pairs will repel each other electrically and will seek<br />

to minimize this repulsion<br />

to accomplish this minimization, the electron pairs<br />

will arrange around the central atom as far apart as<br />

possible<br />

1. linear structure 180 o<br />

ex. BeCl 2 Cl—Be—Cl<br />

2. trigonal planar 120 o<br />

ex. BF 3 F F<br />

B<br />

|F<br />

3. tetrahedral 109.5 o<br />

ex. CH 4 H H<br />

C<br />

H H<br />

23


one or more electron pairs may be nonbonding<br />

or lone pairs<br />

ex. NH 3 . .<br />

H : N : H<br />

. .<br />

H<br />

ex. H 2 O . .<br />

H : O :<br />

. .<br />

H<br />

24


ex. <strong>11</strong>.15 predict the molecular shape for<br />

(1) H 2 S ..<br />

H : S : H tetrahedral bent<br />

..<br />

(2) CCl 4 .. tetrahedral<br />

: Cl :<br />

.. .. ..<br />

: Cl : C : Cl :<br />

.. .. ..<br />

: Cl :<br />

..<br />

(3) AlF 3 .. trigonal planar<br />

: F :<br />

.. .. ..<br />

: F : Al : F :<br />

.. ..<br />

25

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!