23.01.2015 Views

[VAR]=Notes on variational calculus

[VAR]=Notes on variational calculus

[VAR]=Notes on variational calculus

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

As above <strong>on</strong>e can make precise this c<strong>on</strong>diti<strong>on</strong> <strong>on</strong> u by<br />

d<br />

dε J[u + εη] ∣<br />

∣∣∣ε=0<br />

= 0 (26)<br />

for all functi<strong>on</strong>s η = η(x, y) <strong>on</strong> Ω. The following computati<strong>on</strong> similar to the <strong>on</strong>e in<br />

(11),<br />

∣<br />

d ∣∣∣ε=0<br />

dε J[u + εη]<br />

= d ∫<br />

F(u(x, y) + εη(x, y), u x (x, y) + εη x (x, y), u y (x, y) + εη y (x, y), x, y)dxdy<br />

dε Ω<br />

∫ ( ∂F<br />

∂F<br />

= η(x, y) +<br />

Ω ∂u(x, y) ∂u x (x, y) η x(x, y) + ∂F )<br />

∂u<br />

} {{ }<br />

y (x, y) η y(x, y) dxdy<br />

} {{ }<br />

d<br />

dx ( ∂F<br />

∂ux(x,y) η(x,y))−η(x,y) d ∂F<br />

···<br />

dx ∂ux(x,y)<br />

∫ ( ∂F<br />

= BT + η(x, y)<br />

∂u(x, y) − d ∂F<br />

dx ∂u x (x, y) − d ∂F<br />

)<br />

dxdy (27)<br />

dy ∂u y (x, y)<br />

Ω<br />

where<br />

∫<br />

BT =<br />

Ω<br />

( d<br />

dx ( ∂F d<br />

η(x, y)) +<br />

∂u x (x, y) dy ( ∂F<br />

)<br />

∂u y (x, y) η(x, y)) dxdy<br />

∮ (<br />

∂F<br />

∂F<br />

)<br />

= η(x, y)dy −<br />

∂u x (x, y) ∂u y (x, y) η(x, y)dx<br />

∂Ω<br />

(28)<br />

is a boundary term (we used Green’s theorem) which vanishes since u is fixed <strong>on</strong> ∂Ω,<br />

and thus the allowed variati<strong>on</strong> functi<strong>on</strong>s η vanish <strong>on</strong> ∂Ω. We thus can c<strong>on</strong>clude, as<br />

above:<br />

Fact E: All soluti<strong>on</strong>s of the Problem E above satisfy the following Euler-Lagrange<br />

equati<strong>on</strong>s<br />

∂F<br />

∂u(x, y) − d ∂F<br />

dx ∂u x (x, y) − d ∂F<br />

dy ∂u y (x, y) = 0 (29)<br />

where u| ∂Ω is fixed.<br />

Again, it is imporant to distinguish partial and total derivatives, e.g.,<br />

d ∂F<br />

= ∂2 F<br />

u x + ∂2 F<br />

u xx +<br />

∂2 F<br />

u xy + ∂2 F<br />

dx ∂u x ∂u∂u x ∂u y ∂u x ∂x∂u x<br />

∂u 2 x<br />

(we suppress arguments x, y of u and its derivatives) etc.<br />

Similarly as above there are also modified variati<strong>on</strong>al problems where u is allowed<br />

to vary <strong>on</strong> all of ∂Ω or <strong>on</strong> parts of it. In this case <strong>on</strong>e also gets the Euler-Lagrange<br />

12

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!