23.01.2015 Views

[VAR]=Notes on variational calculus

[VAR]=Notes on variational calculus

[VAR]=Notes on variational calculus

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

eing extremal: the extremal points x = x λ will depend <strong>on</strong> λ, and the value of λ is<br />

then to be fixed so that g(x λ ) = g 0 . The paramter λ introduced here is often called<br />

Lagrange multiplier.<br />

To summarize: The problem “extremize the functi<strong>on</strong> f <strong>on</strong> R N with the c<strong>on</strong>straint<br />

that another functi<strong>on</strong> g <strong>on</strong> R N has a fixed given value g 0 ” is equivalent to “extremize<br />

the functi<strong>on</strong> f − λg <strong>on</strong> R N and determine the parameter λ so that the extremal point<br />

fulfills the c<strong>on</strong>straint.”<br />

This argument can be generalized to functi<strong>on</strong>als and used to derive the following<br />

Fact G: Problem G above is equivalent to extremizing the functi<strong>on</strong>al<br />

J[u] − λK[u] (42)<br />

and then determining the parameter λ so that the c<strong>on</strong>straint K[u] = K 0 is fulfilled: To<br />

solve Problem G <strong>on</strong>e solves the Euler-Lagrange equati<strong>on</strong>s<br />

∂(F − λG)<br />

∂u(x)<br />

− d ∂(F − λG)<br />

= 0 (43)<br />

dx ∂u ′ (x)<br />

(which has soluti<strong>on</strong>s u depending <strong>on</strong> the parameter λ, of course) and then fixing λ by<br />

the c<strong>on</strong>straint.<br />

It is easy to generalize this method to other kinds of functi<strong>on</strong>s and/or to variati<strong>on</strong>al<br />

problems with several c<strong>on</strong>straints given by functi<strong>on</strong>al: Minimizing any kind of functi<strong>on</strong>al<br />

J[u] with c<strong>on</strong>straints K J [u] = k J , J = 1, 2, . . ., L, is equivalent to minimizing<br />

J[u] −<br />

L∑<br />

λ J K J [u] (44)<br />

J=1<br />

and then fixing the parameters λ J so that all c<strong>on</strong>straints are fulfilled: The soluti<strong>on</strong>s<br />

of the Euler-Lagrange equati<strong>on</strong>s which amount to minimizing the functi<strong>on</strong>al in (44)<br />

will depend <strong>on</strong> the parameters λ 1 , λ 2 , . . .,λ L , and this is exactly the number of free<br />

parameters needed to fulfill the L c<strong>on</strong>straints. Again I leave details to the interested<br />

reader.<br />

2.5 Variati<strong>on</strong>al problems with higher derivatives.<br />

I finally shortly discuss variati<strong>on</strong>al problems involving higher derivatives and leading<br />

to higher order differential equati<strong>on</strong>s. For simplicity I <strong>on</strong>ly c<strong>on</strong>sider such problems for<br />

real-valued functi<strong>on</strong>s u of <strong>on</strong>e real variable — the generalizati<strong>on</strong> to other cases is<br />

straightforward: We c<strong>on</strong>sider a functi<strong>on</strong>al<br />

J[u] =<br />

∫ x1<br />

x 0<br />

F(u(x), u ′ (x), u ′′ (x), x)dx (45)<br />

16

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!